
1280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 10, OCTOBER 1994

Logic Synthesis for
Field-Programmable Gate Arrays

Ting-Ting Hwang, Robert Michael Owens, Mary Jane Irwin, Fellow, ZEEE, and Kuo Hua Wang

Abstract-In this paper, we consider the problem of con-
figuring Field Programmable Gate Arrays (FPGA’s) so that
some given function is computed by the device. Obtaining the
information necessary to configure a FPGA entails both logic
synthesis and logic embedding. Due to the very constrained
nature of the embedding process, this problem differs from
traditional multilevel logic synthesis in that the structure (or
lack thereof) of the synthesized logic is much more important.
Furthermore, a metric-like literal count is much less important.
We present a communication complexity-based decomposition
technique that appears to be more suitable for FPGA synthesis
than other multilevel logic synthesis methods. The key is that our
logic optimization technique based on reducing communication
complexity is good enough to allow a simple technology mapping
to work well for FPGA devices.

I. INTRODUCTION
IELD PROGRAMMABLE Gate Arrays (FPGA’s) are a F recent technology that provides users programmability in

the field. Because of their very short turnaround time and low
manufacturing cost, there has been an increasing interest in
system prototyping using FPGA’s. One important class is the
RAM-based FPGA (also called “look-up table FPGA’s”). A
novel feature of these devices is that each basic block can
implement any logic function that satisfies the U0 constraints
of the basic block. The interconnections between the basic
blocks consist of metal segments joined by program controlled
pass transistors. From the above description, we can see that
two features of FPGA’s that the logic synthesis process has
to take into consideration are 1) function units implemented
using look-up tables (LUT) and 2) restricted interconnection.
To configure a FPGA requires programming both the LUT
and the interconnect. In many ways, configuring a FPGA is
similar to the traditional custom VLSI synthesis process. Given
a logic function to be realized, an equivalent multilevel logic
description is first generated, the synthesized description is
technology mapped, and finally, the mapped description is
embedded in circuitry.

However, even though similar in approach, traditional logic
synthesis tools may not be well suited for FPGA configuration
for the following two reasons: First, because each LUT can

Manuscript received May 31, 1992; revised April 26, 1994. This paper was

T.-T. Hwang is with the Department of Computer Science, National Tsing

R. M. Owens and M. J. Irwin are with the Department of Computer Science,

K. H. Wang is with the Department of Computer Science and Information

IEEE Log Number 9402698.

recommended by Associate Editor R. Brayton.

Hua University, Taiwan 30043, R.O.C.

The Pennsylvania State University, University Park, PA 16802 USA.

Engineering, Chiao Tung University, Taiwan 30043, R.O.C.

emulate any k input gate, where k is the input limit of a
LUT function unit, it is possible for large expressions andor
subexpressions of the synthesized description to be mapped
to a single LUT if the expressionhubexpression involves k or
fewer different variables. For example, consider the case where
basic block is a 16-bit, 4-input LUT and let fi = abcde and
f2 = abcd + bd + bc + Ed. Although in terms of literal count f2
is more complex than fl, f2 can be realized using one 4-input
LUT while f l would need two 4-input LUT’s. This implies
that traditional logic synthesis that focuses on minimizing the
number of literals may not be the best approach for FPGA’s.
The processes of logic synthesis and technology mapping for
FPGA’s should not be decoupled. Second, because of the
FPGA’s structure, embedding the mapped description enjoys
less flexibility than in traditional custom VLSI synthesis. This
implies that how well a mapped description can be embedded
in a FPGA can be very dependent on the structure of the
mapped description. To embed a general circuit graph is more
difficult than embedding a restricted circuit graph (e.g., a tree).
All of this means that how good the final configuration is will
be much more dependent on the structure of the synthesized
description than in traditional VLSI synthesis.

We present a logic synthesis technique that overcomes these
two limitations. Our technique is based on minimizing the
communication complexity of the synthesized circuit rather
than concentrating on literal count. The remainder of this
paper is organized as follows. In Section 11, we review the
communication-based logic synthesis technique that is used
to construct a global, technology-independent structure. In
Section 111, we show that communication-based logic synthesis
is more suitable for configuring FPGA’s. We then present
an algorithm for mapping technology-independent logic to
FPGA’s in Section IV. Some benchmarking results and com-
parisons are given in Section V.

11. COMMUNICATION COMPLEXITY-BASED LOGIC SYNTHESIS

In this section, we will give an overview of communication
complexity-based logic synthesis. A detailed description can
be found in [111. Succinctly, communication complexity-based
logic synthesis can be stated as follows: For some function

y = f(z) f : 2” ---f 2“ 2 = (0, l},

where the elements of z are the n binary inputs and the
elements of y are the m binary outputs of the function and
some partitioning (z l , z r) of z, let ft, fi and fr be a set of

0278-0070/94$04.00 0 1994 IEEE

I

Fig. 1. Balanced decomposition.

functions such that

and mi and m, are minimized. The communication complexity
of the partitioning (ai,a,) is given by mi and m,. Thus, the
problem of synthesizing a circuit for f has been decomposed
into the problem of synthesizing subcircuits for the functions
ft , fi , and f , . Communication complexity-based logic syn-
thesis involves recursively finding a partitioning (ai, a,) that
satisfies certain constraints and has minimum communication
complexity and then finding the set of functions ft, f i t and f,.

It is interesting to note that it is possible to find the
communication complexity of a given partitioning without
actually finding a set of functions f t , f i , and fT that achieve
that complexity [17]. Furthermore, for a given partitioning,
there are typically many sets of functions f t , f i and f , that
achieve the minimum communication complexity. In [101 we
presented a method that finds a “good” set of functions f t , f i ,
and f , for a large set of functions, f , where f is decomposed as

k

i=l

with respect to the algebra G = (aor,and). This method
is similar to the multiple disjoint decomposition defined in
[2], [4], [15]. The subfunctions are synthesized directly using
xor and and gates; that is, there is no encoding problem. The
encoding problem was only partially solved using some com-
plicated procedures in [151. Multiple disjoint decomposition
was also used by Murgai et al., in [181, where the first feasible
decomposition was proposed. However, solving the encoding
problem was not addressed.

The set of subfunctions obtained by our method may not
achieve the absolute minimum communication complexity.
Even so, in many cases our method can be used to find
a better multilevel representation of a function than other
multilevel synthesis methods [l l] . In order to handle larger
size problems, our technique has been extended to include
symbolic computation along with efficient heuristics for input
partitioning [13].

Two different partitioning schemes are of particular interest.
In one partitioning scheme, the inputs are partitioned into two

HWANG et al.: LOGIC SYNTHESIS FOR FIELD-PROGRAMMABLE GATE ARRAYS 1281

Fig. 2. Unbalanced decomposition.

partitions such that both partitions are of approximately equal
size. As illustrated in Fig. 1, if these partitions are nonover-
lapping, a circuit whose global structure is tree-like results.

In the other partitioning scheme, the inputs are partitioned
into two partitions such that one of the partitions has a bounded
size. As illustrated in Fig. 2, if these partitions are also
nonoverlapping, a circuit whose top level structure is a linear
structure results. Partitions have been found for both balanced
or unbalanced decompositions using a greedy approach and a
Kernighan-Lin-type procedure. We have shown in [131 that
these partitioning heuristics can obtain satisfactory results.
Note that globally, both balanced and unbalanced partitionings
have structures of fanout free trees and within each node sub-
functions are constructed using xor-and operators. A balanced
decomposition for the example 9symml is shown in Fig. 9.

We have developed a tool called factor that uses this
communication complexity approach for multi-level logic syn-
thesis. It can handle functions using either balanced or unbal-
anced, nonoverlapping partitions. A number of circuits from
the MCNC logic synthesis benchmark set have been synthe-
sized using factor. Not surprisingly, it competes especially
well with other methods on functions that are hierarchically
decomposable (e.g. adders, parity generators, comparators,
etc). As with any algorithm that runs in polynomial time
with respect to the input size, factor solves only a “sparse”
number of problems. We have shown [l l] that the set that
factor handles well is not handled well by any other alternative
method. Furthermore, the set solved efficiently by factor is a
very important class of circuits. Since we have only considered
nonoverlapped partitions for those circuits that have a large
set of control variables, factor does not perform as well
because many interconnections are needed to broadcast control
variables. Work is under way to extend the program to handle
overlapping partitions [20].

For hierarchically decomposable tree-based circuits, factor
was able to achieve up to a 30% reduction in gate count com-
pared with rnisll. We also have continued our benchmarking
effort to compare layout sizes of the synthesized circuits using
in-house gate matrix layout tool [141. We found that even in the
cases where factor generated a slightly larger circuit in terms of
gate count, factor’s layout was still smaller than misll’s. This
can be attributed to the synthesis approach used-minimizing
communication complexity. Complete details of the bench-
marking results are reported in [1 11 and [131.

111. LOGIC CONFIGURATION FOR FPGA’S
USING COMMUNICATION COMPLEXITY

Two side effects of the communication-based logic synthesis
approach make it especially suitable for the configuration of

1282 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 10, OCTOBER 1994

output highway(/*inputs*/i2, i3, i4, i105, i106, start-timer,
hl.1, hl.O, fl.1, fl.0, cars, /*outputs*/i5, i6, i7,
i107, i108, i109, i110, i112, i113, hygreenlight, hyredlight,
hyyellowlight, farmgreenlight, farmredlight, farmyellowlight)

{
left input right input i5 = !i2*!i3*i4*start-timer + i2*i3*i4*start-timer +

!i2*!i4*start_timer + !start-timer;
i6 = !i3*!i4 + i3*i4 + !start-timer;
i7 = !i4*start_timer;

Fig. 3. Communication complexity as a measure of LUT count.

I interconnect I

I interconnect I

Fig. 4. Tree embedding.

FPGA’s: 1) communication complexity is almost a direct
measure of LUT count and 2) the resulting tree structure
is easy to embed. Recall that the goal of communication-
based logic synthesis is to find partitionings that minimize
the number of interconnections between subcircuits. In fact,
the synthesis process can be set up to minimize the sum of all
such interconnections. By minimizing these interconnections,
the synthesis process is in turn minimizing the number of
subcircuit outputs. In general, each of these outputs can
be generated using only a few (if not one) LUT’s. The
number of LUT’s used to implement the subcircuit outputs
is thus minimized. Also, note that since the top function is
constructed using left and right inputs with the operators xor-
and, minimizing communication complexity also minimizes
the input set of the top function. Hence, a side effect of
minimizing communication complexity is that the number of
LUT’s is also minimized for the top function. Fig. 3 shows a
one level decomposition. Each line of left input and right input
is an output of the lower-level subcircuits. Each line is highly
independent, and thus each of these lines can be implemented
using one or more LUT’s. The top functions are functions of
left input and right input.

As part of configuring the FPGA, the technology-mapped
synthesized circuit must be embedded in the mesh as defined
by the P G A . The top-level tree or linear structures produced
by using either balanced or unbalanced decompositions can be
embedded in a mesh easier than other more general structures.
For example, as illustrated in Fig. 4, a straightforward layering
of a tree structure usually works well.

i107 = ![307] + [121]*[124];
i108 = ![90] + i105*i106;
i109 = ![76] + !i108*i106;
i l l 0 = !i105*i106;
i l l 2 = !i106*i105;
i l l 3 = !i105;
hygreenlight = !hl.l*!hl.O;
hyredlight = !hl. l*hl.O;
hyyellowlight = !hl.O*hl. 1;
farmgreenlight = !fl.l *!fl.O;
farmredlight = !fl.l*fl.O;
farmyellowlight = !fl.O*fl. 1 ;
[124] = i2*i106;
[121] = !i6*!(i4 + !start-timer);
[307] = !(!(!i6*i5) + !i7) + !i105;
[41] = !(i5 + !star-timer)*!(i6 + !(i4 + !start-timer));
[161] = !cars + !i106;
[35] = !(!star-timer + !i2)*!(i5 + !cars);
[901= !(![41]*![161])*!(!i107*[35]);
[76] = !([35]*!(!(i106 + !i105) +
!(i105 + !i106)))*!(!(i105 + !i106)*i107);

1
Fig. 5. Baseline highway description.

Since we have observed that in many cases the size of a
subcircuit is approximately the same as that of the subcircuits
under it taken together, it is not unexpected that the layers
would be of approximately the same length. The interconnect
advantages of such an embedding are obvious.

In the following, we consider an FPGA configuration for
one example. This example (the highway traffic light con-
troller) was initially obtained from the MCNC layout synthesis
benchmark set. We will consider here only the combinational
part of the circuit. To give us a baseline, we first synthesized
a configuration using a straightforward method based on the
application of traditional techniques. This method entailed
first running the circuit description through mid1 [3] to pro-
duce a good multilevel logic description. We then took the
misII-produced decomposition and manually mapped it to the
optimal number of 4-input LUT’s. The result of this process
is given in Fig. 5 .

Note that this example requires the use of 23 4-input LUT’s
as it has 23 4-inputs “gates.”

To generate a communication-based configuration, we first
used our program factor to produce a synthesized description.
Then, the mapping algorithm was performed within each
subcircuit to produce a technology-mapped description. The
mapping algorithm will be described in Section IV. The result
of this process is given in Fig. 6.

HWANG et al.: LOGIC SYNTHESIS FOR FIELD-PROGRAMMABLE GATE ARRAYS 1283

highway(/*inputs*/i2, i3, i4, i105, i106, start-timer, h1.1, hl.O, fl.1, fl.0,
cars, /*outputs*/i5, i6, i7, i107, i108, i109, il10, i l12.j l l3 , hygreenlight,
hyredlight, hyyellowlight, farmgreenlight, farmredlight, farmyellowlight)

{
highway-left(i2, i3, i4, stafl-timer, i5, i6, i7, u3, u6);
highway-right(il05, i106, cars, v l , v2, il10, i112, v7);
i107 = !u3*i106 + u3*i105;
i108 = !u6*vl*!v7 + !vl*v7 + u6*!vl;
t8 = !u6*!v7*!i110 + !u3*v7*i110+ !u3*u6*illO + u3*!u6*!v7;
i109 = !v2*t8 + v2*!t8;
i l l 3 = !i105;
hygreenlight = !hl.l*!hl.O;
hyredlight = !hl.l*hl.O;
hyyellowlight = !hl.O*hl.l;
farmgreenlight = !fl. l*!fl.O;
farmredlight = !fl.l*fl.O;
farmyellowlight = !fl.O*fl.l;

I

1
highway-left(i2, i3, i4, start-timer, i5, i6, i7, t4, t5)

i5 = !i2*!i3*i4*start_timr + i2*i3*i4*startWtimer +
!i2*!i4*startPtimer + !star-timer;
i6 = !i3*!i4 + i3*i4 + !start-timer;
i7 = !i4*start_timer;
t4 = i3*!i4*starPtimer + !start-timer + i4 + !i2;
t5 = !start-timer + !i4 + !i3 + !i2;

I

{

highway-right(il05, i106, cars, to, t2, il10, il12, tl0)

to = i105*i106*!cars + !i106;
t2 = i105*i106*!cars;
i l l 0 = !i105*i106;
i l l 2 = i105*!i106;
t10 = i105*!i106 + !i105*i106 + !cars;

I
Fig. 6. Factor synthesized highway description.

Except for one output, i109, each of the subcircuit outputs
can be generated using only one 4-input LUT. This example
requires the use of 21 4-input LUTs. Note that 12 of the 15 out-
puts (i.e., i5, i6, i7, il10, i l l2 , i l l3 , hygreenlight, hyredlight,
hyyellowlight, farmgreenlight, farmredlight, farmyellowlight)
are functions of four or fewer inputs and, hence, can be imple-
mented by a single 4-input LUT using any synthesis approach.
Since each different nontrivial primary output requires at least
one 4-input LUT, these outputs can not be “optimized.” This
leaves only three outputs, i107, i108, and i109, for which
optimization is possible. Using the first approach, it takes
11 4-input LUT’s to generate these outputs while in the
communication complexity-based approach it takes nine, a
10% improvement.

The factor synthesized highway description can be embed-
ded in a FPGA as illustrated in Fig. 7. The embedding style
used is that depicted in Fig. 4.

IV. TECHNOLOGY MAPPING

Several specific mappers for RAM-based FPGA’s have been
developed [l], [5], [6], [7], [8], [16], [18], [19]. It seems that
most of them, if not all, work on a decomposed network
produced by an algebraic decomposition tool (e.g., misII).
In this section, we describe a greedy technology mapper

[12] for FPGA’s based on the network synthesized using a
communication-driven optimization tool. This type of logic
optimization allows a simple greedy approach to work well.

The network obtained from factor is an xor-and represen-
tation. Globally, it is a tree structure as shown in Fig. 1. Let
a region corresponds to a node in the global tree structure.
Then, f t in a region is computed by first anding the left input
with right input (leftlright input may be the constant 1) and
then xoring the product terms of the anding. We define the
following sets for ease of description. Let

F(G) = { f l , f z , . . . fm} represents f t in region G,
L(G) = {Z1 ,12 , . . .1,} represents left inputs, f i ,

R(G) = (7-1, 7-2 , . . . rY} represents right inputs, f r ,
in region G, and

in region G.

Note that f t , f i , and f r are multiple output functions and
that the elements in F (G) , L(G) , and R(G) are single output
functions. We also define

Ti (f i) = {ti It; are product terms, Zj . T k , of f i ,

where l j or T k may be constant l}.

Our mapping algorithm is conducted in two phases. In the
first phase, a region marking is performed on each region of
the global tree structure bottom up. Each marked node uses
at most k inputs variables, where k is the input constraint of
a logic block. In the second phase, we reduce the number of
blocks by merging subfunctions. Each phase is described in
detail in the following two subsections.

A. Region Marking

A region is the basic unit for marking. Within a region, we
keep track of the input set for each region output node f i . A
node f ; is called an overflow node if its global input support
is larger than k, the input constraint of a logic block.

A region, G, is processed as follows. First, we check if
the global support of each region output node f ; E F(G) is
more than k. If none of them exceeds k, we proceed to the
next higher level region and the inputs to f ; are recorded.
If some region output nodes have global support more than
IC, these nodes are required to be decomposed in order to be
implemented in a logic block. Let the set of overflow nodes be
denoted as F,. The immediate fanins, i.e., l i ’ s and T ; ’ S from
L(G) and R(G), to the overflow nodes are the candidates
to be decomposed as subfunctions. The reasons for selecting
I; and 7-; for marking are as follows. Because the bottom-up
mapping is used, all the l i s and T;S are feasible subfunctions
to be implemented using a single basic block. However, a
more important reason is that the Z;’s and the T; ’S are the f t

at the lower level and thus are more likely to be used more
than once. The selection of the 1;s and T ~ S is based on the
following gain function

gain (1; or 7 - ;) = cy * (number of fanouts)
+ (1 - cy) * (number of inputs)

1284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 10, OCTOBER 1994

Fig. 7. FPGA highway description.

where Q is a real value and 0 5 Q 5 1. a can be set with
different value for different mapping preferences. If the fanout
utilization is the only concern, Q is set to 1. If we want to
minimize the input used in a basic block, a is set to 0.

When an l k or r k is selected, all inputs to it are masked.
After each selection, all overflow nodes are checked. If the
input constraint is satisfied, we delete the overflow node from
Fa. This marking process continues until Fa is empty or all
elements in L(G) and R(G) are marked.

If all elements in L(G) and R(G) are marked and F, is
not empty, it means that all Zz’s and rz’s are created as basic
blocks and there is still some f , with more than k Zz’s and T, ’s .

We need to group terms of 1, . T,. Remember that a f , in F(G)
is constructed by anding 1, and T, and then xoring the terms
of anding. For each element, f , , in Fa, we compute T,(f,).
Tzs are processed according to the size of T, in ascending
order. Since fi is computed by xoring the elements in T,,
elements in T, can be grouped together in any order as long
as the total number of inputs is less than the constraint. Each
group corresponds to a basic block. Terms in T, are grouped
according to the utilization of the group. If the group will be

procedure marking (F,,)
D = the immediate dependent set of F,;
sort the nodes in D into list S according to their gains;
while (F, # 0 and S # 0) [

Nd = the first node in S;

F, = the nodes in F, with required inputs Ik;
mark Nd, and all inputs to Nd are masked;

F,, = F,, - F,,;
S=S- [Nd 1;

I
if (F,, # 0) (

for each nodef, in F,,, compute Ti(fi);
for each Ti [

Find a subet Ts, with inputs < k and with the highest utilization;
Nd = a node created to compute T,, ;
Mark Nd, and all inputs to Nd are masked;
for each T, of F,, (Ts, c Tj)

Tj = Tj - Ts, + [N d] ;

] until the number of inputs to f, k;

1

Fig. 8. The algorithm of marking.

used in more f i s , the group has higher priority to be created.
The procedure, marking, describing the above algorithm is

given in Fig. 8.
An example illustrating the mapping process is shown in

group l1 ,o . l 1 ,1 . r 1 , 1 and, r1 ,2 , which Satisfies the input
constraint as a new node N I . Now since f has inputs less than
I C , 5 9 it can be imp1emented as a basic

Fig. 9 for the case k = 5. The circuit, 9symm1, from the
MCNC benchmark set is synthesized. Fig. 9 shows the global
network decomposed by factor.

There are eight regions, A, B, C, D, E, F, G, and H, in the
network shown in Fig. 9. Our mapper processes each region
bottom up. Since there are no overflow nodes in the regions
A, B, C, D, E, F, and G, no action is taken for these regions.
However, in region H node f contains nine inputs by recursive
substitutions of unmarked inputs. Thus, f is an overflow node.
Note that since the input sets of unmarked subfunctions are
recorded when the procedure moves from the bottom up, no
computation time is spent on such substitutions. Through the
procedure, the left inputs, 21,0, Z ~ , J , Z ~ J , 11,s and right inputs,
r 1 , 0 , ~ ~ , ~ l ~ 1 , 2 r r 1 , 3 in D are checked and all are selected to
be marked. With all left and right inputs marked, f is still
an overflow node. Thus, term grouping is performed. T (f) is
computed as { ~ I , O - T I , O , ~ I J . ~ l , l l ~ 1 , ~ , ~ 1 , ~ . ~ i , o , 1 1 , 3 . ~ l , 3 } . We

B. Local Merging

After the marking phase, each marked node requires no
more than k inputs. Each marked node can be directly im-
plemented by a single basic block. The Xilinx 3000 series
FPGA allows two functions to share a single k-input LUT if
each function uses no more than k - 1 inputs and the two
functions together have no more than k inputs. This type of
LUT is referred to as a CLB. If we consider the case where
two functions can be implemented in one basic block, the total
number of blocks can be reduced.

The merging procedure is also performed bottom up on the
global tree structure. Each time, a region G is considered.
Due to the feature of disjoint partitioning of inputs, at a given
region the marked nodes in L(G) and the marked node in
R(G) will never have shared inputs. So we only merge the
marked nodes in F(G) and L(G). Similarly, we merge the

HWANG et al.: LOGIC SYNTHESIS FOR FIELD-PROGRAMMABLE GATE ARRAYS

Circuits

9 s y d
rd73
rd84
z4ml
5xpl
9sym
alu2
count
misex 1
misex2
duke2
vg2
sa02

H

Hydra edge

33 52
13 26
27
4 18

21 28
57 63
94
26
8 14

20 35
79
20
36

l3,1 = i4 - i~
1 3 , ~ = i 4 @ i5

i4 25

Fig. 9. Circuit 9symml decomposed by factor.

c-crf

41

53
3

20
42
83
27
14

89
18

marked nodes in F(G) and R(G). The selection of merged
nodes is based on a greedy approach. Note that node merging
is performed only on adjacent regions. Since only a subset
of marked nodes are considered each time, it is very efficient
in terms of computation time. For the 9symml example, we
consider merging on regions D and H, and G and H.

mis-p factor-map

43 8
8

32 9
7 4

23 14
59 8

102 68
28
10 11

29
105 171
21 63

31

V. BENCHMARKING
In order to test the performance of factor, some examples

from the MCNC benchmark set were synthesized for the
FPGA model. We restricted our benchmark set to those that
have been evaluated by other FPGA mappers and have an
input and output size less than 36 (the size circuit that can
currently be synthesized by factor). First, structured circuits
were synthesized by factor. Then, subcircuits generated by
factor were mapped to basic blocks bottom up using the
mapping algorithm described in Section IV. We assumed an
input limit size of five and that merging of two functions is
possible as in the Xilinx FPGA. Both balanced and unbalanced
partitioning were tried and the best result from the two was
selected. Table I gives the comparisons of our tool and several
other FPGA synthesis tools (Hydra [8], edge [21], c-crf [6],
and mis-p [18]) for area optimization. The number in each
entry is the number of CLB’s needed. A blank entry in the

TABLE I
AREA COMPARISONS

1285

table means that the data is not available. Recent results for
mis-pga [I93 are not quoted since they did not use merging.

Factor-map has done especially well for adder-type circuits
e.g., 9symm1, rd73, rd84, etc., but has not performed as well
for those circuits with global signals e.g., duke2, and vg2.

1286

9symml
rd84
z4ml
5xpl
9sym
alu2
count
misexl
duke2
vg2

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 10, OCTOBER 1994

depth

5
4
3
3
5
9
4
2
4
4

TABLE II
DELAY COMPARISONS

3
3
2
3
3
4
4
2
6
7

Circuits 1 1 Chortle-d

8
9
4

14
8

68
27
12

171
63

CLBs

51
54
18
21
53

177
78
13

180
43

factor-map
depth I CLBs
I

Table I1 gives the delay comparisons of our tool and Chortle-
d [7]. The maximum depth and the number of CLB’s in the
mapped circuits are shown.

Factor-map has outperformed Chortle-d in both level of
delay and number of CLB’s for adder-type circuits e.g.,
9symm1, rd73, rd84, etc. But for those circuits with global
signals, e.g., duke2, and vg2, factor-map has not performed
well in both delay and area.

VI. CONCLUSION
We have shown how communication-based logic synthesis

can be used to an advantage when configuring programmable
logic devices. Configuration of a FPGA involves the processes
of logic synthesis and logic embedding. Since the allowable
FPGA logic primitives usually include a very large number
of gates, the processes of logic synthesis and technology
mapping cannot be completely decoupled as they normally
are in traditional logic synthesis systems. Our communication-
based logic synthesis tool has the advantage of not completely
decoupling these two processes. The key is that the logic
optimization that reduces communication complexity is good
enough to allow a simple technology mapping to work well.
This approach is especially suitable for functions that are
hierarchically decomposable. Also, the structure of the circuit
synthesized with our approach is more amenable to embedding
in a FPGA. A simple example was given to illustrate the two
advantages of our approach.

REFERENCES

[l] P. Abouzeid, L. Bouchet, and K. Sakouti et al., “Lexicographical
Expression of Boolean Functions for Multilevel Synthesis of High
Speed Circuits,” in Proc. Synthesis and Simulation Meeting and Int.
Interchange, Kyoto, Oct. 1990, pp. 31-39.

[2] R. L. Ashenhurst, “The Decomposition of Switching Functions,” Ann.
Comput. Lab. Harvard Univ., 29, 30, 1959.

[3] R. Brayton and R. Rude11 et al., MIS: “A Multiple-Level Logic Opti-
mization System,” IEEE Trans. Computer-Aided Design, vol. CAD-6,
no. 6, pp. 1062-1081, Nov. 1987.

[4] H. Curtis, “A Generalized Tree Circuit,” J. ACM, pp. 484-496, Aug.
1961.

[5] R. J. Francis, J. Rose, and K. Chung, “Chortle, A Technology Mapping
Program for Lookup Table-Based Field Programmable Gate Arrays,”
DAC-90, June 1990, pp. 613-619.

[6] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf. Fast Technology
Mapping for Lookup Table-Based FPGA’s,” DAC-91, June 1991, pp.

[7] R. J. Francis, J. Rose, and Z. Vranesic, “Technology Mapping of Lookup
Table-Based FF’GA’s for Performance,” ICCAD-91, Nov. 1991. pp.
568-571.

[8] D. Filo, J. Yang, F. Mailhot, and G. Micheli, “Technology Mapping for
a Two-output RAM-based Field Programmable Gate Array,” in Proc.

[9] D. Hill and D. Cassiday, “Preliminary Description of Tabula Rasa, an
Electrically Reconfigurable Hardware Engine,” ICCD-90, Sept. 1990,

[lo] T. Hwang, R. M. Owens, and M. J. Irwin, “Multi-Level Logic Synthesis
Using Communication Complexity,” in Proc. DAC’89, June 1989, pp.
215-220.

[l 11 T. Hwang, R. M. Owens, and M. J. Irwin, “Exploiting Communication
Complexity for Multi-level Logic Synthesis,” IEEE Trans. Computer-
Aided Design, vol. 9, no. 10, Oct. 1990.

[I21 T. Hwang, R. M. Owens, and M. J. Irwin, “Logic Synthesis for
Programmable Logic Devices,” in Proc. ICCD’90, Sept. 1990, pp.
364-367.

[I31 T. Hwang, R. M. Owens, and M. J. Irwin, “Efficiently Computing
Communication Complexity for Multilevel Logic Synthesis,” IEEE
Trans. Computer-Aided Design, vol. 11, no. 5, pp. 545-554, May 1992.

[141 M. J. Irwin and R. M. Owens, “A Comparison of Four Two-dimensional
Gate Matrix Layout Tools,” in Proc. DAC’89, 1989, pp. 698-701.

[I51 R. M. Karp, “Functional Decomposition and Switching Circuit Design,”
J. Soc. Indust. Appl. Math., vol. 11, no. 2, June 1963.

[I61 K. Karplus, “Xmap: A Technology Mapper for Table-lookup Field
Programmable Gate Arrays,” in Proc. DAC’91, June 1991, pp. 240-243.

[17] K. Mehlhom and E. Schmidt, “Las Vegas is Better than Determinism in
VLSI and Distributed Computing,” in Proc. 14th ACM Symp. on Theory
Comput., 1982, pp. 33G337.

[18] R. Murgai and Y. Nishizaki er al., “Logic Synthesis for Programmable
Gate Arrays,” DAC-90, June 199, pp. 62G625.

[I91 R. Murgai et al., “Improved Logic Synthesis Algorithms for Table Look
Up Architectures,” ICCAD-9I, 1991, pp. 564-567.

[20] K.-H. Wang, “Overlapped and Multiple Output Decompositions for
Communication Complexity Driven Multilevel Logic Synthesis,” in
preparation.

[21] N.-S. Woo, “A Heuristic Method for FPGA Technology Mapping Based
on the Edge Visibility,” in Proc. DAC-91, June 1991, pp. 248-251.

227-233.

EDAC-91, 1991, pp. 534539.

pp. 391-395.

Ting-Ting Hwang received the M.S. and Ph.D.
degrees in computer science from The Pennsylvania
State University in 1986 and 1990, respectively. She
is currently a faculty member of the Department
of Computer Science at the National Tsing Hua
University, Taiwan. Her research interests include
multi-level logic synthesis and optimization and
high-level synthesis.

Robert Michael Owens received the M.S. (1977)
degree in computer science from the Virginia Poly-
technic Institute and State University and the Ph.D.
(1980) degree in computer science from The Penn-
sylvania State University. He is presently an asso-
ciate professor of computer science and engineering
at Penn State. Before he joined Penn State, he
was with IBM and the Naval Surface Weapons
Center. Dr. Owens is on the IEEE Signal Processing
Technical Committee on VLSI and will be serving
as a uroeram cochalr of the next ASAP Conference.

. Y

He is author of UREP, a computer communication package that has been
distributed to hundreds of locations world wide. Dr. Owens has authored
over 100 scholarly works. His research interests include computer architec-
ture, massively parallel computing, VLSI architectures, and the CAD tools
associated with their implementations.

HWANG et al.: LOGIC SYNTHESIS FOR FIELD-PROGRAMMABLE GATE ARRAYS 1287

Mary Jane Irwin (S’74-M’77-SM’89-F’94) re-
ceived the M.S. (1975) and Ph.D. (1977) degrees in
computer science from The University of Illinois,
Urbana-Champaign. She is a professor of computer
science and engineering at The Pennsylvania State
University. Dr. Invin is on the executive committees
of the Design Automation Conference and the Su-
percomputing Conference, is on the editorial boards
of The Journal of VLSI Signal Processing and the
IEEE Transactions on Computers, is a member of
the Computing Research Board, and is on the IEEE

Kuo Hua Wang received the B.S. and M.S. degrees,
both in computer engineering, from National Chiao
Tung University, HsinChu, Taiwan, in 1986 and
1988, respectively. From 1989 to 1991, he was a re-
search assistant in the Information Science Institute,
Academia Sinica, Taipei. He is currently working
toward the Ph.D. degree in the Department of Com-
puter Science and Information Engineering, Na-
tional Chiao Tung University. His current research
interests include logic synthesis and optimization,
logic verification, and high-level synthesis.

Computer Society Board of Govemors. Dr. Irwin is the principal investigator
of a Small Scale Institutional Infrastructures grant from NSF. She has authored
over 125 scholarly works. Her primary research interests include computer
architecture, the design of application specific VLSI processors, high-speed
computer arithmetic, and VLSI CAD tools.

