
Fast sequential decoding algorithm based on
dynamic searching strategy

C.-Y. Lee
W.-W. Yang
L.-F. Jeng

Indexing terms: Decoding algorithm, Decoding e$ciency, Dynamic searching strategy

Abstract: The authors present a new sequential
decoding algorithm based on dynamic searching
strategy to improve decoding efficiency. The
searching strategy is to exploit both ‘sorting’ and
‘path recording’ techniques. By means of sorting,
it is possible to identify the correct path in a very
fast way and then, by path recording, the bit
sequence can be recovered without degrading
decoding performance. The authors also develop a
conditional resetting scheme to overcome the
buffer overflow problem encountered in conven-
tional sequential decoding algorithms. Simulation
results show that, for a given code, the decoding
efficiency remains the same as that obtained from
maximum likelihood function by appropriately
selecting sorting length and decoding depth. In
addition, this algorithm can easily be mapped
onto an area-efficient VLSI architecture to imple-
ment long constraint length convolutional
decoders for high-speed digital communications.

1 Introduction

Convolutional coding with Viterbi decoding is widely
accepted as an efficient method to achieve a significant
power gain on digital communication channels with low
to moderate signal-to-noise ratios. Generally speaking,
for information bit rates greater than 5 Mbits/s, the
decoder must be based on a fully parallel implementation
of the Viterbi algorithm, which often demands one com-
plete cycle in each clock interval; that is, one set of input
symbols is processed and one output bit presented in
each clock interval. The speed requirements impose
timing constraints on each module in the decoder which
normally consists of three parts: an input module, an
addxompare-select (ACS) module and a path storage
and selection (PSS) module. The most severe constraints
are found in the latter two modules, where the ACS
module depends on the constraint length v and the PSS
module relies on both constraint length and decoding
depth d. Thus as v becomes large, the hardware complex-
ity increases considerably and hence the design cost
becomes huge or even not feasible for present technology.
Due to this consideration, it is very often found that the

~~ ~ ~_________

0 IEE, 1994
Paper 14661 (E5), first received 27th September 1993 and in revised
form 28th June 1994
The authors are with the Department of Electronics Engineering,
National Chiao Tung University, 1001, University Road, Hsinchu, 300,
Taiwan, Republic of China

312

constraint length is limited, say 7, in many available
hardware solutions found in the literature [1-31.

Alternatively, sequential decoding [4, 51 has low com-
putation complexity in search of a correct path. However,
the decoding rate decreases because a correct path can
only be identified after several trials on incorrect paths
due to error bits. The principal sequential decoding algo-
rithms are due to Fano [4] and the stack-based algo-
rithm due to Felinek [6]. Although these algorithms are
useful for longer constraint length codes, they suffer from
‘buffer overflow’ which derives from an inability to main-
tain uniform decoding rates while searching message
sequences. Previously, we presented a dedicated memory
structure [7] to speed up the decoding rate. However, the
problem of buffer overflow still remained. We recently
developed a new high-speed data sorter [8] which pro-
duces a sorted sequence immediately after input samples
are given. This technique provides a very powerful hard-
ware solution for those applications which require
massive sorting operations. In principle, sequential
decoding algorithm can be regarded as a set of sorting
operations working on the survived nodes to identify a
possible candidate node. From this candidate node
further tracking can be performed until all input
sequences are decoded. This modified sequential decod-
ing is called a ‘fast sequential sorter decoding’ (FSSD)
algorithm. In this paper a path recording technique is
developed to overcome back-tracking of correct bit
sequences and to improve throughput rate. Simulation
results obtained from this algorithm are provided to illus-
trate the decoding efficiency of this modified algorithm.
Finally, we present an efficient VLSI architecture for
single-chip implementation of the developed algorithm. It
is found that the constraint length is not limited by this
proposed architecture and hence it is very suitable for
long constraint-length applications.

2 Fast sequential decoding algorithm

The sequential decoding method is one of the alternative$
for convolutional decoder designs. Traditional sequential
decoding algorithms either use ‘threshold’ or ‘stack’ to
select a correct path for back tracking of input sequences.
There are, however, some drawbacks in using these

This work was supported by the National Science
Council of Taiwan, ROC, under Grant NSC82-F-
SP-009-01. The authors would also like to thank
their colleagues within the SI2 group of the
National Chiao Tung University for many fruitful
suggestions and discussions.

IEE Proc.-Commun., Vol. 141, No. 5, October 1994

approaches. For the threshold scheme, each candidate
node is sequentially checked until a path, whose accumu-
lated cost* or weight, is beyond any specified threshold.
This may require several trials on incorrect paths before
the correct path is found. Moreover, selecting the thresh-
old is not easy since it relies heavily on channel noise
levels. For stack based sequential decoding, a stack often
suffers the buffer overtlow problem, which leads to the
irrecoverability of the correct path. In addition, both
types (threshold and stack) also require back tracking of
the correct paths to recover all correct bit sequences.
Therefore, many operations are still needed in back
tracking, although fully parallel comparisons on trellis
diagrams are not required.

The modified sequential decoding algorithm presented
here is derived from the concept of the stack approach. It
is more efficient in its search for the correct path because
a sorter is exploited to identify the most probable node
from which node expansion or path tracking is per-
formed. Moreover, in this paper we develop a new tech-
nique called ‘path recording’ to keep track of the path
information so that, after a predefined depth d is reached,
the correct decoded bit sequence is automatically pro-
duced. In the following, we discuss first how these two
techniques are applied for performance improvement and
then provide some simulation results of the FSSD algo-
qithm.

2.1 Sorter kernel
At the outset we assume that both hard decision and soft
decision methods can be handled. However, to make this
algorithm more readable, we consider only the hard deci-
sion method and use constraint 3 and rate 1/2, i.e. the
(2, 1, 3) code, as an example to illustrate the decoding
process.

The code generator is given in Fig. la. First we con-
struct the trellis diagram indicating the diverting path at

I path: -

b
Fig. 1 A (2, I , 3) encoder
a Example
b Corresponding trellis diagram

each node as shown in Fig. lb. For correct transmission
of one bit, the cost will be decreased by -1, while for
incorrect transmission, the cost will be increased by 10 if
p is 3% [SI. Thus, one of three different costs (-2, 9, 20)

* Here, the cost represents the branch matrix and is determined by
error transmission probability p over the binary symmetrical channel
(BSC).

IEE Proc.-Commun., Vol. 141, No. 5, October I994

will be added to each diverted node according to the
difference between transmitted and received patterns. For
example, if ‘10’ is transmitted and ‘11’ is received, then
the cost to be added becomes 9.

If an error-free channel is considered, the correct path
can easily be identified if we follow the node based on the
minimum weight as shown in Fig. 2a. It can be found

31.
b

Fig. 2
scheme, illustrated for the (2, I , 3) code given in Fig. I
a Noise-free situation
b Noise effect
Note that the mask area indicates the surviving nodes to be stored after decoding
a certain bit sequences. It can be concluded that more storage space is needed lor
transmission on nony channel

Search of the correct path by the fast sequential sorter decoding

that tracking the correct path is now formulated as a
sorting scheme working on the weights of all survived
nodes. If we start from the root and select the node with
the less cost of the two candidate nodes, we can always
find the correct path and hence the transmitted sequence
can be fully recovered. Thus it is not necessary to track
all nodes as those required in the maximum likelihood
function since only the node with minimum weight is
needed for each decoded bit.

Now, an error-free channel does not exist in real-life
applications. As shown in Fig. 26, where two error bits
occur consecutively, the correct path cannot be immedi-
ately identified because of lower weights resulting from
the error bits. In this case, if the decoding depth is taken
further, the weight from the incorrect path becomes
higher than that of the correct path. Then, after certain
steps of bit decoding, we can move back to the correct
path and continue estimating the weights of nodes on the
correct path. This implies that a sorter can be used here
to track the minimum weight of the surviving nodes. If
no errors occur, only the node with the minimum weight
is replaced by the new node which inherently has the new
minimum weight. The other node is placed in a certain
position according to its weight. If only one error occurs,
we arbitarily select one, e.g. a ‘1’ path, from two diverting
paths since both nodes have the same cost, say 9 in our
example. The first element is deleted and then both new
weights are inserted at the neighbouring positions

313

according to their sorted order. If, by luck, we select the
correct path, then the weights of this path decrease;
otherwise, after tracking several nodes on incorrect paths,
the ‘0’ path will then be selected as shown in Fig. 2b. By
the above process, we found that the search for the
correct path can be formulated as a sorter-based scheme
again. In other words, if we always start from the
minimum weight, we can speedily identify the correct
path, even if there is a noise-effect. Thus, this sorter-based
scheme may be summarised as follows.

(i) Reset the weights of all nodes and start the cost
estimation from root.

(ii) Use the weight of the first element to generate two
new weights and record the decoded bit; in the mean
time, extract the decoded bit sequence when the prede-
fined depth is reached.

(iii) Sort the weights of all nodes according to
ascending sequence.

(iv) If the input sequences are not terminated, then go
back to step (ii) for bit decoding; otherwise output the
decoded bit sequence.

Since sorting requires a lot of operations, we can reduce
this computation complexity by checking the error pat-
terns. If one error bit is detected, we only have to sort
once since both candidates have the same weight. But, if
no error bits or two error bits are detected, we can
replace the first element by the new minimum weight and
then insert the other weight according to its sorted order.
In this way, the required sorting operations ca? be
reduced by half. In summary, the aproach is to dynamic-
ally search for the node with the minimum weight from
the surviving tree nodes.

22 Speed up decoding process by path recording
The above process focuses on the identification of the
current path by sorter-based operations. Even so, it still
requires some effort to obtain the recovered bit sequence.
After the correct path is identified, we need to back-track
for a certain depth d because of the limit of storage space
in the sorter. This back-tracking strategy often requires
the use of extra storage space and hence cost generation
and accumulation becomes idle or another storage unit is
needed to speed up the performance.

Fortunately, the back-tracking strategy can be avoided
because, when a candidate node is selected, we already
know that either ‘0’ or ‘1’ path is assigned to this node as
shown in Fig. 3. Thus each node is already combined

bit order1 path information

1 I ? t
lengt h, L

produce decoded pattern
/

Fig. 3 Illustration of the path recording scheme

with a possible decoded bit information. The new bit
sequence is obtained by shifting up the old bit sequence
and inserting one bit (either ‘1’ or ‘0’). Then, this new
sequence is written to the position as identified by the
sorter. The path information identified by the minimum

314

weight is shifted up one bit and then conditionally loaded
into the output buffer. Therefore, if the decoding depth d
is taken appropriately, the correct bit can be obtained
from the path recorder identified by the first element of
the sorter while the weight calculation can still be per-
formed simultaneously. The path-recording strategy is
very efficient in generating the correct bit sequence since
no back-tracking is needed.

It should be noted too that the decoded bit obtained
from the path recorder relies on the condition that the
depth d should be reached before it is passed to the
output buffer. This is to ensure that all bits obtained are
from the correct path. However, since in the decoding
process, part of the surviving nodes are from incorrect
paths and may temporarily stay at the first position of
the sorter. If we always extract the bit sequence from the
first element, error bits will be inserted into the output bit
sequence. Therefore we must ensure that output bits can
be extracted from the path recorder only when the speci-
fied depth d is reached. To do this, a status register,
which specifies the order of output bit sequence, can be
employed. The status register serves two purposes: (i) for
the address to access the input buffer when input bit pat-
terns are to be detected again, i.e. when path tracking
from the surviving nodes has to be performed and (ii) for
depth detection to see if the specified depth is reached.

By combining both sorting and path recording tech-
niques we can search the correct path and obtain the
output bit sequence in a very efficient way. Fig. 4 shows
the results for these two techniques, where the data are
based on the path search given in Fig. 2a. Clearly, the
three important parameters are updated simultaneously.
Each time, when a new node is detected, one more space
is created to record the required information, such as
decoded bit order, new weight and path information.

No. of Sorted Decoded Recorded
traced weight bit path
nodes sequence order information

1 -2 1
20 1

2 -4 2
18 2
20 1

3 -6 3
16 3
18 2
20 1

4 -8 4
14 4
16 3
18 2
20 1

5 -10 5
12 5
14 4
16 3
18 2
20 1

1
0

11
10
0

111
110
10
0

1111
1110
110
10
0

11111
11110
1110
110
10
0

.

Fig. 4
path search given in Fig. 2a

Illustration ofthe sorting and path recording techniques for the

2.3 Straregy to improve coding gain
Two issues are to be considered here: (i) the finite preci-
sion and finite length problem and (ii) the relation
between decoding depth and sorter length.

In some cases the decoding process will fail because a
loop is detected or the new generated weight cannot be

IEE Proc.-Commun., Vol. 141, No. 5, October 1994

stored in the sorter due to burst errors. In this case, the
weights of survived nodes are almost the same as illus-
trated in Fig. 5a, which implies that some important

sorter 1enath.L

one
error +9

a

192 119212561256(216125612561--12561256)256)
one
error +9

Fig. 5
D Weights of surviving nodes remlun almost the same so that new weight cannot
be stored in the case of I bit-error
b Removing path loss by resetting strategy to allow new weights be stored

Path loss due t o burst errors

LY
W m

SN R

Fig. 8
depth d, where sorter length L and S N R are adjustable
-0- 128 -*- 96
-0- 64
-A- Viterbi

Simulation results in t e r m of bit error rate (BER)for a f i r e d

paths can never be recovered. Therefore, the new pro-
duced weights cannot be stored in the sorter and hence a
loop is detected or a path is lost. To solve this problem
we apply a reset method to initialise the decoding process
by using current decoded bit sequences. This is per-
formed by resetting the sorter content, as done in the
initial phase, so that the most recent nodes can be stored.
We can use the previous decoded bit sequences to ensure
that correct codes are generated for comparison as shown
in Fig. 5b. In the meantime, the finite precision and
length problem can be solved using this reset strategy.

The relation between sorter length (L) and decoding
depth (d) of path recoder can be determined by an iter-
ative process. Here L represents the sorter capacity indic-
ating how many surviving nodes can be stored and
handled. Depth d represents that correct bits can be
obtained during path tracking. Since these two param-
eters are very related and dependent on channel noise
level, we assume first that a very long L is used and then
determine a depth d for correct bit decoding at different

IEE Prac-Commun., Vol. 141, No. 5, October 1994

noise levels. Then, based on a selected depth d, we reduce
the length L until bit error rate (BER) is above a certain
level.

a
W m

(z
W m

Fig

L -96

2.0 2.5 3.0 3.5 ' 4.0 ' ' 4.5 5.0
a

'"Ol
10-11

L.128

2.0 2.5 30 35 40
I
4 5 5.0

EblNo.dE
b

7 Simulation results for afixed sorter length L, where path depth
d and S N R are adjustable
Sorber depth:
-m- IS
-0- 21 -*- 21
-0- 33

2.4 Simulation results
Fig. 6 shows the BER of L against SNR at a fixed depth
d. For a selected channel with known error probability p .
a convolutional code is first determined and then both L
and d can be estimated. Fig. 7 shows the BER of d
against SNR at a fixed L. It is found that d should be at
least four or five times the constraint length to ensure
that correct path can be recovered. Note that we have
included a commercial chip from Qualcomm [9] in Fig. 6
for comparison. Results show that the performance of
our algorithm is better than that from Viterbi decoding
algorithm when L and d are selected appropriately. These
simulation results are similar to those found in Reference
10. In addition, this algorithm is also useful for long con-
straint length since only L and d have to be adjusted. For
example, if SNR = 3 dB and a (2, 1,7) code are assumed,
the best L of the sorter is selected as 96 for a depth d of
27 when the BER is to be less than That is only the
first 96 elements are considered to be the candidate
(surviving) nodes for tracking the correct path. If L is less
than 96, probably the BER will be higher than lo-'.

315

http://EblNo.dE

3 VLSI architecture

The proposed algorithm can be mapped onto a shift
register based architecture which can meet high-
throughput requirements. The architecture consists of
several functional units as shown in Fig. 8. For example,

decoded

input
buffer generation

Fig. 8 Architecture design for the FSSD decoder

the input buffer unit (IBU) contains the encoded
sequences. The weight calculation unit (WCU) uses the
node with minimum weight as a basis and then calculates
the new weight according to the two costs which are gen-
erated by the cost generation unit (CGU). The cost is
obtained by pattern matching and then produces a pair
of two costs. The weight sorting unit (WSU) is used to
store the weights of the survived nodes. The path record-
ing unit (PRU) is provided to produce the correct bit
sequence when the depth is reached and, in the mean
time, to give a label indicating the order of decoded bits.
It can be found that both PRU and WSU occupy most of
the area (at least 96 x (16 + 8) cells are needed). They
can be realised on shift register arrays. For example, the
detailed architecture for the PRU is given in Fig. 9. The

I t
shift

leftlright
register
array

porollel
bit
sequence

t-
I - r I

address incrementer d e c o d ~ i ~ & ‘ a b e l I
U-

Fig. 9 Detailed architecture of the path recording unit

first element of the PRU should record all the path infor-
mation and possible decoded bit sequence with the
maximum number up to the specified depth d. It is con-
nected to an up shifter whose LSB is injected with ‘0’ or
‘1’ depending on the path to be detected. In addition, a
status register labelling the order of the decoded bit
sequence is needed for two purposes. One is to trace back
bit patterns of the survived nodes when an incorrect
path is detected. This implies that the status content
should be sent to the IBU to load input pattern for path

316

tracking. Thus, all status registers should be reset in the
initial phase and the content of the first element should
be incremented by ‘1’ when a new decoded bit is deter-
mined. The other is to detect whether the depth d is
reached. To reach this goal, the content from this status
register has to be compared with the specified depth to
generate a load control signal to conditionally govern
whether the MSB of the up shifter should be stored in the
output buffer. Again normalisation should be done here
because of finite precision problem. We use a dynamic
matching technique to reach this goal. That is, in the
initial phase, the depth is stored in the detection register.
When the content of the first status register is the same as
the content of the detection register, the shift-out MSB
should be stored in the output buffer. Then both status
and detection registers are simultaneously incremented
by ‘1’.

With this efficient architecture, not only can high-
speed be achieved but also programmability for different
constraint length can be handled. A prototype chip based
on the proposed algorithm and architecture for a (2,1,7)
code has been implemented and tested. Its decoding
speed can be up to 25 Mbits/s, where the core area is
4.3 mm x 4.5 mm using a commercial 0.8 pm CMOS
double metal process [ll].

4 Conclusion

A new sequential decoding algorithm for high-speed
digital communications has been presented. The use of
both sorting and path recording techniques not only
solves the low-throughput problem but also provides a
solution for long constraint convolutional code designs
when mapped onto shift register array architecture. Thus
a cost-effective solution for high-speed convolutional
codes can be achieved. The proposed technique can also
be applied to trellis codes and rate-k/n convolutional
codes for video distribution and high-speed communica-
tion links. We are currently developing a prototype VLSI
chip to implement the proposed algorithm for HDTV
and high-speed networking applications.

5 References

1 ISHITANI, T., TANSHO, K., MIYAHARA, N., KUBOTA, S., and
KATO, S.: ‘A scaroe-state-transition Viterbidecoder VLSI for bit
error correction’, IEEE J . Solid-state Circuits, Aug. 1987, 22, (4), pp.
575-581

2 COGGINS, D.J., SKELLERN, D.J., KEANEY, R.A., and
NICOLAS, J.J.: ‘A comparison iof path memory techniques for
VLSI Viterbi decoders’. Proc. VLSI’89, Munich Germany, Aug.
1989, pp. 378-388

3 PAASKE, E., PEDERSEN, S., and SPARSO, J.: “An area-efficient
path memory structure for VLSI implementation of high-speed
Viterbi decoders’, Integr. VLSI J., 1991, pp. 79-91

4 FANO, R.M.: ‘A heuristic discussion of probabilistic decoding’,
IEEE Trans. Inform. Theory, 1963, IT-9, pp. 64-73

5 VITERBI, AJ., and OMURA, J.K.: ‘Principles of digital communi-
cation and coding’(McGraw-HiU, New York, 1979)

6 FELINEK, F.: ‘Fast sequential decoding algorithm using a stack‘,
IBM J . Res. Develop., Nov. 1969, 13, pp. 675-685

7 LEE, C.Y., CATTHOOR, F., and DE MAN, H.: ‘Breaking the
bottleneck of sequential decoding for high-speed digital communica-
tion’. Proc. ICASSP, Toronto, May 1991

8 LEE, C.Y., TSAI, I.M., and HSIEH, P.W.: ‘High-speed median filter
designs using shiltable content address memory’. To appear in IEEE
Trans. Circults Syst. Video Technol.

9 QUALCOMM, Inc., ‘41650 product description’. San Diego, CA
1990

10 GOULD, T.M., and HARRIS, J.H.: ‘Single-chip design of biterror-
correcting stack decoders’, IEEE J . Solid-State Circuits, May 1992,
27, (SA pp. 76&775

11 YANG, W.W., and LEE, C.Y.: ‘High-speed sequential decoder
designs using shirtable content addressable memory’. Submitted to
APCCASP4,5-8 Dec., 1994, Taipei, Taiwan

IEE Proc.-Commun., Vol. 141, No. 5 , October 1994

