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Pulsed Pressure–Chemical Vapour Deposition (PP–CVD) is a thin film deposition process which employs a
highly unsteady flow with wide dynamic range of pressure. The large, time-varying density gradient dur-
ing a PP–CVD process cycle produces a flow field in which the Knudsen number varies from the near-con-
tinuum to the rarefied regimes, making Direct Simulation Monte Carlo (DSMC) prohibitively expensive.
The present directional decoupled Quiet Direct Simulation (DD-QDS) method is a novel kinetic-based flux
scheme that computes fluxes of mass, momentum and energy at the interface of computational cells in a
highly computationally efficient manner. The Maxwell–Boltzmann equilibrium distribution is enforced
locally at each computational cell at each time step. In this paper, an axisymmetric second order direc-
tional decoupled QDS scheme is used to simulate highly unsteady flows encountered in PP–CVD reactor.
Two simulations were conducted to investigate the PP–CVD reactor flow field at 1 Pa and 1 kPa reactor
base pressures. The assumption of the local Maxwell–Boltzmann equilibrium distribution used in the
QDS scheme is verified by examining the gradient length local Knudsen number based on the density,
and by estimating the average number of molecular collisions within each computational cell in one com-
putational time step. The validity of the local equilibrium assumption is found satisfactory at 1 kPa reac-
tor based pressure but not at 1 Pa. The limitation of the QDS scheme in modelling PP–CVD flow was also
investigated. The time required to establish the quasi-steady under-expanded jet is found to be �4 ms,
and the jet dissipates within 0.5 ms of the end of injection. This important information is required to
set up PP–CVD operating conditions which give uniform film deposition.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Development of the direction decoupled Quiet Direct Simulation
method

There are a number of approaches for the simulation of gas
flows and a large variety of solution methods depending on the
nature and level of rarefaction of the flow. In the conventional
Computational Fluid Dynamics (CFD) approach, finite volume
methods have been used extensively to solve the Euler or Na-
vier–Stokes equations. Due to the complexity of the governing
equations, computational cost is high in the conventional CFD
methods particularly if a turbulence model, for which extra equa-
tions must be solved, is required in the simulation. There is also
usually the need of extra care in meshing of the computational do-
main in order to ensure accurate results, convergence and stability
of the simulation. In addition, in unsteady flow simulation, it
would be difficult to generate a fixed computational mesh suitable
for the constantly changing flow field. An adaptive mesh may be
used in order to ensure the grid alignment with the flow but this
requires extra computational resources which may reduce the
computational efficiency.

An alternative is a kinetic-theory based approach that takes into
account the particle-based nature of gases in simulating the flow
field. The most widely-accepted particle-based direct simulation
method is the Direct Simulation Monte Carlo (DSMC) technique
developed in the 1960s by Bird [1]. The DSMC algorithm requires
the use of random numbers and is thus subject to statistical scatter
and requires averaging over a large number of time steps to reduce
the scatter in the sampled macroscopic properties. Another parti-
cle-based kinetic-theory approach is Pullin’s Equilibrium Particle
Simulation Method (EPSM) [2]. EPSM simplified the collision phase
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computation in DSMC in which simulated particles are assigned
new velocities from the local Maxwell–Boltzmann velocity distri-
bution. However, since the velocities are drawn randomly from
the distribution, EPSM also exhibits statistical scatter in the results
and as such requires averaging over a large number of time steps in
the same way as DSMC.

Another kinetic theory-based approach is the flux-based simu-
lation method. An example of the flux-based kinetic-theory ap-
proach is Pullin’s Equilibrium Flux Method (EFM) [2]. This
method employs split fluxes which are calculated across the inter-
face of two cells by taking the moments of the equilibrium velocity
probability function at the interface location. The technique is not
subject to the statistical scatter inherent in particle-based meth-
ods, however, it involves the use of error function extensively
which is computationally complex and expensive to evaluate.

The Quiet Direct Simulation (QDS) method was originally
termed Quiet Direct Simulation Monte Carlo (QDSMC) when
developed by Albright et al. as a method for modelling plasmas
[3] and Eulerian fluids [4]. Smith et al. [5] then reformulated
QDSMC to be a conservative finite volume scheme and imple-
mented to second order accuracy. The reformulated QDSMC
scheme was renamed QDS due to the lack of stochastic processes.
The QDS method is a flux-based kinetic-theory approach which
the continuous distribution function employed in previous ki-
netic-theory based methods is replaced by a discrete mass prob-
ability distribution function. The QDS method assumes a
sufficiently high collision rate in each computational cell such
that the velocity distribution relaxes completely to the
Maxwell–Boltzmann local equilibrium distribution during the
time step. A Gaussian quadrature (or Gauss–Hermite quadrature)
is used to approximate the Maxwell–Boltzmann equilibrium
condition. It has been shown that the application of Gauss–Her-
mite quadrature to the computation of the discrete mass proba-
bility distribution function requires only a low number (64 in
general) of discrete velocities to obtain results virtually indistin-
guishable from the equivalent continuum results obtained from
EFM [5].

The QDS method described in [5] is advantageous for its sim-
plicity, its computational efficiency requiring no evaluation of
computationally expensive functions, its deterministic approach
eliminating statistical scatter inherent in the DSMC solvers, its
localised computation with only the nearest neighbour informa-
tion required for second order spatial accuracy allowing easy
implementation for parallel computation, it is easily extended to
multiple spatial dimensions and multiple gas species, and it is
unconditionally stable. Yet, it is numerically diffusive and due to
the assumption of perfect local equilibrium is capable of solving
only inviscid flows at present.

For application to cylindrical or spherically axisymmetric
flows, the traditional implementation of QDS would require con-
sideration of volumetric effects on the flux computation. This can
become involved when (i) extended to multiple dimensions, or
(ii) fluxes are extended to higher order spatial accuracy. Hence,
in this paper, the basic QDS scheme [5] is recast as an approxima-
tion to the EFM to extend its application to axisymmetric flows,
in a manner familiar in conventional CFD, and named as direc-
tional decoupled QDS (DD-QDS). It is tested against standard test
cases and applied the simulation of the unsteady complex flow
encountered in Pulsed Pressure Chemical Vapour Deposition
(PP–CVD) process.

1.2. Pulsed pressure chemical vapour deposition process

PP–CVD is a novel manufacturing technique developed by
Versteeg et al. [6] to deposit thin films of solid material onto a
substrate through a chemical process in repeated pulses. It has
shown improved performance over conventional Chemical
Vapour Deposition (CVD) methods including high precursor
conversion efficiency, film quality and substrate conformity
[7–9]. The operating cycle of the PP–CVD process consists of an
injection and pump-down phase. During the injection phase, a
controlled volume of precursor solution at high supply pressure
is injected into a continuously evacuated reactor volume via an
ultrasonic atomizer or choked orifice. The injection of precursor
mixture is carried out rapidly in the partially evacuated reactor
volume, increasing reactor pressure to a maximum. The process
is followed by a pump-down phase when the reactor inlet valve
is closed while the reactor volume is continuously evacuated by
a vacuum pump to achieve a set minimum pressure before the
next pulse cycle begins. The rapid injection of precursor solution
leads to a high vapour concentration near the reactor inlet during
the injection phase while the continuously evacuated reactor
chamber causes the fluid density to reduce significantly with time
after the end of the injection phase, and with the distance from
the inlet. This pulsed process cycle causes a highly unsteady flow
field with large density gradients throughout the reactor volume.

Previous numerical modelling of the PP–CVD flow field by Cave
[10] using the unsteady DSMC modelling technique developed by
Bird [11] found that the highly unsteady nature of the flow makes
DSMC simulations extremely computationally expensive. The un-
steady flow phenomena coupled with significant density gradient
over the flow field also challenges conventional Navier–Stokes
CFD solvers. Obtaining converged solutions at an acceptable com-
putational expense using either DSMC or conventional Navier–
Stokes solver is particularly difficult for such unsteady flow fields.
For these reasons, in this paper, QDS has been investigated as a
candidate method for rapid approximation of the PP–CVD flow
field with acceptable accuracy. A speedy solution is essential par-
ticularly in the customisation of the PP–CVD reactor design and
operational conditions selection in meeting a specific application
of the thin film deposition technique. The limitations, arising from
the assumption of local thermal eqauilibrium, on the accuracy of
the QDS solution are explored.
2. Method

The Maxwell–Boltzmann equilibrium velocity distribution
function has the form of:

pðvÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

r
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where p(v)dv is the probability of finding a molecule with a velocity
in the range v ? v + dv, u is the bulk velocity and the velocity
variance r ¼

ffiffiffiffiffiffi
RT
p

. The integration of moments of Eq. (2.1) over
infinite velocity range can be represented by introducing the
Heaviside step function Hs. This permits the fluxes splitting to
approximate the EFM flux expressions given in Eq. (2.2) as:
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where f(v) takes the value 1 if the mass flux is to be computed, the
value v if the momentum flux is computed, and v2 if the energy flux
is computed. Hs(x) = 1 if x > 0, else Hs(x) = 0 while wj and qj are the
weights and abscissas of the Gauss–Hermite parameters. The
abscissas are the roots of the Hermite polynomials which can be de-
fined by:

Hnþ1ðqÞ ¼ 2qHn � 2nHn�1 ð2:3Þ



Fig. 1. Control volume element for a single cell of a cylindrically axisymmetric
geometry.
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where H�1 = 0 and H0 = 1. The weights can be determined from:

wj ¼
2n�1n!

ffiffiffiffi
p
p

n2½Hn�1ðqiÞ�
2 ð2:4Þ

The Gauss–Hermite parameters are tabulated by Zwillinger
[12]. Eq. (2.2) becomes exact when the function f(v) is a linear com-
bination of the 2N � 1 polynomials x0,x1, . . . ,x2N�1. Therefore, in the
QDS method, the Maxwell–Boltzmann equilibrium velocity distri-
bution function can be discretized with a chosen number of N
‘‘velocity bins’’ in each spatial dimension (N 6 4 in general) where
the mass fraction of the computational cell carried in each bin is
determined by the weights of the Gauss–Hermite quadrature while
the associated velocities are represented by the corresponding
abscissas.

Consider a typical one dimensional cell surface with the con-
served macroscopic properties g given as:

g ¼
q
qu

q 1
2 u2 þ cpT
� �

2
64

3
75 ð2:5Þ

where q is the density, cp is the specific heat for constant pressure.
By using the velocity distribution function and the conserved prop-
erties on either side of the surface, the net flux of g, Fg, across the
cell surface can be expressed as:

Fg ¼ Fþg þ F�g ð2:6Þ

where the superscripts + and � denote conditions on the left and
right of the surface, respectively. The flux due to the gas molecules
transporting from the left to the right of the surface can be deter-
mined by evaluating the integral given as:

Fþg ¼
Z 1

0
vgþf ðvÞdv ð2:7Þ

while the flux due to the gas molecules transporting from the right
to the left of the surface is computed by evaluating the integral gi-
ven as:

F�g ¼
Z 0

�1
vg�f ðvÞdv ð2:8Þ

Using the equilibrium molecular velocity distribution on either side
of the surface, Eq. (2.7) can then be evaluated by Eq. (2.9) by letting
the thermal velocity v0 = v � u and taking the moments of the con-
served macroscopic property g around f(v0) as:
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Z 1

0
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Similarly, Eq. (2.8) can be evaluated by Eq. (2.10) as:
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where gj are the conserved macroscopic properties of the jth QDS
‘‘velocity bin’’ given as:

gj ¼
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qv j
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where v j ¼ v j ¼ uþ
ffiffiffiffiffiffiffiffiffi
2r2
p

qj velocity of the bin and ej is the internal
energy of molecular structure in the bin such as rotational, vibra-
tional, or electronic energy.

Consider a control volume element of the flow field for a
computational cell as shown in Fig. 1, the conserved macroscopic
properties of cell i updated after one time step k + 1 can be com-
puted by applying the divergence theorem and given as:

gkþ1
i ¼ gk

i �
Dt
V

FRAR � FLAL þ gk
i;P

� �
ð2:12Þ

where V is the cell volume, F is the net flux normal to the surface of
area A and subscripts R and L indicate reference to conditions on the
left and right sides of the cell interface (or top and bottom sides of
an annular cylindrical cell as shown in Fig. 1), respectively. gi,p is the
momentum correction applied to account the pressure change
along control volume elements in the radial direction for axisym-
metric flows given as:

gi;P ¼
0

PiaDr

0

2
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3
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where Pi is the cell pressure, Dr is the cell width in the radial direc-
tion and a is the axisymmetric angle (usually p).

In the second order scheme, the split fluxes at the cell interface
are reconstructed in a manner similar to the conventional recon-
struction method [13]. Hence, by taking a Taylor series expansion
of the split fluxes at the cell interface, a second order accurate
expression for the net fluxes FR and FL are given in Eqs. (2.14)
and (2.15), respectively, as:
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where the flux gradients dF/dr are calculated from the finite differ-
ence approximations of F+ and F� using a slope limiter to maintain
positivity. The gradients of the fluxes are determined using the
MINMOD (Minimum Modulus) or the MC (Monotonized Central
Difference) slope limiter [14]. For example, the gradient in radial
flux calculation using the MC slope limiter is given as:

dFþ

dr
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¼MINMOD
Fþiþ1 � Fþi�1

2Dr
; MINMOD 2

Fþiþ1 � Fþi
Dr
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Dr

� �	 

ð2:16Þ



Fig. 2. Normalised density (top) and velocity (bottom) profiles taken from radial
location 0.1r (where r is the initial shock location) for a spherically imploding shock
(MS = 5.0). The QDS solution (using three sample points, or velocity bins, per pair of
split fluxes) employs 800 cells with second order spatial accuracy using a MINMOD
limiter. Results are compared with numerical and analytical solutions from
Ponchaut et al. [16]. The gas is assumed ideal (c = 7/5) and inviscid.
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where the MINMOD slope limiter [15] is given as:

MINMOD½a; b� ¼
0 if SIGNðabÞ < 0
a if SIGNðabÞ > 0 and jaj < jbj
b if SIGNðabÞ > 0 and jbj < jaj

8><
>: ð2:17Þ

A variable time step scheme is used to maintain the maximum
kinetic Courant–Friedrichs–Levy (CFL) number in the domain be-
low a desired value (usually 61). Unlike the implementation in
[5], the present implementation is not unconditionally stable, so
the CFL number is limited to maintain both stability and physical
realism. For a two-dimensional or axisymmetric simulation, the
CFL number is given by:

CFL ¼max
ux þ qjðmaxÞ

ffiffiffiffiffiffiffi
RTi
p� �

Dt

Dx
;

ur þ qjðmaxÞ
ffiffiffiffiffiffiffi
RTi
p� �

Dt

Dr

2
4

3
5 ð2:18Þ

where qj(max) is the maximum value of the velocity bin abscissas (i.e.
the value which gives the maximum thermal velocity).

In the current implementation boundary conditions are handled
using ghost cells [5]. These cells can be used to represent walls,
stream boundaries, inflow boundaries and zero-gradient outflow
boundaries. The interaction of a gas with a wall is identical to
the interaction of that flow with an adjacent cell having the same
flow properties but a reversed flow direction normal to the wall.
This enforces the no-slip condition at the wall itself. For the inflow
boundaries, the ghost cells have properties equal to the free stream
conditions, whereas the conditions in outflow ghost cells are
extrapolated from values within the adjacent flow field cells. In
both cases, fluxes from flow field cells to inflow/outflow ghost cells
are destroyed.

3. Validation cases

3.1. 1D spherically imploding shock wave

A one-dimensional simulation of a spherically imploding shock
wave has been used to verify the accuracy of the axisymmetric
implementation of QDS. Following the investigations by Ponchaut
et al. [16], a shock wave (Mach no. of 5) travelling towards the cen-
tre is positioned at a radial location of r at t = 0. This problem is
introduced and discussed briefly here, and details can be found
in [16]. Conditions at a radial distance of 0.1r as a function of time
t were employed to validate the numerical solutions. Solutions
generated with the DD-QDS algorithm are shown in Fig. 2.

The DD-QDS simulation was conducted with 800 cells and a
second-order spatial accuracy using a MINMOD limiter to ensure
positivity. Since the gas is ideal (c = 1.4) and inviscid, this problem
has no characteristic length [16]. Hence, the variables q, u and time
t shown in Fig. 2 are normalised by the undisturbed density in re-
gion I (qI), uref and tref, respectively, where uref and tref are the veloc-
ity and time at which the imploding shock passes the location at
0.1r. The regions I (undisturbed gas, prior to the arrival of the
incoming shock), II (post incoming shock, pre-shock reflection),
III (post shock reflection, pre-reflected shock) and IV (post reflected
shock) are clearly shown and in good agreement with numerical
and theoretical solutions provided by Ponchaut et al. [16].

3.2. Shock-bubble interaction

As a validation of the accuracy of the DD-QDS code, a test prob-
lem for the interaction of shock waves with a spherical bubble was
simulated. The problem of shock-bubble interaction was first stud-
ied experimentally by Rudinger and Somers to understand the fun-
damental mechanics associated with turbulence generation and
mixing [17]. Haas and Sturtevant then studied this problem to
investigate the nature of shock refraction at low Mach number
[18]. Numerical simulations on this problem have also been carried
out to study the Mach number effects on the shock-bubble interac-
tion [19]. Most of these simulations involve multi-species flow. As
the present DD-QDS code simulates single species flow, the results
are compared to a simulation using the EFM method. Fig. 3 shows
the geometry of the problem together with the initial and bound-
ary conditions for the simulation of shock-bubble interaction in a
1.0 unit length cylindrical channel with radius of 0.5 unit length.
The spherical bubble with radius r = 0.2 unit length is initially lo-
cated at 0.4 unit length downstream from the channel inlet. The
simulated gas was ideal gas with a ratio of specific heats of 1.4
and a gas constant of R = 1.0. The inlet boundary was kept at the
initial flow condition at all times while the outflow condition
was extrapolated from the adjacent flow field cells. Reflecting wall
boundary conditions were applied along the walls of the tunnel.

The simulation was conducted with the axisymmetric DD-QDS
code by using 3 velocity bins per coordinate direction and the
MINMOD slope limiter in calculating property gradients. In the sim-
ulation, 200 radial cells and 400 axial cells are used. The computa-
tional cells of the bubble were generated at t = 0 in a staircase



Fig. 3. Geometry, boundary and initial conditions for the simulation of shock-
bubble interaction.
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manner with the cells taking the properties of either the bubble or
the surroundings, but never values in between. A dynamic time step
was used in which the simulation time step was adjusted after each
time step to maintain CFL < 0.25 everywhere. The simulation was
carried out until 0.2 s when the shock wave is just about to reach
the outflow boundary.

The DD-QDS simulation result was compared to that of the sim-
ulation using EFM [20] as validation. Fig. 4 shows the comparison
of density contour between the simulation results of the DD-QDS
solver and the EFM solver at the simulation time of 0.2 s. As a con-
sequence of interaction of a right-moving incident shock, the bub-
ble region with lower density than the surroundings expands
radially outward and deforms into a kidney-shape vortex as a re-
entrant jet forms at the upstream interface, as visualised by Haas
and Sturtevant [18] and also predicted by Picone and Boris [19]
and Bagabir and Drikakis [21]. The comparison shows that the
DD-QDS solver is able to capture similar shock-bubble interaction
flow field features similar to the EFM. The backward-moving re-
flected shock and right-moving transmitted shock have almost ex-
act match in position to that in the EFM’s result. This shows the
DD-QDS scheme’s capacity for producing close approximations to
the problem with a simple formulation and high computational
efficiency. Both simulations, using the DD-QDS and the EFM, were
carried out on a single desktop computer with 3.00 GHz Intel Core
2 Duo CPU E6850 processor and 4 GB of RAM. The simulation con-
sumed 254 s to compute 0.2 s flow using the DD-QDS solver com-
pared to 369 s by using EFM solver. Hence, DD-QDS solver has
significantly greater computational efficiency equivalent accuracy
to EFM for this problem.
Fig. 4. Comparison of density contour at 0.2 s for shock-bubble interaction
simulation between results from the present QDS scheme (top) and results from
the EFM (bottom); I is the incident shock, R is the reflected shock, T is the
transmitted shock, and S is the contact surface.
3.3. Mach 3 flow over a forward facing step

The third test problem in validating the DD-QDS code is the
Mach 3 flow over a forward facing step in a high speed two-dimen-
sional wind tunnel. This test problem was introduced by Emery
[22] and has been used in several studies including Woodward
and Colella in testing a few numerical schemes [23] and Keats
and Lien who used a Godunov scheme [24]. Fig. 5 shows the geom-
etry of the problem with a uniform Mach 3 flow over a step which
is located 0.6 unit length from the inlet of the tunnel. The simu-
lated gas was an ideal gas with a ratio of specific heats of 1.4 and
a gas constant of R = 1.0. Initially, the flow is uniform everywhere
with density of 1.4, pressure of 1.0, and velocity of 3.0. The inlet
boundary remains as the initial flow condition while the outlet
boundary condition was extrapolated from the adjacent flow field
cells. Reflecting wall boundary conditions are applied along the
walls of the tunnel.

The simulation was conducted with the second order DD-QDS
codes by using 4 velocity bins per coordinate direction on a uni-
form grid and the MINMOD slope limiter in calculating properties
gradients. The variable time step scheme was used so the maxi-
mum kinetic CFL number in the simulation domain was 0.5 with
200 square cells along the height of the tunnel.

The simulation result is compared to that of the second order
Godunov method employed by Keats and Lean on an adaptively re-
fined mesh [24]. Fig. 6 shows a comparison of density contour at
4 s between the results of Keats and Lien’s Godunov scheme and
the DD-QDS scheme. The comparison shows the DD-QDS code
has captured the flow field features such as the Mach stem and rar-
efaction fan around the corner of the step with results very close to
that of Keats and Lien’s Godunov scheme. The shock positions on
the walls also show close agreement.

The DD-QDS simulation was conducted on a single desktop
computer with 3.00 GHz Intel Core 2 Duo CPU E6850 processor
and 4 GB of RAM. The simulation consumed 22 min to compute
4.0 s flow. By comparison, the same problem was simulated using
the second order True Directional Equilibrium Flux Method
(TDEFM) [20,25] and a Riemann solver on a single laptop computer
with 1.73 GHz Intel dual core T2250 processor and 2 GB of RAM
[5]. The TDEFM required 201 min to compute 4.0 s of flow while
the Riemann solver required 77 min. Although the DD-QDS simula-
tion was carried out on a machine with about double the speed, the
computational speed-up is significant and the DD-QDS computa-
tion would take less than half time on the same machine, than
the other two methods.
4. PP–CVD simulations

The DD-QDS solver is used to simulate the reactor flow field for
the gas injected PP–CVD process. Two cases were simulated at two
different operating pressure conditions as described in Table 1. In
both simulations, ideal Helium gas at choked inlet flow conditions
is injected into the reactor though an orifice. At the start of
Fig. 5. Geometry and boundary conditions for the simulation of Mach 3 flow over a
forward facing step.



Fig. 6. Comparison of density contour at 4 s for Mach 3 flow over a forward facing
step in a wind tunnel between results from Keats and Lien’s Godunov scheme (Top,
taken from [24]) and DD-QDS scheme (bottom).
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injection, the gas in the reactor is stationary. A constant evacuation
volumetric flow rate is used as the outflow conditions. Specular
reflecting walls were used for all wall and substrate surfaces. Both
simulations were carried out on a desktop computer with 3.00 GHz
Intel Core 2 Duo CPU and 4 GB of RAM using 312,744 uniform
square cells with 0.25 mm cell size.

Fig. 7 shows the reactor geometry and boundary conditions
used for both cases.

4.1. Case I: 1 Pa initial reactor pressure

4.1.1. Case I: Injection phase
Fig. 8 shows the density contours (left) and the pressure con-

tours (right) plotted on natural logarithm scale. They show the
development of an under-expanded jet during the first 4 ms of
the injection phase. It is noted that the under-expanded jet with
wide shock structure develops during the injection phase. These
results show the same shock structure and flow development
found in DSMC simulations of Cave [10,26]. The DD-QDS results
have higher resolution and of course much better computational
efficiency. The contour plots in Fig. 8 show a wide initial bow shock
Table 1
Simulation conditions for PP–CVD flow field simulations using DD-QDS.

Case I Case II

Supply pressure, Ps 10 kPa 40 kPa
Pulse range, Pmin ? Pmax 1 Pa ? �100 Pa 1 kPa ? �5 kPa
Injection time, ti 0.1 s
Supply temperature, Ts 293 K
Initial temperature, Ti 293 K
QDS velocity bin, N Four per coordinate direction
Simulation time step, Dt Variable time step with maximum CFL < 0.5
Slope limiter MINMOD
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Fig. 7. Schematic of PP–CVD reactor geometry.
at the exit of the inlet orifice, followed by the development of a
shock wave pattern, evolution of the shear layer and the formation
of a Mach disc during the unsteady flow development period. After
4.0 ms, a quasi-steady under-expanded jet structure impinges onto
the substrate. The formation and evolution of constantly changing
expansion and compression waves, which are also seen in the
numerical studies performed using the space–time conservation
element solution element (CE/SE) method on unsteady jet flows
from a rocket nozzle [27], are captured by the QDS solver. This
demonstrates the capability of the QDS solver in modelling unstea-
dy flow phenomena at low computational cost.

One of the important assumptions in the QDS method is that
thermal equilibrium is established locally within each computa-
tional cell by the end of the time step, allowing the molecular
velocity distribution to be approximated with the Maxwell–Boltz-
mann distribution. In an expanding flow, generally, local thermal
equilibrium cannot be maintained when the molecular collision
rate becomes so low that continuum breakdown occurs. To inves-
tigate the validity of local equilibrium assumption, the gradient
length local (GLL) Knudsen number proposed by Boyd et al. [28]
was calculated at the simulation times of 0.5 ms and 4.0 ms after
the start of injection. At 0.5 ms, the Mach disc position was stabi-
lized in the flow field while the flow developed into quasi-steady
state at 4.0 ms. The gradient length local Knudsen number KnGLL

is a continuum breakdown parameter which compares the local
mean free path to the scale length of any macroscopic property
gradient:

KnGLL ¼
k
Q
jrQ j ð4:1Þ

where k is the local mean free path, Q is the flow property (e.g. den-
sity, translational temperature or velocity magnitude) and rQ the
spatial gradient of the flow property. Boyd et al. [28] proposed that
continuum breakdown occurs when KnGLL is greater than 0.05.
Hence, (KnGLL)q < 0.05, or loge[(KnGLL)q] < �3.0, is taken as the condi-
tion that continuum breakdown does not occur, i.e. the local density
gradient is not high enough to transport the gas molecules down-
stream before thermal equilibrium is re-established within the
computational cell, given that the computational cells are always
larger than the mean free path. Fig. 9 shows the contours of (KnGLL)-
q plotted on natural logarithm scale at the simulation times of
0.5 ms and 4.0 ms, respectively, for Case I. It is noted that loge[(-
KnGLL)q] < �3.0 throughout the flow field indicating that the contin-
uum assumption is valid in Case I.

The validity of the thermal equilibrium assumption may also be
tested by considering the average time between molecular colli-
sions estimated by:

tcol;avg ¼
k

v th;avg
ð4:2Þ

where vth,avg is the average translational thermal speed given by:

v th;avg ¼
ffiffiffiffiffiffiffiffiffi
3kT
m

r
ð4:3Þ

where k is the Boltzmann’s constant and m is the mass of an indi-
vidual molecule. Titov and Levin [29] found, in collision-limited
DSMC, that two collisions per time step per particle are sufficient
for the computed non-equilibrium distribution to relax to one dif-
fering negligibly from the corresponding Maxwell–Boltzmann equi-
librium distribution. In the present analysis, the average time
between molecular collisions is compared to the computational
time step, Dt. Fig. 10 shows the contours of the Dt/tcol,avg plotted
on natural logarithm scale at the simulation times of 0.5 ms and
4.0 ms, respectively, for Case I. The equilibrium assumption may
be considered valid where Dt/tcol,avg P 2 or loge(Dt/tcol,avg) P 0.69.



Fig. 8. Loge(density) contour (left) and loge(pressure) contour (right) for the unsteady flow development of an under-expanded jet in the PP–CVD reactor at Case I conditions
during first 4 ms of the injection phase.
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It is noted that the condition of loge(Dt/tcol,avg) P 0.69 is not satis-
fied anywhere in Case I either at t = 0.5 ms or t = 4.0 ms, except near
the orifice exit. This indicates the computational time step used in
the simulation is much smaller than the average molecules’ colli-
sion time preventing the sufficient relaxation of the molecules.
Therefore, the DD-QDS solver may not be able to calculate such
non-equilibrium flow accurately. However, the similarity between
the present results and the DSMC results of Cave [10,26] suggests
QDS is able to provide a promising approximation of the flow field
at 1 Pa initial pressure condition.

4.1.2. Case I: Pump down phase
The pump down phase of the PP–CVD operating cycle at Case I

conditions was also simulated. The reactor pressure at the end of
the injection phase is estimated to be 100 Pa based on experience
with such reactors. Fig. 11 shows the density contours (left) and
the pressure contours (right) plotted on a natural logarithm scale.
They show the dissipation of the quasi-steady jet after the inlet
nozzle shuts at 0.1 s. It can be observed that the jet structure has
dissipated during the first 0.5 ms of the pump down phase. The
resulting flow field is rather uniform for the remaining pump-
down process. Information on the jet formation and dissipation,
and the structure of the flow field near the substrate, is useful for
the design and choice of operating conditions for the PP–CVD
process.

The ratio of the simulation time step to the average time be-
tween molecular collisions was calculated to estimate the number
of collisions per time step per velocity bin within a computational



Fig. 9. Loge[(KnGLL)q] contours at 0.5 ms (top) and 4 ms (bottom) at Case I
conditions.

Fig. 10. Loge(Dt/tcol,avg) contours at 0.5 ms (top) and 4 ms (bottom) at Case I
conditions.
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cell. Fig. 12 shows the contours of the loge(Dt/tcol,avg) at 0.10001 s
(10 ls after the end of injection) and 0.1001 s, respectively, during
the pump-down phase for Case I. Fig. 12 shows that the condition
(Dt/tcol,avg) P 2 or loge(Dt/tcol,avg) P 0.69 i.e. two collisions per time
step per velocity bin is not achieved during the pump-down phase
simulation in Case I.

Fig. 13 shows the log scaled contours of the of the gradient
length local Knudsen number based on density at the simulation
times of 0.10001 s and 0.1001 s, respectively, for Case I. As dis-
cussed above, Boyd et al. [28] suggested that continuum break-
down occurs at KnGLL > 0.05. The contour plots in Fig. 13 shows
that (KnGLL)q is overall less than 0.05 (or loge(KnGLL)q < �3) soon
after the inlet jet was shut down. Therefore, although the number
of collisions was low and the two collisions per time step per veloc-
ity bin condition is not satisfied, the local density gradient within
the computational cell was not high enough to transport the gas
downstream before thermal equilibrium condition was estab-
lished. Hence, the assumption that equilibrium is re-established lo-
cally in each time step in the current QDS scheme is partially
justified for PP–CVD process during the pump-down phase.
4.2. Case II: 1 kPa initial reactor pressure

4.2.1. Case II: Injection phase
Fig. 14 shows the density contours (left) and the pressure con-

tours plotted on a natural logarithm scale (right) of the simulation
results for Case II conditions during the first 4 ms of the injection
phase. Due to the higher initial reactor pressure, the density gradi-
ent between the inlet and the initial reactor condition is relatively
small, resulting in lower rates of diffusion and pressure driven flow
radially from the high concentration regions, at the inlet and on the
centreline of the reactor, to the outer radius regions, and conse-
quently lower rates of mass transport radially outwards, compared
to Case I. Hence, the under-expanded jet has a much narrower
shock structure during the injection phase, compared to Case I.
Again, complicated flow phenomena such as the initial bow shock
at the exit of the inlet orifice, the shear layer evolution and even-
tual Mach disc formation, during the unsteady flow development
period were captured in clear detail. The flow field eventually be-
comes quasi-steady at about 3 ms.

Fig. 15 shows the contours of (KnGLL)q plotted on natural loga-
rithm scale at the simulation times of 0.5 ms and 4.0 ms, respec-
tively, of the simulation results for Case II. It is shown that
loge[(KnGLL)q] < �5.0 throughout the flow field at all time. Hence,
it may be safely assumed that continuum breakdown does not oc-
cur in Case II and the local density gradient within the computa-
tional cell was not high enough to transport the gas downstream
before local thermal equilibrium is re-established after each time
step. This justifies the assumption of local thermal equilibrium in
the present QDS scheme at initial reactor pressure of 1 kPa.

The ratio of the simulation time step to the average time be-
tween molecular collisions was then calculated for Case II. Fig. 16
shows the contours of Dt/tcol,avg plotted on a natural logarithm
scale at the simulation times of 0.5 ms and 4.0 ms, respectively,
for Case II. From Fig. 16, it is observed that loge(Dt/tcol,avg) P 0.69
(or Dt/tcol,avg P 2) in most regions except a small highly supersonic
region upstream behind the Mach disc. However, this region is un-
likely to have a significant effect on the flow field, especially near
the substrate region which is the region of interest in the simula-
tion. Hence, in general, this suggests that there are at least two suc-
cessive molecular collisions per computational time step in most
regions of the flow field providing insignificant difference between
the actual physical non-equilibrium distribution and the Maxwell-
ian equilibrium distribution. This again reasonably justifies the
equilibrium assumption in the present QDS scheme in simulating
the flow field of Case II.

4.2.2. Case II: Pump down phase
The pump-down phase of the PP–CVD operating cycle at Case II

conditions was also simulated with the reactor pressure at the end
of the injection phase is estimated to be 5 kPa. Fig. 17 shows the
density contours (left) and the pressure contours (right) plotted
on natural logarithm scale. Similar to that of Case I, the jet struc-
ture also dissipates rapidly in about 0.5 ms, after the inlet jet has
been shut off at 0.1 s, followed by a considerably uniform flow field
in the remaining pump-down process.

The validity check on the thermal equilibrium assumption in
the current QDS scheme was again performed for the Case II
pump-down phase simulation. Fig. 18 shows the log scaled con-
tours of the of the gradient length local Knudsen number based
on density at the simulation times of 0.10001 s and 0.1001 s,
respectively. As discussed above, it can be considered that contin-
uum breakdown does not occur for (KnGLL)q < 0.05 or loge(KnGLL)-
q < �3. The contour plots in Fig. 18 shows that loge(KnGLL)q is
overall less than �5, permitting the continuum assumption to be
valid in the flow field based on (KnGLL)q. The local density gradient
within the computational cells is not high enough to transport the



Fig. 11. Loge(density) contour (left) and loge(pressure) contour (right) after inlet orifice closes (at 0.1 s) in a PP–CVD reactor at Case I conditions.

Fig. 12. Loge(Dt/tcol,avg) contours at 0.10001 s (top) and 0.1001 s (bottom) at Case I
conditions.

Fig. 13. Loge(KnGLL)q contours at 0.10001 s (top) and 0.1001 s (bottom) at Case I
conditions.
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gas downstream before thermal equilibrium condition is re-estab-
lished locally in within one time step.

The ratio of the simulation time step to the average time be-
tween molecular collisions, (Dt/tcol,avg) is shown in Fig. 19 at
0.10001 s and 0.1001 s, respectively, during the pump-down
phase for Case II. As the condition of (Dt/tcol,avg) P 2 or loge(Dt/
tcol,avg) P 0.69 is used to estimate whether there are enough



Fig. 14. Loge(density) contour (left) and loge(pressure) contour (right) for the unsteady flow development of an under-expanded jet in a PP–CVD reactor at Case II conditions
during first 4 ms of the injection phase.
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collisions per time step per velocity bin to bring the molecular
velocity distribution acceptably close to the Maxwellian equilib-
rium distribution, Fig. 19 shows loge(Dt/tcol,avg) P 2.5 in the sim-
ulation everywhere.

4.3. Discussion

4.3.1. PP–CVD reactor flow field uniformity
Figs. 8 and 14 have shown that the time required for the

quasi-steady structure of the jet to establish is 4 ms in Case I and
3 ms in Case II. The time required for the quasi-steady structure
to dissipate is about 0.5 ms for both cases as noted from Figs. 11
and 17. Knowledge of these times, not previously available, enables
judicious choice of the injection pulse length and repetition fre-
quency. Besides, comparing Case I and Case II it is seen that the
high density gradient between the inlet and the bulk of the reactor
causes higher rates of mass transport radially outwards in Case I.
Hence the lower initial reactor pressure achieves a more uniform
distribution of precursor solution before being transported to the
substrate region.

The simulation results in both Case I and II shows that the flow
field developed into a quasi-steady under-expanded jet structure,
which impinges onto the substrate during the injection phase of
the PP–CVD process. The impingement of the jet with its high



Fig. 15. Loge[(KnGLL)q] contours at 0.5 ms (top) and 4.0 ms (bottom) at Case II
conditions.

Fig. 16. Loge(Dt/tcol,avg) contours at 0.5 ms (top) and 4 ms (bottom) at Case II
conditions.
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density core is undesirable for CVD due to the formation of a devel-
oping boundary layer on the substrate in this reactor configuration
which results in non-uniformity of the mass flux onto the sub-
strate. Such non-uniformity of molecular impingement on the sub-
strate surface, if sustained, would result in non-uniform deposition
of the precursor onto the substrate. However, PP–CVD reactors are
typically operated with short injection pulses, which comprise a
small fraction of the total cycle time during which deposition
may occur. Film deposition is thought to continue for some consid-
erable time after the gas supply is cut off and the jet structure has
dissipated, when the flow field is more uniform. This encourages
uniform film deposition on the substrate surface since the majority
of the actual deposition process occurs during the pump down
phase. Hence, the non-uniformity of deposition incurred during
the injection phase has a limited impact on the uniformity of the
final deposited film. On the other hand, the narrow jet impinge-
ment on the centre of the substrate toward the end of the injection
phase also suggests that placement of the substrate at the centre of
the reactor should be avoided whenever possible.
4.3.2. Numerical diffusion in the QDS scheme
The above simulation results have also demonstrated some of

the problems inherent in using QDS throughout the whole PP–
CVD flow field. There are two features of the QDS scheme limit
its accuracy in low Mach number flows. One of the issues in the
QDS scheme is the separation of collision and streaming that leads
to excessive numerical diffusion of momentum [30]. Consequently,
this results in high artificial viscosity of the gas when the grid spac-
ing is larger than the mean free path. The similarity of the present
results with the test cases presented above and the DSMC of Cave
[10,26] suggests this does not affect the simulation of high Mach
number flows or the low pressure PP–CVD reactors simulated here,
wall of which are inertially dominated. Nevertheless the artificially
high viscosity should be borne in mind when interpreting future
QDS results. A numerical scheme which achieves both realistic vis-
cosity of the simulated gas and the computational efficiency of QDS
would have interesting applications.

The numerical diffusion in the QDS scheme is in proportion to
the cell size [30]. For the particular PP–CVD reactor simulation of
interest, simulation with cell size of Dx = 2.5 � 10�4 m requires
4 h for 1 ms flow time. Reducing the cell size to Dx = 1.25 � 10�4 m
halves the viscosity of the simulated gas, and increases the compu-
tational time to 72 h to compute 1 ms flow time. For the purpose of
exploring PP–CVD reactor design, the speed of simulation is prior-
itised over the quantitative accuracy of the flow field computed.

Fig. 20 shows the comparison of loge(density) contour plots be-
tween the simulation results with grid size of Dx = 2.5 � 10�4 m
and Dx = 1.25 � 10�4 m. During the injection phase of the PP–
CVD process, the flow field develops into a quasi-steady state after
the first 4 ms in the 1 s injection phase. The flow remains in quasi-
steady state for about 99.6% of the injection time. From Fig. 20, it
shows that halving the grid size, which consequently halving the
viscosity, has little effect on the flow field, especially after the qua-
si-steady jet was developed.

Fig. 21 shows the accumulated number of computational veloc-
ity bins colliding with the substrate face for three different cell
sizes used throughout the simulation time of 3 ms. This quantity
is named accumulated mass on substrate or AMOS, as when it is
multiplied by a factor related to the probability of deposition and
thermal decomposition, it determines the mass of deposited mate-
rial which remains on the substrate when the reactor is used for
manufacturing coatings. As shown in Fig. 21, the difference in
the number of bins colliding with the substrate wall between runs
with a cell size of Dx = 2.5 � 10�4 m and Dx = 1.25 � 10�4 m is
much less compared to that between runs with a cell size of
Dx = 5.0 � 10�4 m and Dx = 2.5 � 10�4 m. From Fig. 21, it is also
noted that AMOS increases linearly with the radius since the annu-
lar area of the computational cell normal to the axial direction is
linearly proportional to the radius. To characterise the uniformity
of the flow field near the substrate surface, AMOS per unit cell area
normal to the axial direction is calculated and plotted as shown in
Fig. 22. It should be noted that non-uniformity in AMOS per area in
Fig. 22 is within expectation since the results are plotted for only
the first 3 ms of the injection phase, which is a very small fraction
of the whole deposition cycle. Regardless, the difference in the
AMOS per area between runs with a cell size of Dx = 2.5 � 10�4 m
and Dx = 1.25 � 10�4 m is less than that between runs with a cell
size of Dx = 5.0 � 10�4 m and Dx = 2.5 � 10�4 m. Hence, a cell size
of Dx = 2.5 � 10�4 m is used to allow speedy computation with
reasonable quantitative accuracy. Although the quantitative accu-
racy reduces with the high value of numerical viscosity, the quali-
tative flow field phenomena especially the shock position and
structure are not jeopardised. In fact, for the purpose of exploring
PP–CVD reactor design and selecting operating conditions, the
qualitative simulation result is sufficient.



Fig. 17. Loge(density) contour (left) and loge(pressure) contour (right) after inlet orifice closes (at 0.1 s) in a PP–CVD reactor at Case II conditions.

Fig. 18. Loge(KnGLL)q contours at 0.10001 s (top) and 0.1001 s (bottom) at Case II
conditions.

Fig. 19. Loge(Dt/tcol,avg)contours at 0.10001 s (top) and 0.1001 s (bottom) at Case II
conditions.
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4.3.3. Limitation of the QDS scheme in PP–CVD flow simulation
Another important assumption in the QDS is Maxwell–Boltz-

mann equilibrium distribution of molecular velocities. The validity
of this assumption may be checked by calculating the gradient
length local Knudsen number and average number of collisions
per time step.
The local thermal equilibrium assumption precludes the QDS
scheme from use in simulating highly rarefied flows. Due to the
larger mean free path of the molecules in highly rarefied low pres-
sure flow, the gas may not reach equilibrium condition during the
computational time step used. The limitation of the DD-QDS
scheme is investigated by utilising the gradient length local



Fig. 20. Comparison of loge(density) contour plots for the PP–CVD simulations with grid sizes of 0.25 mm and 0.125 mm.
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Fig. 21. Accumulated mass of molecules colliding onto the substrate wall (AMOS)
from simulations of three different cell sizes.

Fig. 22. Accumulated mass of molecules collide onto the substrate wall (AMOS) per
substrate annular area from simulations of three different cell sizes.

Fig. 23. Loge(Dt/tcol,avg) contours at 4 ms of the PP–CVD reactor flow simulations
with initial pressures of 200 Pa (top), 300 Pa (middle) and 400 Pa (bottom).
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Knudsen number (KnGLL)q and the ratio of computational time step
to the average time between molecular collisions Dt/tcol,avg.

A series of simulations at various minimum reactor pressures
have been carried out in order to estimate the limit of the DD-
QDS scheme in simulating low pressure flow with justified
assumption of local thermal equilibrium. As seen from Figs. 8
and 15, the threshold of (KnGLL)q is met for the flow pressure as
low as 1 Pa, which is the lowest possible rector pressure in the
current experimental PP–CVD reactor. However, the calculation
of Dt/tcol,avg shows that the low frequency of molecular collisions
with 1 Pa initial reactor pressure condition hinders the restoration
of local thermal equilibrium. Hence, simulations of the same PP–
CVD flow condition, changing only the reactor initial pressure of
1 Pa, 100 Pa, 200 Pa, 300 Pa, and 400 Pa, have been conducted.
Fig. 23 shows the loge(Dt/tcol,avg) contours of the PP–CVD reactor
flow simulations with initial pressures of 200 Pa, 300 Pa and
400 Pa.

Since (KnGLL)q 6 0.05 has been met for runs with Pmin = 1 Pa as
shown in the results from Case I above, it requires only to check
if Dt/tcol,avg P 2 in order to set a limit of the DD-QDS scheme in
simulating PP–CVD flows. From Fig. 23, it can be seen that Dt/tcol,-
avg P 2, or loge(Dt/tcol,avg) P 0.69 has been just met in the simula-
tion with Pmin = 400 Pa in most regions but not for simulations
with Pmin lower than this. Thus, it can be considered that the



Table 2
Minimum and maximum values of (KnGLL)q and Kn at 4 ms for the series of PP–CVD reactor flow simulation conducted at different Pmin with diameter of the reactor
Dreactor = 0.118 m.

Pmin (Pa) (KnGLL)q Mean free path, k Kn (k/Dreactor)

Min Max Min Max Min Max

1 8.892e�17 5.891ev04 2.582e�06 6.627e�01 2.188e�05 5.61591
100 1.630e�19 9.376e�07 2.582e�07 9.680e�04 2.188e�06 0.00820
200 4.809e�19 3.487-07 2.582e�07 4.563e�04 2.188e�06 0.00387
300 1.926e�19 3.694e�07 2.582e�07 2.510e�04 2.188e�06 0.00213
400 3.295e�20 1.857e�07 2.582e�07 1.936e�04 2.188e�06 0.00164
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DD-QDS is able to produce numerical solution with reasonably
accuracy to the PP–CVD flow with Pmin = 400 Pa or above.

The gradient length local Knudsen number (KnGLL)q and the
Knudsen number Kn are also calculated for the series of simula-
tions conducted and tabulated in Table 2 as below. This is done
in order to determine the limit of the DD-QDS scheme that satisfy
both (KnGLL)q and Dt/tcol,avg conditions as mentioned above. By not-
ing the maximum values of (KnGLL)q and Kn for the simulation with
Pmin = 400 Pa, it becomes possible to set a limit within which the
DD-QDS scheme that the simulation results are considered accept-
ably valid for low pressure flows with (KnGLL)q 6 1.857 � 10�7 or
Kn 6 0.00164. This range of Knudsen number is the generally ac-
cepted value for continuum flow.

5. Conclusions

The axisymmetric, second-order, directional decoupled QDS
scheme has been used to simulate the flow field in the highly un-
steady low pressure flow of the PP–CVD process. The DD-QDS sim-
ulation results agree well to that of the previously performed
simulation using the DSMC method. DD-QDS provides a good
approximation of the flow field with excellent computational effi-
ciency as well as simplicity in usage. The validity of the local equi-
librium assumption has been tested. The limit of the DD-QDS
scheme in simulating the low pressure PP–CVD flow has been
determined. In addition, the time taken to establish and dissipate
the quasi-steady jet structure has also been determined. This infor-
mation is essential for the design of the PP–CVD reactors and oper-
ating cycles.
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