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We point out that the Wigner crystal (WC) state of rotating dipolar fermions in the lowest Landau level is
strongly correlated. From intra-Landau-level excitations of the fractional quantum Hall effect (FQHE) liquid, we
find that the roton minimum of the excitation spectrum at ν = 1/7 becomes negative, indicating an absence of the
FQHE state, which is supposed to be the ground state of the system. Therefore, we show that the Hartree-Fock
theory of the WC does not predict the correct ground-state energy in the lowest Landau level. There exists a
strong correlation effect on the Wigner crystallization of rotating dipolar gases.
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The cold quantum gas with the dipole-dipole interaction
(DDI) was first realized in Cr atoms [1]. The quantum gases
with the DDI are qualitatively different from nondipolar
ones [2]. The novel anisotropic and long-range nature of the
DDI offers a broad range of strong correlated many-body
physics [3]. New quantum phases were predicted for the
dipolar Bose-Einstein condensate (BEC) [4]. The influence
of the trapping geometry on the stability of the BEC and the
effect of the DDI on the excitation spectrum were studied [5].
The vortex lattice of the rotating dipolar BEC exhibits novel
bubble, stripe, and square structures [6]. For the dipolar Fermi
gases, the s-wave scattering is prohibited due to the Pauli
exclusion principle, and the Fermi surface is distorted by
dipolar effects [7]. Bond pairs of fermions with resonant
interactions are formed, and the system of a Fermi gas behaves
as a bosonic gas of molecules [8]. The observed pairing of
fermions provides the crossover between the weakly paired
strongly overlapping Bardeen-Cooper-Schrieffer regime and
the tightly bound weakly interacting diatomic molecular BEC
regime [9]. The strong correlations of fermions induced by
the DDI can then be explored, such as the dipolar-induced
superfluidity [10] and fractional quantum Hall effect (FQHE)
states in rotating dipolar Fermi gases [11,12].

Rotating gases feel the Coriolis force in the rotating frame.
The Coriolis force on rotating gases is identical to the Lorentz
force of a charged particle in a magnetic field. Quantum
mechanically, energy levels of a charged particle in a uniform
magnetic field show discrete Landau levels. In the lowest
Landau level (LLL), the kinetic energy of rotating dipolar
gases is frozen, and the DDI creates strong correlations on
particles. Therefore, in the lowest Landau level, the potential
energy from the DDI dominates the kinetic energy, and rotating
dipolar fermions will crystallize into a Wigner crystal (WC) or
will become the FQHE liquid. Baranov et al. [12] have shown
that the FQHE states have lower energies than the WCs as
filling factors ν � 1/7 and in the zero-extension limit along
the rotating axial direction where ν = 2πρa2. Here ρ and a

are the average density and the magnetic length, respectively.
They also investigated the stability of the WC and found that
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the WC states were stable in the regime of ν < 1/7, but
there was no test on the stability of the FQHE liquid. It is
still a question whether the FQHE liquid for rotating dipolar
fermions is stable.

The phase transition point of the WC and FQHE states
is usually determined by comparing their energies. But this
is not enough for a consistent theoretical description of the
FQHE. A consistent theory should tell us when the FQHE will
not occur and becomes unstable [13]. One possible signature
for instability can be revealed from the softening of the roton
gap [14], which is an energy minimum at a finite wave vector of
the collective excitations of the FQHE state. Whereas, the roton
gap decreases with ν, the collective excitations of the FQHE
states for a two-dimensional (2D) electron gas do not show any
instability at the small ν regime where the actual ground state
is the WC [13–15]. Such a shortcoming of the theory of the
FQHE is repaired by applying the composite-fermion scheme
to observe the collapse of the roton gap of the FQHE liquid
at small ν’s [13]. For the present theoretical description of
rotating dipolar fermions, it is not clear whether the excitation
gaps do cross zero at small ν’s. It would be interesting to look
for a similar instability, which may provide a clue to the true
ground states, in rotating dipolar fermions.

In this Rapid Communication, we apply the single-mode
approximation (SMA) [14] to calculate intra-Landau-level
excitation energies of FQHE states in rotating 2D polarized
dipolar gases whose mass is M . We focus on low-energy
excitations of the density oscillations in the LLL. To avoid
the inhomogeneous effect in the 2D direction, we studied
the system rotating in the limit of critical rotation where the
magnitude of the rotating frequency � of the system is close
to but still smaller than the trapping frequency. Under the limit
of critical rotation, the density of the trapped gas becomes
uniform except at the boundary given by a trapping potential
[16]. The excitation spectra of FQHE states exhibit a finite
excitation-energy gap at k = 0 and a roton minimum � (roton)
at wave vector kmin, which is the wave vector corresponding
to the roton minimum. � decreases with decreasing ν and
surprisingly becomes negative when ν � 1/7, indicating an
absence of the FQHE state. It was argued by Baranov et al. [12]
that the ground states of rotating dipolar fermions for ν > 1/7
and ν < 1/7 are supposed to be the FQHE state and the
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WC, respectively. They do not discuss what really happens
around ν = 1/7. In this Rapid Communication, we show that
the Hartree-Fock (HF) WC state does not provide the correct
estimate of the ground-state energy at ν = 1/7. There exists
a strong correlation effect on the Wigner crystallization of
rotating dipolar gases at small ν.

The formal development of mathematics within the sub-
space of the LLL has been presented elsewhere [14].
We will apply previous formalisms and will take the
magnetic length a = 1. The projected density operator
with N particles within the LLL is given by ρ̄k =∑N

j=1 exp(−ik∂/∂zj ) exp(−ik∗zj /2), where zj = xj + iyj

and k = kx + iky are the complex representations of the j th
particle position and the wave vector of the density oscillations.
The projected density operators satisfy a commutation rela-
tion defined by [14] [ρ̄q,ρ̄k] = �(k,q)ρ̄k+q, where �(k,q) =
(eq∗k/2 − eqk∗/2). The kinetic energy is constant and neglected
due to the LLL approximation. The projected Hamiltonian is
written as

H = 1

2(2π )2

∫
d2q V (q)

(
ρ̄−qρ̄q − ρe−q2/2

)
, (1)

where V (q) = −2πq exp(−ξ 2)erfc(ξ )D/a3 is the Fourier
transform of the 2D dipolar-interaction potential with the
coupling constant D. ξ = √

q
/2a, where 
 is the extension of
the system along the rotating axial direction and erfc(ξ ) is the
complementary error function. Because of the Pauli exclusion
of fermions, we have ignored the contact interaction term to
obtain V (q), whose negative sign was due to the contact term
being ignored. The interaction would still be repulsive if the
contact term was included.

From Ref. [14], the excitation state |k〉 with momentum k is
given by |k〉 = N−1/2ρ̄k|0〉, where |0〉 is the ground state with
energy E0. From H |k〉 = Ek|k〉, we can evaluate the excitation
energy �(k) = Ek − E0 by the formula �(k) = f̄ (k)/s̄(k),
where f̄ (k) and s̄(k) are the projected oscillator strength and
static structure factor, respectively. Using Eq. (1), f̄ (k) =
〈0|[ρ̄−k,[H,ρ̄k]]|0〉/2N is readily evaluated, and we have

f̄ (k) = 1

2

∑
q

V (q)�(k,q)
[
s̄(q)e−k2/2�∗(−k,q)

− s̄(k + q)�(k,q)
]
. (2)

Note that s̄(k) = ρ
∫

d2r exp(−ik · r)g(r) + exp(−k2/2),
where

g(r) = 1 − e−2R + 2
∞∑

m=0

C2m+1

(2m + 1)!
(R)2m+1e−R, (3)

and R = r2/4. g(r) is the radial distribution function
which measures the correlation between pairs of particles and
becomes unity if there is no correlation between particles. g(r)
can be different from unity due to the ground-state wave func-
tion containing the correlation from the Pauli exclusion princi-
ple. The coefficients C2m+1 in Eq. (3) were derived by the sum
rules from the physical properties of Laughlin’s wave functions
[15] and are shown in Table I for different fractional filling fac-
tors. C2m+1 = 0 for m � 7. Having obtained an analytic form
of the radial function, ground-state energies and the projected
static structure factors of the FQHE states are readily evaluated.

TABLE I. Coefficients of the radial distributions of FQHE states.

C1 C3 C5 C7 C9 C11 C13

ν = 1/3 −1 17/32 1/16 −3/32 0 0 0
ν = 1/5 −1 −1 7/16 11/8 −13/16 0 0
ν = 1/7 −1 −1 −1 −25/32 79/16 −85/32 0
ν = 1/9 −1 −1 −1 −1 −29/8 47/4 −49/8

For 
 = 0, the ground-state energies are E0(ν)/(D/a3)’s,
for ν = 1/3, 1/5, 1/7, and 1/9, the ground-state energies
are 0.3690(1/3)3/2, 0.3361(1/5)3/2, 0.3228(1/7)3/2, and
0.3105(1/9)3/2, respectively. These energies are in excellent
agreement with the energies from the Monte Carlo method
[12] where the E0(ν)/(D/a3)’s are equal to 0.3665
(1/3)3/2, 0.3348(1/5)3/2, 0.3216(1/7)3/2, and 0.3145(1/9)3/2

for ν = 1/3, 1/5, 1/7, and 1/9, respectively.
From the Fourier transform of Eq. (3), we compute s̄(k),

then use this to evaluate f̄ (k) and to finally calculate the
collective-excitation energy �(k). s̄(k) ∼ k4 for small k is
a phenomenon of the lack of density fluctuations or the
incompressibility of FQHE states at long wavelengths. This
is the source of the finite-energy gap observed in the FQHE
of a 2D electron gas in a strong magnetic field. Therefore,
we compute �(k) at small k using the exact leading term
in s̄(k), which is s̄(k) = (1 − ν)k4/8ν in the long-wavelength
limit. We studied the collective-mode dispersion for 
 = 0. The
evaluated �(k) versus wave vector k for the FQHE states is
shown in Fig. 1. The essential features of excitation dispersions
exhibit a finite excitation-energy gap at k = 0 and a roton. An
energy gap at k = 0 implies that the density fluctuations cost
energy, and a rotating-dipolar-Fermi gas is an incompressible
fluid. The excitation-energy gap at k = 0 is decreasing with
decreasing ν and becomes very small at ν = 1/9, indicating
that the FQHE is easily destroyed by the quantum fluctuations
at very low ν.

The roton structure is caused by a peak in s̄(k) associated
with the short-range order in Laughlin’s liquid [14]. The
susceptibility of Laughlin’s liquid is sharply peaked at kmin,
which is close to the primitive reciprocal-lattice wave vector
G of a WC. The location of G is indicated by the arrow
for the individual filling factor in Fig. 1. The magnitude
of the susceptibility also rises very rapidly as the filling
factor approaches ν = 1/7, which is usually interpreted as
the starting signal for crystallization. The closeness of kmin

and G indicates that the Laughlin liquid is very sensitive to
fluctuations whose wave vectors are comparable with the wave
vector of the WC [14]. The WC state is shown to be the ground
state at very low ν. This fact is revealed by the roton energies
decreasing with decreasing ν in Fig. 1. The roton gap is finite
and reveals a significant reduction in going from ν = 1/3 and
1/5, respectively. This behavior of the roton gap indicates that
it costs energy at higher ν to make the FQHE state unstable and
there is a signature of incipient crystallization near ν = 1/7.

If we lower ν further, the roton minimum is continuously
decreasing and becomes negative as ν � 1/7 [see Figs. 1(c)
and 1(d)]. This collapse of the gap shows that the FQHE
state with excitations has lower energy than the FQHE state
itself and no FQHE in the regime of ν � 1/7. We know
that no FQHE but the Wigner crystallization exists in the

051601-2



RAPID COMMUNICATIONS

ROTON INSTABILITIES AND CORRELATED WIGNER . . . PHYSICAL REVIEW A 88, 051601(R) (2013)

FIG. 1. Collective-excitation dispersions for FQHE states with
zero thicknesses at (a) ν = 1/3, (b) ν = 1/5, (c) ν = 1/7, and
(d) ν = 1/9, respectively. The location of the primitive reciprocal-
lattice wave vector of the corresponding Wigner crystal is marked by
an arrow inside the figure.

regime of ν � 1/9 [12], which is contradictory with our
study. We conclude, from the roton instability, that the phase
boundary between the FQHE and the WC states is at ν = 1/7.
Therefore, our study shows that the FQHE states below
ν = 1/7 are unstable for a spontaneous creation of excitations.
This unexpected instability suggests that there exists a strong
correlation effect on the WC state which is ignored in the
previous HF theory of the WC [12]. Note that the G’s of the
WC states at ν = 1/7 and 1/9 are given by G1/7a = 1.018
and G1/9a = 0.898, respectively. Instead of near the G of
a WC, we find that the roton minima for ν = 1/7 and 1/9
are far from this wave vector and are located at ka = 1.833
and 1.583, respectively. It seems that the collapse of the
roton gap only indicates the instability of the FQHE state
and does not show any signature of the Wigner crystallization
at very low ν. In fact, we believe that one must introduce
Laughlin-Jastrow correlations into the WC state to interpret the
Wigner crystallization in terms of the softening of the roton
minimum [17]. As shown in Ref. [17], density fluctuations
caused by displacements of particles from the lattice sites
effectively are suppressed by the Laughlin-Jastrow correlation.
This delocalization of particles from the lattice sites makes
the average lattice constant, and the G of the WC becomes
shorter and larger, respectively. The fact that the wave vector,
at which the roton minimum becomes negative, is far from
the G of the WC indicates the importance of the Laughlin-
Jastrow correlation on the Wigner crystallization of dipolar
fermions.

We analyze the Laughlin-Jastrow correlation of the WC
using the following trial wave function [17]:

�C({ri}) = A
∏
i<j

(zi − zj )m
∏

i

φRi
(ri), (4)

where A stands for complete antisymmetry and m is a
variational parameter to be optimized. To antisymmetrize the
wave function, we choose to use either a Slater determinant
(even m) or a symmetric sum (odd m) for all possible
permutations of the single-particle wave functions. Because
the particles of a finite system will be pushed radially away
from their lattice sites due to a nonuniform repulsive force
from other particles, some ghost particles will be introduced
to balance the nonuniform repulsive force exerted by other
particles inside the physical disk [17]. Therefore, the single
particle, which is located at the triangular lattice site Ri , is
given as [17] φRi

(ri) = exp[− 1
4 |ri − (1 − νm)Ri |2 + i

2 ri ×
(1 − νm)Ri · ez − νm(1 − νm)|Ri |2/4]. For 
 = 0, ground-
state energies ECWC(ν)/(D/a3) of the correlated WCs are
evaluated by the Monte Carlo method and are equal to
0.3056, 0.3006, and 0.2973 for ν = 1/9, 1/11, and 1/13,
respectively. These energies are lower than the ground-state
energies EHF WC(ν)/(D/a3) of the HF WC states [12], where
the EHF WC(ν)/(D/a3)’s are 0.3117, 0.3053, and 0.3012 for
ν = 1/9, 1/11, and 1/13, respectively. That the correlated
WC has a lower energy than the HF WC is consistent with the
excitation spectra, indicating the non-negligible effect of the
Laughlin-Jastrow correlation on the Wigner crystallization of
the dipolar fermions.

The SMA theory provides an energy upper bound to the
lowest excited state. For large k, the quasiparticle and the
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quasihole, which are a pair of quasiparticles created by the
density-wave excitation, are far apart. The upper bound of
the excitation energy of the pair is given by the first excitation
moment 
 = 2[νE0(1) − E0(ν)]/(1 − ν) [14], where E0(1) =
0.6267D/a3 is the ground-state energy at ν = 1. Suppose the
binding energy of a far apart quasiparticle-quasihole pair is
very small due to the 1/r3 of the dipole-dipole interaction. The
upper bound of the excitation energies of a quasiparticle plus a
quasihole is also provided by the moment 
. The moments
for ν = 1/3 and 1/5 are 
1/3 = 0.4136D/a3 and 
1/5 =
0.2382D/a3, respectively. These values are above the roton
gap but lie considerably below the result of the quasiparticle
excitation spectrum of Baranov et al. [11]: The excitation
energy of a quasihole is �εqh = 0.9271D/a3, and the same
order of magnitude is expected in the excitation energy of
quasiparticles. Although we do not have an explanation for this
large discrepancy, we can certainly say that there are no low-
lying excitations of quasiparticles and quasiholes below the
roton mode. The lack of low-lying single-particle excitations

means that the dynamics of the system is completely described
in terms of collective modes. The validity of the SMA is
proved.

In conclusion, we investigated intra-Landau-level excita-
tions of a rotating quasi-2D dipolar system in the FQHE
regime. We show that the excitation gap at k = 0 and the
roton minimum are decreasing with decreasing ν. We find that
the roton minimum becomes negative and the FQHE states
are unstable as ν � 1/7. The wave vector at which the roton
gap is collapsed is far from the primitive reciprocal-lattice
wave vector of the WC. This discrepancy indicates that one
must introduce Laughlin-Jastrow correlations into the ground
state of the WC to find the phase transition from the WC to
the FQHE liquid. We believe that this transition will occur
between ν = 1/5 and 1/7.
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