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Logic Synthesis for 
Field-Programmable Gate Arrays 

Ting-Ting Hwang, Robert Michael Owens, Mary Jane Irwin, Fellow, ZEEE, and Kuo Hua Wang 

Abstract-In this paper, we consider the problem of con- 
figuring Field Programmable Gate Arrays (FPGA’s) so that 
some given function is computed by the device. Obtaining the 
information necessary to configure a FPGA entails both logic 
synthesis and logic embedding. Due to the very constrained 
nature of the embedding process, this problem differs from 
traditional multilevel logic synthesis in that the structure (or 
lack thereof) of the synthesized logic is much more important. 
Furthermore, a metric-like literal count is much less important. 
We present a communication complexity-based decomposition 
technique that appears to be more suitable for FPGA synthesis 
than other multilevel logic synthesis methods. The key is that our 
logic optimization technique based on reducing communication 
complexity is good enough to allow a simple technology mapping 
to work well for FPGA devices. 

I. INTRODUCTION 
IELD PROGRAMMABLE Gate Arrays (FPGA’s) are a F recent technology that provides users programmability in 

the field. Because of their very short turnaround time and low 
manufacturing cost, there has been an increasing interest in 
system prototyping using FPGA’s. One important class is the 
RAM-based FPGA (also called “look-up table FPGA’s”). A 
novel feature of these devices is that each basic block can 
implement any logic function that satisfies the U0 constraints 
of the basic block. The interconnections between the basic 
blocks consist of metal segments joined by program controlled 
pass transistors. From the above description, we can see that 
two features of FPGA’s that the logic synthesis process has 
to take into consideration are 1) function units implemented 
using look-up tables (LUT) and 2) restricted interconnection. 
To configure a FPGA requires programming both the LUT 
and the interconnect. In many ways, configuring a FPGA is 
similar to the traditional custom VLSI synthesis process. Given 
a logic function to be realized, an equivalent multilevel logic 
description is first generated, the synthesized description is 
technology mapped, and finally, the mapped description is 
embedded in circuitry. 

However, even though similar in approach, traditional logic 
synthesis tools may not be well suited for FPGA configuration 
for the following two reasons: First, because each LUT can 
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emulate any k input gate, where k is the input limit of a 
LUT function unit, it is possible for large expressions andor 
subexpressions of the synthesized description to be mapped 
to a single LUT if the expressionhubexpression involves k or 
fewer different variables. For example, consider the case where 
basic block is a 16-bit, 4-input LUT and let fi = abcde and 
f2 = abcd + bd + bc + Ed. Although in terms of literal count f2 
is more complex than fl, f2 can be realized using one 4-input 
LUT while f l  would need two 4-input LUT’s. This implies 
that traditional logic synthesis that focuses on minimizing the 
number of literals may not be the best approach for FPGA’s. 
The processes of logic synthesis and technology mapping for 
FPGA’s should not be decoupled. Second, because of the 
FPGA’s structure, embedding the mapped description enjoys 
less flexibility than in traditional custom VLSI synthesis. This 
implies that how well a mapped description can be embedded 
in a FPGA can be very dependent on the structure of the 
mapped description. To embed a general circuit graph is more 
difficult than embedding a restricted circuit graph (e.g., a tree). 
All of this means that how good the final configuration is will 
be much more dependent on the structure of the synthesized 
description than in traditional VLSI synthesis. 

We present a logic synthesis technique that overcomes these 
two limitations. Our technique is based on minimizing the 
communication complexity of the synthesized circuit rather 
than concentrating on literal count. The remainder of this 
paper is organized as follows. In Section 11, we review the 
communication-based logic synthesis technique that is used 
to construct a global, technology-independent structure. In 
Section 111, we show that communication-based logic synthesis 
is more suitable for configuring FPGA’s. We then present 
an algorithm for mapping technology-independent logic to 
FPGA’s in Section IV. Some benchmarking results and com- 
parisons are given in Section V. 

11. COMMUNICATION COMPLEXITY-BASED LOGIC SYNTHESIS 

In this section, we will give an overview of communication 
complexity-based logic synthesis. A detailed description can 
be found in [ 111. Succinctly, communication complexity-based 
logic synthesis can be stated as follows: For some function 

y = f(z) f : 2” ---f 2“ 2 = (0, l}, 

where the elements of z are the n binary inputs and the 
elements of y are the m binary outputs of the function and 
some partitioning ( z l , z r )  of z, let ft, fi and fr be a set of 
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Fig. 1. Balanced decomposition. 

functions such that 

and mi and m, are minimized. The communication complexity 
of the partitioning (ai,a,) is given by mi and m,. Thus, the 
problem of synthesizing a circuit for f has been decomposed 
into the problem of synthesizing subcircuits for the functions 
ft , fi , and f ,  . Communication complexity-based logic syn- 
thesis involves recursively finding a partitioning (ai, a,) that 
satisfies certain constraints and has minimum communication 
complexity and then finding the set of functions ft, f i t  and f,. 

It is interesting to note that it is possible to find the 
communication complexity of a given partitioning without 
actually finding a set of functions f t ,  f i ,  and fT that achieve 
that complexity [17]. Furthermore, for a given partitioning, 
there are typically many sets of functions f t ,  f i  and f ,  that 
achieve the minimum communication complexity. In [ 101 we 
presented a method that finds a “good” set of functions f t ,  f i ,  
and f ,  for a large set of functions, f ,  where f is decomposed as 

k 

i=l 

with respect to the algebra G = (aor,and). This method 
is similar to the multiple disjoint decomposition defined in 
[2], [4], [15]. The subfunctions are synthesized directly using 
xor and and gates; that is, there is no encoding problem. The 
encoding problem was only partially solved using some com- 
plicated procedures in [ 151. Multiple disjoint decomposition 
was also used by Murgai et al., in [ 181, where the first feasible 
decomposition was proposed. However, solving the encoding 
problem was not addressed. 

The set of subfunctions obtained by our method may not 
achieve the absolute minimum communication complexity. 
Even so, in many cases our method can be used to find 
a better multilevel representation of a function than other 
multilevel synthesis methods [ l l ] .  In order to handle larger 
size problems, our technique has been extended to include 
symbolic computation along with efficient heuristics for input 
partitioning [13]. 

Two different partitioning schemes are of particular interest. 
In one partitioning scheme, the inputs are partitioned into two 
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Fig. 2. Unbalanced decomposition. 

partitions such that both partitions are of approximately equal 
size. As illustrated in Fig. 1, if these partitions are nonover- 
lapping, a circuit whose global structure is tree-like results. 

In the other partitioning scheme, the inputs are partitioned 
into two partitions such that one of the partitions has a bounded 
size. As illustrated in Fig. 2, if these partitions are also 
nonoverlapping, a circuit whose top level structure is a linear 
structure results. Partitions have been found for both balanced 
or unbalanced decompositions using a greedy approach and a 
Kernighan-Lin-type procedure. We have shown in [ 131 that 
these partitioning heuristics can obtain satisfactory results. 
Note that globally, both balanced and unbalanced partitionings 
have structures of fanout free trees and within each node sub- 
functions are constructed using xor-and operators. A balanced 
decomposition for the example 9symml is shown in Fig. 9. 

We have developed a tool called factor that uses this 
communication complexity approach for multi-level logic syn- 
thesis. It can handle functions using either balanced or unbal- 
anced, nonoverlapping partitions. A number of circuits from 
the MCNC logic synthesis benchmark set have been synthe- 
sized using factor. Not surprisingly, it competes especially 
well with other methods on functions that are hierarchically 
decomposable (e.g. adders, parity generators, comparators, 
etc). As with any algorithm that runs in polynomial time 
with respect to the input size, factor solves only a “sparse” 
number of problems. We have shown [ l l ]  that the set that 
factor handles well is not handled well by any other alternative 
method. Furthermore, the set solved efficiently by factor is a 
very important class of circuits. Since we have only considered 
nonoverlapped partitions for those circuits that have a large 
set of control variables, factor does not perform as well 
because many interconnections are needed to broadcast control 
variables. Work is under way to extend the program to handle 
overlapping partitions [20]. 

For hierarchically decomposable tree-based circuits, factor 
was able to achieve up to a 30% reduction in gate count com- 
pared with rnisll. We also have continued our benchmarking 
effort to compare layout sizes of the synthesized circuits using 
in-house gate matrix layout tool [ 141. We found that even in the 
cases where factor generated a slightly larger circuit in terms of 
gate count, factor’s layout was still smaller than misll’s. This 
can be attributed to the synthesis approach used-minimizing 
communication complexity. Complete details of the bench- 
marking results are reported in [ 1 11 and [ 131. 

111. LOGIC CONFIGURATION FOR FPGA’S 
USING COMMUNICATION COMPLEXITY 

Two side effects of the communication-based logic synthesis 
approach make it especially suitable for the configuration of 
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output highway(/*inputs*/i2, i3, i4, i105, i106, start-timer, 
hl.1, hl.O, fl.1, fl.0, cars, /*outputs*/i5, i6, i7, 
i107, i108, i109, i110, i112, i113, hygreenlight, hyredlight, 
hyyellowlight, farmgreenlight, farmredlight, farmyellowlight) 

{ 
left input right input i5 = !i2*!i3*i4*start-timer + i2*i3*i4*start-timer + 

!i2*!i4*start_timer + !start-timer; 
i6 = !i3*!i4 + i3*i4 + !start-timer; 
i7 = !i4*start_timer; 

Fig. 3. Communication complexity as a measure of LUT count. 

I interconnect I 

I interconnect I 

Fig. 4. Tree embedding. 

FPGA’s: 1) communication complexity is almost a direct 
measure of LUT count and 2) the resulting tree structure 
is easy to embed. Recall that the goal of communication- 
based logic synthesis is to find partitionings that minimize 
the number of interconnections between subcircuits. In fact, 
the synthesis process can be set up to minimize the sum of all 
such interconnections. By minimizing these interconnections, 
the synthesis process is in turn minimizing the number of 
subcircuit outputs. In general, each of these outputs can 
be generated using only a few (if not one) LUT’s. The 
number of LUT’s used to implement the subcircuit outputs 
is thus minimized. Also, note that since the top function is 
constructed using left and right inputs with the operators xor- 
and, minimizing communication complexity also minimizes 
the input set of the top function. Hence, a side effect of 
minimizing communication complexity is that the number of 
LUT’s is also minimized for the top function. Fig. 3 shows a 
one level decomposition. Each line of left input and right input 
is an output of the lower-level subcircuits. Each line is highly 
independent, and thus each of these lines can be implemented 
using one or more LUT’s. The top functions are functions of 
left input and right input. 

As part of configuring the FPGA, the technology-mapped 
synthesized circuit must be embedded in the mesh as defined 
by the P G A .  The top-level tree or linear structures produced 
by using either balanced or unbalanced decompositions can be 
embedded in a mesh easier than other more general structures. 
For example, as illustrated in Fig. 4, a straightforward layering 
of a tree structure usually works well. 

i107 = ![307] + [121]*[124]; 
i108 = ![90] + i105*i106; 
i109 = ![76] + !i108*i106; 
i l l 0  = !i105*i106; 
i l l 2  = !i106*i105; 
i l l 3  = !i105; 
hygreenlight = !hl.l*!hl.O; 
hyredlight = !hl. l*hl.O; 
hyyellowlight = !hl.O*hl. 1; 
farmgreenlight = !fl.l *!fl.O; 
farmredlight = !fl.l*fl.O; 
farmyellowlight = !fl.O*fl. 1 ; 
[124] = i2*i106; 
[121] = !i6*!(i4 + !start-timer); 
[307] = !(!(!i6*i5) + !i7) + !i105; 
[41] = !(i5 + !star-timer)*!(i6 + !(i4 + !start-timer)); 
[161] = !cars + !i106; 
[35] = !(!star-timer + !i2)*!(i5 + !cars); 
[901= !(![41]*![161])*!(!i107*[35]); 
[76] = !([35]*!(!(i106 + !i105) + 
!(i105 + !i106)))*!(!(i105 + !i106)*i107); 

1 
Fig. 5. Baseline highway description. 

Since we have observed that in many cases the size of a 
subcircuit is approximately the same as that of the subcircuits 
under it taken together, it is not unexpected that the layers 
would be of approximately the same length. The interconnect 
advantages of such an embedding are obvious. 

In the following, we consider an FPGA configuration for 
one example. This example (the highway traffic light con- 
troller) was initially obtained from the MCNC layout synthesis 
benchmark set. We will consider here only the combinational 
part of the circuit. To give us a baseline, we first synthesized 
a configuration using a straightforward method based on the 
application of traditional techniques. This method entailed 
first running the circuit description through mid1 [3] to pro- 
duce a good multilevel logic description. We then took the 
misII-produced decomposition and manually mapped it to the 
optimal number of 4-input LUT’s. The result of this process 
is given in Fig. 5 .  

Note that this example requires the use of 23 4-input LUT’s 
as it has 23 4-inputs “gates.” 

To generate a communication-based configuration, we first 
used our program factor to produce a synthesized description. 
Then, the mapping algorithm was performed within each 
subcircuit to produce a technology-mapped description. The 
mapping algorithm will be described in Section IV. The result 
of this process is given in Fig. 6. 
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highway(/*inputs*/i2, i3, i4, i105, i106, start-timer, h1.1, hl.O, fl.1, fl.0, 
cars, /*outputs*/i5, i6, i7, i107, i108, i109, il10, i l12.j l l3 ,  hygreenlight, 
hyredlight, hyyellowlight, farmgreenlight, farmredlight, farmyellowlight) 

{ 
highway-left(i2, i3, i4, stafl-timer, i5, i6, i7, u3, u6); 
highway-right(il05, i106, cars, v l ,  v2, il10, i112, v7); 
i107 = !u3*i106 + u3*i105; 
i108 = !u6*vl*!v7 + !vl*v7 + u6*!vl; 
t8 = !u6*!v7*!i110 + !u3*v7*i110+ !u3*u6*illO + u3*!u6*!v7; 
i109 = !v2*t8 + v2*!t8; 
i l l 3  = !i105; 
hygreenlight = !hl.l*!hl.O; 
hyredlight = !hl.l*hl.O; 
hyyellowlight = !hl.O*hl.l; 
farmgreenlight = !fl. l*!fl.O; 
farmredlight = !fl.l*fl.O; 
farmyellowlight = !fl.O*fl.l; 

I 

1 
highway-left(i2, i3, i4, start-timer, i5, i6, i7, t4, t5) 

i5 = !i2*!i3*i4*start_timr + i2*i3*i4*startWtimer + 
!i2*!i4*startPtimer + !star-timer; 
i6 = !i3*!i4 + i3*i4 + !start-timer; 
i7 = !i4*start_timer; 
t4 = i3*!i4*starPtimer + !start-timer + i4 + !i2; 
t5 = !start-timer + !i4 + !i3 + !i2; 

I 

{ 

highway-right(il05, i106, cars, to, t2, il10, il12, tl0) 

to = i105*i106*!cars + !i106; 
t2 = i105*i106*!cars; 
i l l 0  = !i105*i106; 
i l l 2  = i105*!i106; 
t10 = i105*!i106 + !i105*i106 + !cars; 

I 
Fig. 6. Factor synthesized highway description. 

Except for one output, i109, each of the subcircuit outputs 
can be generated using only one 4-input LUT. This example 
requires the use of 21 4-input LUTs. Note that 12 of the 15 out- 
puts (i.e., i5, i6, i7, il10, i l l2 ,  i l l3 ,  hygreenlight, hyredlight, 
hyyellowlight, farmgreenlight, farmredlight, farmyellowlight) 
are functions of four or fewer inputs and, hence, can be imple- 
mented by a single 4-input LUT using any synthesis approach. 
Since each different nontrivial primary output requires at least 
one 4-input LUT, these outputs can not be “optimized.” This 
leaves only three outputs, i107, i108, and i109, for which 
optimization is possible. Using the first approach, it takes 
11 4-input LUT’s to generate these outputs while in the 
communication complexity-based approach it takes nine, a 
10% improvement. 

The factor synthesized highway description can be embed- 
ded in a FPGA as illustrated in Fig. 7. The embedding style 
used is that depicted in Fig. 4. 

IV. TECHNOLOGY MAPPING 

Several specific mappers for RAM-based FPGA’s have been 
developed [l], [5], [6], [7], [8], [16], [18], [19]. It seems that 
most of them, if not all, work on a decomposed network 
produced by an algebraic decomposition tool (e.g., misII). 
In this section, we describe a greedy technology mapper 

[12] for FPGA’s based on the network synthesized using a 
communication-driven optimization tool. This type of logic 
optimization allows a simple greedy approach to work well. 

The network obtained from factor is an xor-and represen- 
tation. Globally, it is a tree structure as shown in Fig. 1. Let 
a region corresponds to a node in the global tree structure. 
Then, f t  in a region is computed by first anding the left input 
with right input (leftlright input may be the constant 1) and 
then xoring the product terms of the anding. We define the 
following sets for ease of description. Let 

F(G)  = { f l ,  f z ,  . . . fm} represents f t  in region G, 
L(G) = {Z1 ,12 , .  . .1,} represents left inputs, f i ,  

R(G) = (7-1, 7-2 , .  . . rY} represents right inputs, f r ,  
in region G, and 

in region G. 

Note that f t ,  f i ,  and f r  are multiple output functions and 
that the elements in F ( G ) ,  L(G) ,  and R(G) are single output 
functions. We also define 

Ti ( f i )  = {ti It; are product terms, Zj . T k ,  of f i ,  

where l j  or T k  may be constant l}. 

Our mapping algorithm is conducted in two phases. In the 
first phase, a region marking is performed on each region of 
the global tree structure bottom up. Each marked node uses 
at most k inputs variables, where k is the input constraint of 
a logic block. In the second phase, we reduce the number of 
blocks by merging subfunctions. Each phase is described in 
detail in the following two subsections. 

A. Region Marking 

A region is the basic unit for marking. Within a region, we 
keep track of the input set for each region output node f i .  A 
node f ;  is called an overflow node if its global input support 
is larger than k, the input constraint of a logic block. 

A region, G, is processed as follows. First, we check if 
the global support of each region output node f ;  E F(G)  is 
more than k. If none of them exceeds k, we proceed to the 
next higher level region and the inputs to f ;  are recorded. 
If some region output nodes have global support more than 
IC, these nodes are required to be decomposed in order to be 
implemented in a logic block. Let the set of overflow nodes be 
denoted as F,. The immediate fanins, i.e., l i ’ s  and T ; ’ S  from 
L(G) and R(G), to the overflow nodes are the candidates 
to be decomposed as subfunctions. The reasons for selecting 
I; and 7-; for marking are as follows. Because the bottom-up 
mapping is used, all the l i s  and T;S  are feasible subfunctions 
to be implemented using a single basic block. However, a 
more important reason is that the Z;’s and the T; ’S  are the f t  

at the lower level and thus are more likely to be used more 
than once. The selection of the 1;s and T ~ S  is based on the 
following gain function 

gain (1; or 7 - ; )  = cy * (number of fanouts) 
+ (1 - cy) * (number of inputs) 
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Fig. 7. FPGA highway description. 

where Q is a real value and 0 5 Q 5 1. a can be set with 
different value for different mapping preferences. If the fanout 
utilization is the only concern, Q is set to 1. If we want to 
minimize the input used in a basic block, a is set to 0. 

When an l k  or r k  is selected, all inputs to it are masked. 
After each selection, all overflow nodes are checked. If the 
input constraint is satisfied, we delete the overflow node from 
Fa. This marking process continues until Fa is empty or all 
elements in L(G)  and R(G) are marked. 

If all elements in L(G) and R(G) are marked and F, is 
not empty, it means that all Zz’s and rz’s are created as basic 
blocks and there is still some f ,  with more than k Zz’s and T, ’s .  

We need to group terms of 1, . T,.  Remember that a f ,  in F(G)  
is constructed by anding 1, and T, and then xoring the terms 
of anding. For each element, f , ,  in Fa, we compute T,(f,). 
Tzs are processed according to the size of T, in ascending 
order. Since fi is computed by xoring the elements in T,, 
elements in T, can be grouped together in any order as long 
as the total number of inputs is less than the constraint. Each 
group corresponds to a basic block. Terms in T, are grouped 
according to the utilization of the group. If the group will be 

procedure marking (F,,) 
D = the immediate dependent set of F,; 
sort the nodes in D into list S according to their gains; 
while (F,  # 0 and S # 0) [ 

Nd = the first node in S; 

F, = the nodes in F, with required inputs Ik; 
mark Nd, and all inputs to Nd are masked; 

F,, = F,, - F,,; 
S=S- [Nd 1; 

I 
if (F,, # 0 ) ( 

for each nodef, in F,,, compute Ti(fi); 
for each Ti [ 

Find a subet Ts, with inputs < k and with the highest utilization; 
Nd = a node created to compute T,, ; 
Mark Nd, and all inputs to Nd are masked; 
for each T, of F,, ( Ts, c Tj ) 

Tj = Tj - Ts, + [ N d ] ;  

] until the number of inputs to f, k; 

1 

Fig. 8. The algorithm of marking. 

used in more f i s ,  the group has higher priority to be created. 
The procedure, marking, describing the above algorithm is 

given in Fig. 8. 
An example illustrating the mapping process is shown in 

group l1 ,o  . l 1 ,1  . r 1 , 1  and, r1 ,2 ,  which Satisfies the input 
constraint as a new node N I .  Now since f has inputs less than 
I C ,  5 9  it can be imp1emented as a basic 

Fig. 9 for the case k = 5. The circuit, 9symm1, from the 
MCNC benchmark set is synthesized. Fig. 9 shows the global 
network decomposed by factor. 

There are eight regions, A, B, C, D, E, F, G, and H, in the 
network shown in Fig. 9. Our mapper processes each region 
bottom up. Since there are no overflow nodes in the regions 
A, B, C, D, E, F, and G, no action is taken for these regions. 
However, in region H node f contains nine inputs by recursive 
substitutions of unmarked inputs. Thus, f is an overflow node. 
Note that since the input sets of unmarked subfunctions are 
recorded when the procedure moves from the bottom up, no 
computation time is spent on such substitutions. Through the 
procedure, the left inputs, 21,0, Z ~ , J ,  Z ~ J ,  11,s and right inputs, 
r 1 , 0 , ~ ~ , ~ l ~ 1 , 2 r r 1 , 3  in D are checked and all are selected to 
be marked. With all left and right inputs marked, f is still 
an overflow node. Thus, term grouping is performed. T ( f )  is 
computed as { ~ I , O - T I , O , ~ I J  . ~ l , l l ~ 1 , ~ , ~ 1 , ~ . ~ i , o , 1 1 , 3 . ~ l , 3 } .  We 

B. Local Merging 

After the marking phase, each marked node requires no 
more than k inputs. Each marked node can be directly im- 
plemented by a single basic block. The Xilinx 3000 series 
FPGA allows two functions to share a single k-input LUT if 
each function uses no more than k - 1 inputs and the two 
functions together have no more than k inputs. This type of 
LUT is referred to as a CLB. If we consider the case where 
two functions can be implemented in one basic block, the total 
number of blocks can be reduced. 

The merging procedure is also performed bottom up on the 
global tree structure. Each time, a region G is considered. 
Due to the feature of disjoint partitioning of inputs, at a given 
region the marked nodes in L(G) and the marked node in 
R(G) will never have shared inputs. So we only merge the 
marked nodes in F(G)  and L(G). Similarly, we merge the 
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Circuits 

9 s y d  
rd73 
rd84 
z4ml 
5xpl 
9sym 
alu2 
count 
misex 1 
misex2 
duke2 
vg2 
sa02 

H 

Hydra edge 

33 52 
13 26 
27 
4 18 

21 28 
57 63 
94 
26 
8 14 

20 35 
79 
20 
36 

l3,1 = i4 - i~ 
1 3 , ~  = i 4  @ i5 

i4 25 

Fig. 9. Circuit 9symml decomposed by factor. 

c-crf 

41 

53 
3 

20 
42 
83 
27 
14 

89 
18 

marked nodes in F(G)  and R(G). The selection of merged 
nodes is based on a greedy approach. Note that node merging 
is performed only on adjacent regions. Since only a subset 
of marked nodes are considered each time, it is very efficient 
in terms of computation time. For the 9symml example, we 
consider merging on regions D and H, and G and H. 

mis-p factor-map 

43 8 
8 

32 9 
7 4 

23 14 
59 8 

102 68 
28 
10 11 

29 
105 171 
21 63 

31 

V. BENCHMARKING 
In order to test the performance of factor, some examples 

from the MCNC benchmark set were synthesized for the 
FPGA model. We restricted our benchmark set to those that 
have been evaluated by other FPGA mappers and have an 
input and output size less than 36 (the size circuit that can 
currently be synthesized by factor). First, structured circuits 
were synthesized by factor. Then, subcircuits generated by 
factor were mapped to basic blocks bottom up using the 
mapping algorithm described in Section IV. We assumed an 
input limit size of five and that merging of two functions is 
possible as in the Xilinx FPGA. Both balanced and unbalanced 
partitioning were tried and the best result from the two was 
selected. Table I gives the comparisons of our tool and several 
other FPGA synthesis tools (Hydra [8], edge [21], c-crf [6], 
and mis-p [18]) for area optimization. The number in each 
entry is the number of CLB’s needed. A blank entry in the 

TABLE I 
AREA COMPARISONS 
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table means that the data is not available. Recent results for 
mis-pga [I93 are not quoted since they did not use merging. 

Factor-map has done especially well for adder-type circuits 
e.g., 9symm1, rd73, rd84, etc., but has not performed as well 
for those circuits with global signals e.g., duke2, and vg2. 
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depth 

5 
4 
3 
3 
5 
9 
4 
2 
4 
4 

TABLE II 
DELAY COMPARISONS 

3 
3 
2 
3 
3 
4 
4 
2 
6 
7 

Circuits 1 1  Chortle-d 

8 
9 
4 

14 
8 

68 
27 
12 

171 
63 

CLBs 

51 
54 
18 
21 
53 

177 
78 
13 

180 
43 

factor-map 
depth I CLBs 
I 

Table I1 gives the delay comparisons of our tool and Chortle- 
d [7]. The maximum depth and the number of CLB’s in the 
mapped circuits are shown. 

Factor-map has outperformed Chortle-d in both level of 
delay and number of CLB’s for adder-type circuits e.g., 
9symm1, rd73, rd84, etc. But for those circuits with global 
signals, e.g., duke2, and vg2, factor-map has not performed 
well in both delay and area. 

VI. CONCLUSION 
We have shown how communication-based logic synthesis 

can be used to an advantage when configuring programmable 
logic devices. Configuration of a FPGA involves the processes 
of logic synthesis and logic embedding. Since the allowable 
FPGA logic primitives usually include a very large number 
of gates, the processes of logic synthesis and technology 
mapping cannot be completely decoupled as they normally 
are in traditional logic synthesis systems. Our communication- 
based logic synthesis tool has the advantage of not completely 
decoupling these two processes. The key is that the logic 
optimization that reduces communication complexity is good 
enough to allow a simple technology mapping to work well. 
This approach is especially suitable for functions that are 
hierarchically decomposable. Also, the structure of the circuit 
synthesized with our approach is more amenable to embedding 
in a FPGA. A simple example was given to illustrate the two 
advantages of our approach. 
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