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Abstract—This paper explores the design of active reliable con-
trol systems for a class of uncertain nonlinear affine systems using
an integral-type sliding mode control (ISMC) scheme. The pre-
sented scheme not onlymaintains themain advantages of the ISMC
design, including robustness, rapid response and easy implemen-
tation, but it can also tolerate some actuator faults when fault de-
tection and diagnosis information is available. In this study, the
uncertainties and/or disturbances are not required to be of the
matched type; however, when they are matched, the state trajec-
tories of the nominal healthy subsystem and the uncertain faulty
system are identical. As a result, engineers can predictively address
the matched uncertain faulty system performance in light of the
performance of the nominal healthy subsystem. The analytic re-
sults are also applied to the study of a vehicle brake reliable control
system. Simulation results demonstrate the benefits of the proposed
scheme.

Index Terms—Antilock brake system, Reliable control, state-de-
pendent Riccati equation, robustness, integral-type sliding mode
control.

I. INTRODUCTION

T HE study of reliable (or fault-tolerant) control has recently
attracted considerable attention and become of great im-

portance [1]–[16] because it is often not possible to provide
repair and maintenance promptly, particularly for the systems
in aerospace missions. The main goal of reliable control is to
design a controller whose closed-loop system can tolerate the
abnormal operation of specific control components while re-
taining overall system stability with acceptable system perfor-
mance. Existing reliable design approaches are based on a va-
riety of methods, including coprime factorization [8], the al-
gebraic Riccati equation [9], the linear matrix inequality [10],
the Hamilton–Jacobi equation (HJE) [11], [12], sliding mode
control (SMC) [13]–[15] and integral-type sliding mode control
(ISMC) [16]. Among these reliable control methods, only the
HJE, SMC, and ISMC approaches deal with the reliability issues
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for nonlinear systems. However, because the HJE-based ap-
proach is implemented using optimization, reliable controllers
using this approach depend on the solution of an associated HJE
that is difficult to solve. Although a power series method [17]
can reduce the difficulty by using a computer calculation of
the HJE, the solution obtained is only an approximation and
the computational burden grows quickly when the system is
complicated. In contrast, the reliable designs based on SMC or
ISMC do not require the solution of an HJE, and they retain the
advantages of SMC schemes. These advantages include rapid
response, easy implementation, and low sensitivity to model un-
certainties and/or external disturbances (MUED) [18].
In addition to having the benefits of the SMC-based schemes

mentioned above, the ISMC-based schemes also possess four
advantages. First, it has been reported that SMC schemes can
be sensitive to MUED during the period when the system
state has not yet reached the sliding manifold [19]. Unlike
SMC schemes, the system states of ISMC schemes start in the
sliding manifold and remain there, which improves robustness.
Second, the maximum control magnitude required by ISMC is
generally smaller than that by SMC, in which it usually occurs
at the beginning of the period before the sliding manifold
is reached. Thus, the physical control magnitude constraints
imposed by ISMC designs are easier to fulfill than those by
SMC designs. Third, the effect of unmatched MUED can be
minimized through the selection of sliding manifold parameters
[19], [20]. Finally, the state response of the matched uncertain
system is identical to that of the nominal system if the system
state remains on the sliding manifold. The last property gives
engineers greater flexibility in designing an appropriate con-
troller for the nominal system by creating a desired system
trajectory for the state of the uncertain system to follow. Thus,
the ISMC design allows engineers to predict the performance
of the uncertain system, which is in general not easily imple-
mented by other nonlinear control techniques. In light of the
many benefits of ISMC schemes, this study will investigate
reliable controller design using the ISMC approach. With this
approach, engineers can achieve better system performance
not only under normal condition but also under a variety of
uncertain fault situations. In [16], a reliable control design from
the ISMC viewpoint has been exploited. However, it only dealt
with a special structure of nonlinear systems. In this paper,
we will extend that previous study to those for more general
dynamical systems.
The rest of this paper is organized as follows. Section II states

the problem and the main goal of this paper. Section III de-
scribes the design of the ISMC reliable control law. Section IV
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discusses the application of the analytic results to the antilock
brake control of a vehicle. Finally, Section V provides the
conclusion.

II. PROBLEM STATEMENT

Consider a class of nonlinear uncertain systems described by
the following equation:

(1)

where and denote the system states and the
control inputs, respectively, and represents the pos-
sible MUED, and . In this work,
we will study the design of an active reliable controller for the
system (1). We assume that any actuator faults have been de-
tected and diagnosed by a fault detection and diagnosis (FDD)
mechanism. The faults considered in this study may be time-
varying, which include degradation, amplification and outage
[1], [13]. In addition, any type of control strategy meeting the
system requirements may be used before a fault happens. After
a fault is detected and diagnosed, the control law is guided to
switch to an active reliable law to assure good system perfor-
mance. Thus, after the detection of a fault, we may divide the
actuators into two sets, and . We assume that all of the actu-
ators in are healthy, while those in have undergone faults.
The output values of the faulty actuators are expressed as

(2)

where and denote the estimated value and the estima-
tion error, respectively, from an FDD mechanism. Let

... and
... (3)

where denotes the transpose of a vector or a matrix. We
assume that and . The system in
(1) can then be rewritten as

(4)

To develop the active reliable controller, we impose the fol-
lowing two assumptions. The first concerns the stabilizability of
the nominal healthy subsystem. The other provides a condition
that allows the ISMC scheme to be implemented successfully
and prevents the need for an unbounded control input.
Assumption 1: There exists a control such that the origin

of the nominal healthy subsystem

(5)

is uniformly asymptotically stable (UAS). That is, there exists
a continuously differentiable function such that

(6)

and

(7)

where are class functions and is a
class function [21].
Assumption 2: There exists a constant matrix

and constant such that is uniformly invert-
ible in the sense of for all nonzero
and , where denotes the minimum singular value of a
matrix.
Next, we have to distinguish between the matched and the

unmatched MUED because at this point, only the actuators in
are available. In fact, some of the matched MUED for a

healthy system may become unmatched due to the occurrence
of a fault. Let denote the pseudoinverse of a matrix.
Then the matched part of in (4) has the form of

, which can be directly compen-
sated by healthy controllers [16], [19]. Thus, the total MUED
given by (4) reduce to

(8)

Decompose into its matched and unmatched parts as in (9)
below

(9)

where and . Then,
by (8) and (9), the system in (4) can be rewritten as

(10)

We impose the next assumption on MUED and .
Assumption 3: There exist two nonnegative functions

and such that and
for all and .

From (8)–(9) and Assumption 3, it is clear that the more ac-
curate the diagnosis of the FDD is, the smaller the functions

and will be. The objective of this study is then
to design an appropriate so that the origin of the closed-loop
system is UAS under Assumptions 1–3. It is also worth noting
that any other well-developed FDD mechanism can be consid-
ered for application here.

III. RELIABLE CONTROLLER DESIGN

To realize the design objective, in this study we will employ
the ISMC technique for the design task. According to the ISMC
design procedure (see, e.g., [19], [20], and [22]) we introduce
the sliding variable as given in (11) below

(11)

It follows from (10) and (11) that

(12)
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To maintain the system state on the sliding manifold, we choose

if
if

(13)

where

(14)

and

(15)

Note that the reliable controller in (13) includes the FDD infor-
mation. Thus, we can determine the next result.
Theorem 1: Suppose that the system in (1) undergoes actu-

ator faults at the control channels in with estimated value
and error given by (2). Then, under Assumptions 1–3,
the origin of the system in (1) with the control law given by
(13)–(15) is UAS if

(16)

for all nonzero and , where

(17)

and denotes the identity matrix of .
Proof: From (12)–(15) we have

(18)

for all . Additionally, from (11) we have .
It follows that for all . That is, the system
states remain on the sliding manifold for all . Next, we
determine the sliding dynamics (i.e., themotion equations on the
sliding manifold) with the aid of the equivalent control method
(see, e.g., [18], [19], and [22]). The equivalent control is derived
by solving the equation from (12) as

(19)

By substituting into (10), we have the sliding dynamics

(20)

where is given by (17). It then follows from Ineq. (16),
(20) and Assumption 1 that

for all nonzero and . Thus, the origin is UAS.
Remark 1: From the proof of Theorem 1, it is found that the

matched MUED can be completely compensated.
Remark 2: Suppose that given in (3) is

time-invariant, i.e., , and
is involutive, where denotes the

orthogonal complement of and for
. Then, by the Frobenius Theorem, there exists a

function such that
and for some nonsingular matrix

[20]. Under such conditions, Rubagotti et al.
[20] has shown that the matched MUED are completely re-
jected and the effect of the unmatched MUED is not amplified.
That is, under the Euclidean norm if the
sliding variable given by (11) and given by (14) are
replaced with

(21)

(22)

Moreover, if there exists a constant matrix such that
the range spaces spanned by and are identical, then
the functions and given in (21) can be selected
to be and , which also mini-
mizes the effect of the unmatched MUED [20]. Systems in reg-
ular form (for the definition, see [20]) clearly have this property,
and the matrix can be easily determined. It follows from the
discussions that the ISMC reliable design scheme allows engi-
neers to predictively address the system performance based on
the performance of the nominal healthy subsystem. The engi-
neers may use any kind of optimal control action they prefer for
the nominal healthy subsystem and also achieve good system
performance in uncertain fault situations.

IV. APPLICATION TO VEHICLE BRAKE CONTROL

This section will demonstrate the use of the reliable scheme
in a vehicle brake control application.

A. Vehicle Dynamics

A model of a four-wheeled vehicle was developed by Xiang
et al. [23]. For simplicity, we consider only the yaw plane mo-
tion. The simplified vehicle model in this plane is described in
Fig. 1 below with governing equations

(23)

(24)

(25)

(26)
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Fig. 1. Front-steering vehicle model.

(27)

Here, the body frame is fixed at the vehicle’s center of gravity
(CG), and the positive and axes represent the forward and
rightward directions as observed by the driver. and de-
note the components of the velocity of the CG in the and
directions, and is the yaw rate about the vertical axis.
and are the total mass and the moment of inertia about the
vertical axis. and represent the external forces acting on
the body along the and axes. and denote the longitudinal
distances from the CG to the front and rear axles, respectively,
and is the lateral distance between the CG and the left or right
wheel. and are the lateral and longitudinal forces at each
wheel between the tire and the road, where
and the subscripts and indicate the front-left, front-
right, rear-left and rear-right wheels, respectively. repre-
sents the actual output value of the steering wheel angle , de-
fined by if
if and if

[26]. Finally, and denote the cosine and the
sine functions, respectively. To effectively control the vehicle,
we have to relate the lateral and longitudinal forces and
to the four wheel brake torques and the steering angle, which are
considered as the control inputs of this study. Details are given
as below.
We adopt and from [24], [25] as follows:

(28)

and (29)

Here, denotes the cornering stiffness (or lateral stiffness) of
the four wheels, and

are normal forces with and is the
gravity constant. In addition, defined by

(30)

is the tire-road friction coefficient adopted from [25], in which
the four parameters and are introduced by Harifi et
al. [25] and

during braking;

during acceleration
(31)

are the slip ratios of the four wheels. Finally, and denote
the radius and the angular velocity of the wheels.
To achieve the maximum deceleration of the vehicle, it was

suggested by Harifi et al. [25] that the wheel slip ratios should
track their optimal values for , and with
which the vehicle will attain maximum traction-control brake
force and antilock performance. For this purpose, the dynamics
of is recalled from [25] as given by

(32)

where and for denote the wheel’s mo-
ment of inertia and the four brake torques, respectively. Finally,
the steering dynamics are assumed to be (from [26])

(33)

where is a time constant, and and are the steering angle
and its control, respectively.
The overall system dynamics are described by (23)–(25)

and (32)–(33), which are in the form of (1) with eight states
and five control inputs

.

B. ISMC Reliable Scheme

To implement the ISMC reliable scheme, we have
to transform the regulation problem into a stabilization
problem. For this purpose, we define the tracking error to be

and let
. Then, the

governing (23)–(25) and (32)–(33) in the error states has the
form of

(34)

Note that (34) is in regular form with

(35)

and

.
To demonstrate the performance of the reliable scheme, we

assume in this study that a rear-left brake actuator outage has
been detected and diagnosed, i.e., and
the output value of after the fault has been estimated.
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Additionally, for simplicity we assume that
and . To

verify Assumption 1, it is observed from (31) that , be-
cause the outage of results in . After the fault,
the forces between the tires and the road should be well dis-
tributed to prevent the vehicle from spinning, i.e., the summa-
tion of the moments due to the friction forces is expected to
vanish. This finding implies that , where the
associated slip ratios can be determined from (29) and (30). For
instance, in this example we consider the case of
and , i.e., and ,
where denotes the slip ratio that produces the maximum fric-
tion force between the tire and road. We now employ the back-
stepping design method [21] to verify the asymptotic stabiliz-
ability of the nominal healthy subsystem. From the structure of
(34) and (35), the states and are controllable, and

because the outage of . Thus, by the backstepping
design method we only need to find with

for such that ,
when in the first three state equations of (34) are re-
placed with and . To this end, we choose
for all . Then, from (23)–(30) we have

and , where we
have used the facts that and

for . Note that unless the
vehicle is fully stopped and because . Addi-
tionally, it is reasonable to assume that during
the braking period because would imply that
one of the wheels was moving backward. Thus, for all

and , which result in for all .
By the backstepping method, the origin of the nominal healthy
subsystem is found to be UAS and Assumption 1 is verified.
Additionally, Assumption 2 is satisfied because the vehicle dy-
namics given by (34) and (35) are in regular form.
The remaining step is to design a controller for the nom-

inal healthy subsystem before and after the fault is detected. It
was reported in [26] that the state-dependent Riccati equation
(SDRE) design technique, which is known to implement the
optimal linear quadratic regulator (LQR) strategy along every
nonzero state of the system trajectory, is very efficient in ve-
hicle brake control. Therefore, we adopt the SDRE design as
our nominal system controller. Along the SDRE design proce-
dure [27], [28], we select a quadratic performance index in the
form of

(36)

where and .
Then, the drift term should be factorized into the linear structure

having state-dependent coefficients. The SDRE
law then has the form

(37)

where is the solution of the following Riccati equation:

(38)

Unfortunately, the drift term given by (34) has the property
, which implies that every factorization of has a

bias term as follows:

(39)

with . It is also noted that the expression of is
not unique [27]. A set of the expressions for and

are presented in the Appendix. To solve the problem of
, we adopt a strategy from [27] to express as

and augment the system with a stable
auxiliary state as given by (40) below:

(40)

Here, is selected to be small and so that changes
slowly, and is defined and smooth during the con-
trol period. With these settings and the augmented error states
defined as , the augmented system formed by
(40) and the nominal healthy subsystem becomes

(41)

where

and

(42)

The SDRE scheme is now performed using the system in (41)
with weighting matrices and

. The SDRE controller is modified to be

(43)

where is the solution of (38) with and
being replaced by and .

C. FDD Mechanism

To detect and diagnose the actuator fault for the active reliable
controller, we assume that all the state variables are available
for measurement or estimation, which is feasible for vehicles
[29]. Because the vehicle dynamics given by (34) and (35) are
in regular form, we may adopt an observer and the associated
residual signals from [15] as below

(44)

and (45)

for , where and for
. Additionally, for all , and and

denote the th entries of and , respectively. It was shown
by Liang et al. [15] that the observer proposed in (44)–(45) can
realize fault detection, fault isolation and fault identification of
any single actuator fault. The actual weighting output of the
faulty actuator, say , is estimated to be , where
is the output value we designed the actuator to be, and the

diagnosis error was shown to converge to zero at an exponential
rate [15]. It should be noted that the FDD is available unless

, i.e., the vehicle is fully stopped.
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Fig. 2. Time history of the first four error states.

Fig. 3. Time history of the last four error states.

D. Simulation Results

We assume in this example that the rear-left brake actu-
ator experiences outage after one second of braking action,
which might result from the abnormal operation of the
inverter, braking system and/or wheel motor [30]. Thus,

and
before and after the fault is detected, respectively. The
vehicle parameters are adopted from [23] as
kg, kgm m, m,

N/rad, m,
kgm and . The road is assumed to be

dry and the Burckhardt tire model parameters are selected
to be and
for all of the four wheels [25]. Additionally, we assume
that the initial states and
during braking the wheels undergo harmonic MUED with

.

The control parameters are selected as follows. From the reg-
ular form structure of the vehicle dynamics and Remark 2 we
select and
before and after the fault is detected, respectively, where

denotes the standard basis of . Before the
fault, we choose . After
the fault is detected and diagnosed, we choose

and as mentioned in Section IV-B.
Additionally, and given in Assumption 3 and
(14) are set to be ,
where . To alleviate chatter, the control

given by (14) is replaced by
whenever with . The
SDRE control parameters are set to be

and
before the

fault and set to and
after the fault is
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Fig. 4. Time history of (a) residual signals of , (b) alarm signals, (c) vehicle trajectories in the inertial frame and (d) .

Fig. 5. Time history of the four brake torques.

detected. To compare with the existing reliable designs, in this
example we also adopt the sliding mode reliable scheme from
[13], as given by (46) below

(46)

Here, and are chosen to be and

before the fault is detected; and
after

the fault is detected and diagnosed, where denotes the th
entry of . Besides, to alleviate the chatter, the sign function is
replaced by the saturation function with boundary layer width

. Finally, the parameters of the FDD observer are chosen
to be for all , and the threshold of the
residual signals for the alarm is set to be 1.3. That is, the alarm
is triggered if the magnitude of any of the residual signals from
the observer is greater than 1.3.
Here, we consider the following four cases: the first two

use the SDRE scheme for the nominal system (labeled SDRE)
and the uncertain system (labeled SDREd), whereas the other
two use the sliding mode reliable scheme [13] (labeled SMC)
and the combination of the SDRE and the ISMC schemes
(labeled ) for the uncertain system. For better
system performance, the SDRE scheme switches to its reliable
controller (i.e., the SDRE law for the faulty system) directly
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at without FDD information, whereas the other three
are guided to switch to their reliable laws according to the
FDD information. Numerical results are depicted in Figs. 2–5.
It is observed from Fig. 2(a) that the longitudinal velocity
converges to zero for all of the four cases. However, from
Figs. 2(b)–(d), the lateral velocity, yaw rate and steering angle
of SDREd are found to be much larger than those of the
SDRE and and exhibit oscillations that might
result in undesirable instability. The same scenario of SDREd
can also be observed in Fig. 3 for the remaining error states
except , which is 0 because of the outage of . After the
fault happens, the lateral velocity and yaw rate of SMC are
also found from Figs. 2(b) and (c) to be larger than those of
SDRE and , but they decrease to zero soon
after the activation of reliable controller. From Figs. 2 and 3,
the system states of SDRE and SDRE+ISMC are found to be
close to each other, which agrees with the main theoretical
results. In Fig. 4(a), the actuator fault is successfully detected
by the , SMC and SDREd schemes because
the magnitudes of their respective fourth residual signals
exceed the threshold near
sec and sec. The success of fault detection can
also be observed from the alarm signals given in Fig. 4(b),
where the alarm value of 4 denotes the fault of the fourth
actuator. After the fault is successfully detected and diagnosed,
the associated active reliable controllers are activated, and the
magnitude of the residual signals soon decreases, as shown in
Fig. 4(a). Fig. 4(c) shows the vehicle trajectories under the four
different control schemes. Again, the trajectories of SDRE and
SDRE+ISMC are close to each other and exhibit smaller devi-
ations from the centerline than the trajectory of the SMC and
SDREd scheme. The associated control curves are displayed
in Figs. 4(d) and 5, where the magnitudes of the controls of

are found to be smaller than those of SMC
and SDREd scheme, except for of SDREd after the fault is
detected. These control curves show that the
requires less energy than SMC and SDREd before fault hap-
pens, while after the fault happens, the ISMC has the ability to
intelligently adjust the distribution of its controls so that its state
responses are close to those of SDRE. Finally, the quadratic
performance given by (36) and the required maximum control
magnitude of are also
found to be better than those of SMC and SDREd in the fol-
lowing relation:

and

. From this example, it is concluded that the results
by using ISMC reliable scheme are more robust and effective
than those by SMC or SDRE scheme alone, particularly in the
presence of MUED and actuator faults. Moreover, the ISMC
reliable scheme provides the designer with freedom in the
choice of the nominal controller for better system performance.

V. CONCLUSION

An active ISMC reliable scheme was presented in this paper
for a class of uncertain nonlinear affine systems, which is ex-
tended from the previous study for a class of second-order sys-
tems [16]. The reliable scheme was shown to be able to tol-

erate some of actuator faults while maintaining the main ad-
vantages of SMC reliable schemes. Additionally, the MUED
are not restricted to be of the matched type, and some of the
matched MUED may become unmatched because of actuator
faults. It was shown that the matched MUED are completely
rejected, while the effect of unmatched MUED is not ampli-
fied if the control input matrix is time-invariant and the sliding
variable parameters are appropriately selected. As a result, engi-
neers may predictably address system performance under both
healthy condition and uncertain fault situations. An application
example demonstrating vehicle antilock brake reliable control
was also presented to demonstrate the benefits of the reliable
scheme.

APPENDIX

The values of and for (39) and (42) are
given below.
Let . We have for

and . The remaining
coefficients of are given as follows:

for

for
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for

for

where and and respectively

In addition, let . we have and the
remaining coefficients of are given as follows:

for where and if

and respectively

for

where and if and respectively.

Moreover, before a fault, as given
in (35). After the fault is detected, , which is
obtained from by deleting the fourth column.
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