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a b s t r a c t

This work applies the famous Ritz method to analyze the free vibrations of rectangular plates with

internal cracks or slits. To retain the important and useful feature of the Ritz method providing the

upper bounds on exact natural frequencies, the paper proposes a new set of admissible functions that

are able to properly describe the stress singularity behaviors near the tips of the crack and meet the

discontinuous behaviors of the exact solutions across the crack. The validity of the proposed set of

functions is confirmed through comprehensive convergence studies on the frequencies of simply

supported square plates with horizontal center cracks having different lengths. The convergent

frequencies show excellent agreement with published accurate results obtained by an integration

equation technique, and are more accurate than those obtained by a previously published approach

using the Ritz method combined with a domain decomposition technique. Finally, the present solution

is employed to obtain accurate natural frequencies and mode shapes for simply supported and

completely free square plates with internal cracks having various locations, lengths, and angular

orientations. Most of the configurations considered here have not been analyzed in the previously

published literature. The present results are novel, and are the first published vibration data for

completely free rectangular plates with internal cracks and for plates with internal cracks, which are

not parallel to the boundaries.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Since the Ritz method [1] was proposed in 1908, it has become a
popular method on analyzing vibrations of plates because of its high
efficiency in yielding accurate solutions. There are hundreds of
published papers applying the Ritz method to determine natural
frequencies of plates with various shapes and boundary conditions
in the monograph of Leissa [2] and review papers [3–5]. However,
there are very few works devoted to problems of plates with
internal cracks, which can be due to the difficulties on developing
good admissible functions for such problems. It is well-known that
the success of the Ritz method in accurately solving vibration
problems mainly depends on using appropriate admissible func-
tions. Appropriate admissible functions for plates with internal
cracks should not only properly describe the stress singularity
behaviors at the neighborhood of the crack tips, but also meet the
discontinuities of displacement and slopes across cracks.

Only three papers in the published literature employed the
Ritz method to analyze vibrations of rectangular plates with
internal cracks in literature. Yuan and Dickinson [6] and Liew
et al. [7] decomposed the domain under consideration into
ll rights reserved.

. Huang),
several sub-domains and used orthogonal polynomials as admis-
sible functions for each sub-domain. They utilized different
approaches to enforce the continuities of displacement and slope
along the interconnecting boundaries among the sub-domains.
Yuan and Dickinson introduced artificial springs along the inter-
connecting boundaries, while Liew et al. imposed the continuity
conditions in an integration sense, but not everywhere along the
interconnecting boundaries. Consequently, these two approaches
loose an important feature of the Ritz method. Because the
constraint conditions across the sub-domain boundaries are not
strictly enforced, upper bounds on exact natural frequencies,
monotonously converging to exact solutions as the number of
admissible functions increases, cannot be guaranteed. Khadem
and Rezaee [8] proposed modified comparison functions
constructed from Levy’s form of solution as the admissible
functions to analyze a simply supported rectangular plate with
a crack parallel to one side of the plate. Due to Levy’s form of
solution used in constructing admissible functions, the solutions
of Khadem and Rezaee are not suitable for plates with other
shapes or boundary conditions. Furthermore, these solutions do
not show the stress singularities at the crack tips, so that the
solutions cannot be applied to investigate the local behaviors of
vibrating plates in the neighborhood of the crack tip.

Several integration equation approaches were proposed to
investigate vibrations of cracked rectangular thin plates with
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Fig. 1. Dimensions and coordinates for a rectangular plate with an internal crack

(x0 and y0 locate the center of the crack).
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simply supported conditions at all edges or two opposite edges
and having cracks parallel to one of the edges. Lynn and
Kumbasar [9] first studied the vibrations of cracked rectangular
plates using a Green’s function approach to obtain Fredholm
integral equations of the first kind that were numerically solved,
while Stahl and Keer [10] and Aggarwala and Ariel [11] formu-
lated the problems under consideration as dual equations
that were further reduced to homogeneous Fredholm integral
equations of the second kind. Neku [12] employed Levy’s form of
solution to establish the needed Green’s functions in Lynn and
Kumbasar’s approach [9]. Solecki [13] developed his solution
using Navier’s form of solution, along with finite Fourier trans-
formations of discontinuous functions for the displacement and
slope across the crack. The solutions of Hirano and Okazaki [14]
were developed by utilizing Levy’s solution and fitting the mixed
boundary conditions on the line of the crack by means of a
weighted residual method. These approaches are not valid for
cracked plates with shapes other than rectangular, or boundary
conditions other than simple support.

Although finite element techniques have advantages in easily
fitting complex geometry and boundary conditions, few papers
were devoted to analyzing vibrations of cracked thin plates based
on the classical plate theory because difficultly constructed C1

type elements are needed. Qian et al. [15] proposed a finite
element approach where the stiffness matrix of the element with
crack was derived by integrating the stress intensity factor of a
finite cracked plate under bending, twisting, and shearing. Krawc-
zuk [16] proposed a solution similar to that of Qian et al. [15],
except that the stiffness matrix of the element with crack was
expressed in a closed form. Su et al. [17] presented the fractal
two-level finite element method combining fractal transforma-
tion technique and conventional finite element formulation to
model the singular region around a crack tip and regular region of
a plate.

Notably, instead of the classical plate theory, the first order
shear deformation plate theory, which only requires C0 type
elements, is often applied in finite element formulation for thin
plate problems (i.e., in commercial finite element packages).
When using such formulation to solve a very thin plate problem,
one may face the shear locking problem. Ma and Huang [18]
simply used the commercial finite element computer program
ABAQUS and selected eight-node two-dimensional shell elements
(S8R5) to find natural frequencies of cantilevered thin plates with
horizontal or vertical side cracks to verify the correctness of their
experimental results. In the last two decades, various extended
finite element methods have been proposed to solve for crack
problems. Bachene et al. [19] claimed that they were the first ones
to present an extended finite element solution for vibrations of
cracked plates. Again, they used the first order shear deformation
plate theory.

The main purpose of this work is to present a systematic
approach to establish proper admissible functions for the Ritz
method in analyzing vibrations of thin plates with internal cracks
based on the classical plate theory. The proposed admissible func-
tions, which are modified from the corner functions developed by
Williams [20] for a sectorial plate, are capable of describing the
singular behaviors of stress resultants around the crack tips, and
show the discontinuities of transverse displacement and slope across
the crack. The validity of the proposed admissible functions is
confirmed through comprehensive convergence studies on the
frequencies of simply supported square plates with horizontal center
cracks having different lengths and comparisons with existing
results. Then, the present approach is used to investigate the
vibration behavior of simply supported and completely free square
plates with internal cracks at different locations, and having different
lengths and angular orientations. Numerical results are presented for
the frequencies and nodal patterns, few of which have been seen in
the previous literature. These results are the most comprehensive
and accurate sets of frequencies to date for rectangular plates with
internal cracks or slits. They are also the first published vibration
data for cracks, which are inclined (aa01) and for completely free
plates with internal cracks.
2. Methodology

Fig. 1 shows the geometry of a thin rectangular plate with an
internal through crack of length d, having arbitrary location and
angular orientation. The well-known Ritz method is applied to
determine the natural frequencies of the plate based on the
classical plate theory. In the Ritz method, the maximum strain
energy (Vmax) and the maximum kinetic energy (Tmax) for a plate
vibrating harmonically with amplitude W(x,y) and circular
frequency o are (Leissa [2])

Vmax ¼
D

2

ZZ
A
ðW,xxþW,yyÞ

2
�2ð1�uÞðW,xxW,yy�ðW,xyÞ

2
ÞdA, ð1aÞ

Tmax ¼
o2rh

2

ZZ
A
W2dA, ð1bÞ

where D, u, h, and r are the flexural rigidity of the plate, Poisson’s
ratio, plate thickness, and mass per unit volume, respectively; and
the subscript comma denotes partial differentiation with respect
to the coordinate defined by the variable after the comma. The
vibration frequencies of the plate are obtained by minimizing the
energy functional

P¼ Vmax�Tmax: ð2Þ

The admissible functions for representing W in Eq. (1) must
satisfy the geometric (i.e. essential) boundary conditions of the
problem under consideration. For a rectangular plate with an internal
crack, the admissible functions for the transverse displacement are
assumed here as the sum of two sets of functions:

W ¼WpþWc , ð3Þ

where Wp is a set of algebraic polynomials, which forms a mathe-
matically complete set of functions if an infinite number of terms are
used; Wc is used to supplement Wp by appropriately describing the
important behavior along the crack.

Orthogonal polynomials are used for Wp, and Wp is expressed as

Wpðx,yÞ ¼
XI

i ¼ 1,2

XJ

j ¼ 1,2

AijPiðxÞQjðyÞ, ð4Þ

where Pi(x) and Qj(y) are sets of orthogonal polynomials in x and y

directions of the rectangular plate under consideration (see Fig. 1),
respectively. These orthogonal polynomials are generated by using a



Fig. 2. Six sub-domains for integration.
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Gram–Schmidt process [21] and satisfy the geometrical boundary
conditions of the rectangular plate. Notably, using orthogonal
polynomials results in less ill-conditioning of the matrix than using
regular polynomials.

The exact solution for a plate with an internal crack has certain
special features: singularities of moments and shear forces at the
crack tips, and discontinuities of the defection and slope across
the crack. These characteristics are not found in Wp(x,y) given in
Eq. (4). Consequently, the admissible functions for Wc in Eq. (3)
are chosen so as to have them. This work proposes the following set
of admissible functions for Wc, which will be termed the modified
corner functions,

Wc ¼ xlða�xÞmypðb�yÞq
XN1

n ¼ 1

Cn ~wn,Sðln,r1,y1,r2,y2Þ

(

þ
XN2

n ¼ 1

Dn ~wn,Aðln,r1,y1,r2,y2Þ

þ
XN3

n ¼ 1

En ~wn,Sðln,r2,y2,r1,y1Þ

þ
XN4

n ¼ 1

Fn ~wn,Aðln,r2,y2,r1,y1Þ

)
, ð5Þ

where l, m, p, and q are integers making Wc satisfy the geometric
boundary conditions along x¼0, x¼a, y¼0, and y¼b; ln¼n/2, n¼1,
2, y. When ln is an integer, the functions ~wn,A and ~wn,S are defined
as follows:

~wn,sðln,ri,yi,rj,yjÞ ¼ rkj ŵn,Sðln,ri,yiÞ, ð6aÞ

~wn,Aðln,ri,yi,rj,yjÞ ¼ rkj ŵn,Aðln,ri,yiÞ, ð6bÞ

where

ŵn,Sðln,ri,yiÞ ¼ rlnþ1
i �

g2

g1

cosðlnþ1Þyiþcosðln�1Þyi

� �
, ð6cÞ

ŵn,Aðln,ri,yiÞ ¼ rlnþ1
i

g3

g1

sinðlnþ1Þyiþsinðln�1Þyi

� �
, ð6dÞ

and g1¼(lnþ1)(u�1), g2¼�ln(1�u)þ(3þu), g3¼ln(1�u)þ(3þu).
When ln is not an integer, the functions ~wn,A and ~wn,S are

defined as follows:

~wn,sðln,ri,yi,rj,yjÞ ¼ sin2
ðyj=2Þrkj ŵn,Sðln,ri,yiÞ, ð6eÞ

~wn,Aðln,ri,yi,rj,yjÞ ¼ sin2
ðyj=2Þrkj ŵn,Aðln,ri,yiÞ, ð6fÞ

where

ŵn,Sðln,ri,yiÞ ¼ rlnþ1
i

g3

g1

cosðlnþ1Þyiþcosðln�1Þyi

� �
, ð6gÞ

ŵn,Aðln,ri,yiÞ ¼ rlnþ1
i �

g2

g1

sinðlnþ1Þyiþsinðln�1Þyi

� �
: ð6hÞ

The functions ŵn,Aðln,ri,yiÞ and ŵn,Sðln,ri,yiÞ in Eq. (6) are the
well-known original corner functions developed according to
Williams’ solutions [20]. These original corner functions satisfy
the static governing equation for a thin plate without loading and
the free boundary conditions along the crack, and appropriately
describe the stress singularity behaviors at crack tip i (see Fig. 1).
The subscripts A and S denote anti-symmetric and symmetric
functions with respect to yi¼0, respectively. The coordinates
(r1,y1) and (r2,y2), whose origins are at the two tips of an internal
crack, respectively, are shown in Fig. 1.

When ln is an integer, ŵn,Sðln,ri,yiÞ and ŵn,Aðln,ri,yiÞ in
Eqs. (6c) and (6d) could be linearly dependent with the polynomial
admissible functions. Hence, rkj with k not equal to an integer, is
multiplied to ŵn,S and ŵn,A in order to avoid the possible linear
dependence among the admissible functions in Wp and Wc. When
k is set equal to 1.5, the resulting ~wn,sðln,ri,yi,rj,yjÞ and ~wn,A

ðln,ri,yi,rj,yjÞ in Eqs. (6a) and (6b), respectively, also match the
stress singularity orders at rj¼0. Notably, using ko1:5 results in
incorrect singularity orders for stress resultants at the crack tips, and
is not used.

When ln is not an integer, ŵn,Aðln,ri,yiÞ in Eqs. (6h) is not
continuous across yi¼7p while the first derivative of ŵn,Sðln,ri,yiÞ

in Eq. (6g) with respect to x or y is not continuous across yi¼7p.
These functions can be used to describe the discontinuity behaviors
of the exact solution across the internal crack. However, ŵn,Aðln,
ri,yiÞ and ŵn,Sðln,ri,yiÞ also cause the discontinuity behaviors of
solutions along the segments with yj(ayi)¼0 (see Fig. 1). The
additional discontinuity behaviors are not allowable and are reme-
died by multiplying sin2

ðyj=2Þ to ŵn,Aðln,ri,yiÞ and ŵn,Sðln,ri,yiÞ in
Eqs. (6e) and (6f). Function sin2

ðyj=2Þ not only restricts the dis-
continuities of ~wn,A and the first derivatives of ~wn,S across the crack
only, but also retains the symmetry features of ŵn,A and ŵn,S.
Because the first differential of sin2

ðyj=2Þ with respect to x or y is
singular at rj¼0, rkj with kZ1.5 is multiplied to sin2

ðyj=2Þ to avoid
the unsuitable singularities. When k is set equal to 1.5, ~wn,Aðln,ri,yi,
rj,yjÞ and ~wn,Sðln,ri,yi,rj,yjÞ not only appropriately describe the
behaviors of stress singularities at the neighborhood of ri-0 but
also match the stress singularity orders at rj¼0.

For simplicity, N1, N2, N3, and N4 in Eq. (5) are all set equal to
N in the following computations. Substituting Eqs. (3)–(6) into
Eqs. (1) and (2) and minimizing the functional P with respect to
undetermined coefficients Aij, Cn, Dn, En, and Fn yields IJþ4N linear
algebraic equations for those coefficients to be determined, and
results in an eigenvalue problem with the eigenvalues related to
the natural frequencies of plate. To solve the eigenvalue problem
accurately, variables with 128-bit precision (with approximately
34 decimal digit accuracy) were used in the developed computer
programs.

Notably, subroutine ‘‘DTWODQ’’ in IMSL was adapted to
evaluate the integrals of functions involved in establishing the
matrixes in the eigenvalue problem. This subroutine integrates a
function by means of a globally adaptive scheme based on Gauss–
Kronrod rules [22]. When ~wn,Aðln,ri,yi,rj,yjÞ, ~wn,Sðln,ri,yi,rj,yjÞ and
their derivatives are involved in the integration, the whole
integration domain is divided into six sub-domains as shown in
Fig. 2, and the crack is not inside any one of the sub-domains.
3. Convergence studies

Since cracked square plates with simple support boundary
conditions were often studied in the published literature, con-
vergence studies were carried out for such plates with different



Table 2

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported square

plate with a horizontal center crack (x0/a¼y0/b¼0.5, d/a¼0.5, a¼01).

Mode

no.

N1, N2, N3,

N4 for Wc

in Eq. (5)

Orthogonal polynomials (I� J)
Published

results

4�4 5�5 6�6 7�7 8�8 9�9

1(S)

0 19.74 19.74 19.74 19.74 19.74 19.74

5 17.81 17.75 17.75 17.73 17.72 17.72 [17.7]

10 17.80 17.73 17.73 17.72 17.72 17.72 (17.85)

15 17.76 17.73 17.73 17.72 17.72 17.72 {17.7}

20 17.75 17.72 17.72 17.72 17.72 17.72

2(A)

0 49.49 49.49 49.35 49.35 49.35 49.35

5 43.48 43.28 43.20 43.11 43.08 43.07 [43.03]

10 43.22 43.12 43.11 43.08 43.07 43.06 (42.82)

15 43.14 43.10 43.07 43.07 43.06 43.06 {43.25}

20 43.13 43.09 43.07 43.06 43.06 43.06

3(S)

0 49.49 49.49 49.35 49.35 49.35 49.35

5 48.85 48.70 48.69 48.69 48.69 48.69 [48.70]

10 48.70 48.69 48.69 48.69 48.69 48.69 (48.72)

15 48.70 48.69 48.69 48.69 48.69 48.69 {48.72}

20 48.69 48.69 48.69 48.69 48.69 48.69

4(A)
0 79.17 79.17 78.96 78.96 78.96 78.96

5 77.92 77.92 77.76 77.76 77.74 77.74 [77.73]

10 77.73 77.73 77.73 77.73 77.72 77.72 (77.44)

15 77.73 77.73 77.72 77.72 77.72 77.72 {77.54}

20 77.73 77.73 77.72 77.72 77.72 77.72

5(S)

0 139.6 100.1 100.1 98.72 98.72 98.70

5 84.98 82.90 82.90 82.36 82.36 82.22 [82.15]

10 84.32 82.44 82.44 82.23 82.23 82.19 (83.01)

15 83.12 82.30 82.30 82.22 82.22 82.18 {82.39}

20 82.80 82.28 82.28 82.20 82.20 82.17

Note: [ ]: results from Stahl and Keer [10].

( ): results from Liew et al. [7].

{ }: results from Su et al. [17].
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crack lengths to verify the correctness of the solutions and demon-
strate the effects of Wc on the solutions. In Eq. (5) l, m, p, and q are
set equal one to satisfy the geometric boundary conditions (zero
transverse displacement) along simply supported edges. Numerical
results are presented for the first five nondimensional frequency
parameters oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, which are commonly used in the plate

vibration literature, of plates having centrally located cracks
(x0/a¼0.5 and y0/b¼0.5) with different crack lengths (d/a¼0.2,
0.5, and 0.8) and inclination angles (a¼01 and 451). Poisson’s ratio
equal to 0.3 is used for all the results shown here.

Shown in Tables 1–3 are the convergence studies of nondi-
mensional frequency parameters for horizontally cracked plates
with length d/a¼0.2, 0.5, and 0.8, respectively. The middle point
of the crack coincides with the center of plate. In the first column
of these tables parenthesized S and A denote symmetric and anti-
symmetric mode shapes, respectively, with respect to the line
of crack. The present solutions did not take advantage of the
symmetry of the problem. That is, the solutions for symmetric
and anti-symmetric modes were not separately considered. The
published results by Stahl and Keer [10], Liew et al. [7], and Su
et al. [17] are also listed for comparison. It should be noted that
although Stahl and Keer [10] used a very accurate Fredholm
integration approach, they admitted that the fourth significant
figure of their results for the higher modes may not be accurate
because of the numerical techniques used in determining the
natural frequencies. Liew et al. [7] decomposed the plate under
consideration into three sub-domains and used 19�9 terms of
orthogonal polynomials for each sub-domain to construct the
solutions for symmetric and anti-symmetric modes, respectively.
As mentioned in Section 1, the solutions of Liew et al. [7] are not
guaranteed to be the upper bounds on exact natural frequencies.
Su et al. [17] used a finite element approach without mentioning
the element size or number.

The numerical results for a plate with a short horizontal crack
(d/a¼0.2) in Table 1 are shown as 5�5, 6�6,y, 10�10 terms of
Table 1

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported square

plate with a horizontal center crack (x0/a¼y0/b¼0.5, d/a¼0.2, a¼01).

Mode

no.

N1, N2, N3,

N4 for Wc

in Eq. (5)

Orthogonal polynomials (I� J) Published

results

5�5 6�6 7�7 8�8 9�9 10�10

1(S) 0 19.74 19.74 19.74 19.74 19.74 19.74

5 19.46 19.46 19.39 19.39 19.35 19.35 [19.3]

10 19.39 19.39 19.34 19.34 19.33 19.33 (19.38)

15 19.37 19.37 19.33 19.33 19.33 19.32 {19.3}

2(A) 0 49.49 49.35 49.35 49.35 49.35 49.35

5 49.22 49.20 49.20 49.19 49.19 49.19 [49.17]

10 49.20 49.19 49.19 49.19 49.19 49.18 (49.16)

15 49.19 49.19 49.19 49.19 49.19 49.18 {49.15}

3(S) 0 49.49 49.35 49.35 49.35 49.35 49.35

5 49.33 49.33 49.33 49.33 49.33 49.32 [49.33]

10 49.33 49.33 49.33 49.33 49.32 49.32 (49.31)

15 49.33 49.33 49.33 49.32 49.32 49.32 {49.29}

4(A) 0 79.17 78.96 78.96 78.96 78.96 78.96

5 78.98 78.96 78.96 78.95 78.95 78.95 [78.96]

10 78.96 78.95 78.95 78.95 78.95 78.95 (78.81)

15 78.95 78.95 78.95 78.95 78.95 78.95 {78.68}

5(S) 0 100.1 100.1 98.72 98.72 98.70 98.70

5 95.85 95.85 94.85 94.85 94.38 94.38 [93.96]

10 94.95 94.95 94.29 94.29 94.13 94.13 (94.69)

15 94.70 94.70 94.21 94.21 94.11 94.11 {94.24}

Note: [ ]: results from Stahl and Keer [10].

( ): results from Liew et al. [7].

{ }: results from Su et al. [17].
orthogonal polynomials are retained in Eq. (4) in conjunction with
0, 20, 40, and 60 modified corner functions in Eq. (5). The results
obtained by using polynomials and no modified corner functions
(N¼0 in Wc) converge to the exact results for a simply supported
intact square plate2; that is, integer multiplies of p2. This observa-
tion is expected because the solutions from the Ritz method with
polynomial admissible functions (Eq. (4)) alone cannot realize the
existence of a crack. Adding a small number of modified corner
functions into the admissible functions significantly improves
numerical solutions. The numerical solutions converge very well
by simultaneously increasing the number of polynomial terms and
modified corner functions. Using I¼ J¼9 and N¼10 (totally 121
terms) in the admissible functions leads to at least three significant
figure convergence, and the convergent results show excellent
agreement with those of Stahl and Keer [10], while the results of
Su et al. [17] and Liew et al.[7] agree well with those of Stahl and
Keer [10]. The fifth nondimensional frequency obtained by Liew
et al. [7] is significantly larger than the present one and is clearly
less accurate because the present upper bound solutions are shown
to have converged to four significant figures.

Convergence studies for larger horizontal cracks (i.e., d/a¼0.5
and 0.8) are shown in Tables 2 and 3. The numerical results are
shown as 4�4, 5�5,y, 9�9 terms of orthogonal polynomials
are used in Eq. (4) in conjunction with 0, 20, 40, 60, and 80
modified corner functions in Eq. (5). Again, using larger numbers
of modified corner functions and polynomial functions yields
better convergent solutions. Convergence to at least three
significant figure has been achieved with I¼ J¼9 and N¼15
(totally 141 terms) in the admissible functions. The convergent
results show better agreement with those of Stahl and Keer [10]
than the results of Liew et al. [7], and Su et al. [17] do. Notably,



Table 4

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the same case as Table 1, but

using k¼k¼ 2:5 in Eq. (6a–h).

Mode

no.

N1, N2, N3,

N4 for Wc

in Eq. (5)

Orthogonal polynomials (I� J) Published

results

5�5 6�6 7�7 8�8 9�9 11�11

1(S) 0 19.74 19.74 19.74 19.74 19.74 19.74

5 19.54 19.54 19.46 19.46 19.45 19.41 [19.3]

10 19.46 19.46 19.45 19.45 19.40 19.35 (19.38)

15 19.45 19.45 19.42 19.42 19.36 19.34 {19.3}

2(A) 0 49.49 49.35 49.35 49.35 49.35 49.35

5 49.26 49.23 49.21 49.20 49.20 49.19 [49.17]

10 49.22 49.20 49.20 49.20 49.19 49.19 (49.16)

15 49.21 49.20 49.20 49.19 49.19 49.19 {49.15}

3(S) 0 49.49 49.35 49.35 49.35 49.35 49.35

5 49.34 49.33 49.33 49.33 49.33 49.33 [49.33]

10 49.34 49.33 49.33 49.33 49.33 49.32 (49.31)

15 49.34 49.33 49.33 49.33 49.33 49.32 {49.29}

4(A) 0 79.17 78.96 78.96 78.96 78.96 78.96

5 78.96 78.95 78.95 78.95 78.95 78.95 [78.96]

10 78.95 78.95 78.95 78.95 78.95 78.95 (78.81)

15 78.95 78.95 78.95 78.95 78.95 78.95 {78.68}

5(S) 0 100.1 100.1 98.72 98.72 98.70 98.70

5 96.52 96.52 95.59 95.59 95.53 95.03 [93.96]

10 95.62 95.62 95.44 95.44 94.95 94.43 (94.69)

15 95.53 95.53 95.15 95.15 94.51 94.32 {94.24}

Note: [ ]: results from Stahl and Keer [10].

( ): results from Liew et al. [7].

{ }: results from Su et al. [17].

Table 5

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the same case as Table 3, but

using k¼k¼ 2:5 in Eq. (6a–h).

Mode

no.

N1, N2, N3,

N4 for Wc

in Eq. (5)

Orthogonal polynomials (I� J) Published

results

4�4 5�5 6�6 7�7 8�8 9�9

1(S) 0 19.74 19.74 19.74 19.74 19.74 19.74

5 16.69 16.44 16.44 16.42 16.42 16.41 [16.4]

10 16.45 16.42 16.42 16.41 16.41 16.41 (16.47)

15 16.43 16.41 16.41 16.41 16.41 16.41 {16.4}

20 16.42 16.41 16.41 16.41 16.41 16.41

2(A) 0 49.49 49.49 49.35 49.35 49.35 49.35

5 28.38 28.05 28.04 28.01 27.99 27.98 [27.77]

10 27.92 27.89 27.83 27.81 27.81 27.80 (27.43)

15 27.87 27.81 27.80 27.80 27.78 27.77 {28.01}

20 27.86 27.80 27.79 27.79 27.77 27.77

3(S) 0 49.49 49.49 49.35 49.35 49.35 49.35

5 47.39 47.25 47.22 47.22 47.21 47.21 [47.26]

10 47.23 47.21 47.21 47.21 47.21 47.21 (47.27)

15 47.22 47.21 47.21 47.21 47.21 47.21 {47.30}

20 47.21 47.21 47.21 47.21 47.21 47.21

4(A) 0 79.17 79.17 78.96 78.96 78.96 78.96

5 66.07 66.07 65.97 65.97 65.90 65.90 [65.73]

10 65.90 65.90 65.84 65.84 65.77 65.77 (65.19)

15 65.85 65.85 65.78 65.78 65.76 65.76 {65.97}

20 65.84 65.84 65.76 65.76 65.76 65.76

5(S) 0 139.6 100.1 100.1 98.72 98.72 98.70

5 79.40 76.77 76.77 76.46 76.46 76.38 [76.37]

10 77.68 76.51 76.51 76.38 76.38 76.37 (76.60)

15 76.78 76.39 76.39 76.38 76.38 76.37 {76.39}

20 76.63 76.38 76.38 76.37 76.37 76.37

Note: [ ]: results from Stahl and Keer [10].

( ): results from Liew et al. [7].

{ }: results from Su et al. [17].

Table 3

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported square

plate with a horizontal center crack (x0/a¼y0/b¼0.5, d/a¼0.8, a¼01).

Mode

no.

N1, N2,

N3, N4 for

Wc in Eq.

(5)

Orthogonal polynomials (I� J) Published

results

4�4 5�5 6�6 7�7 8� �8 9�9

1(S) 0 19.74 19.74 19.74 19.74 19.74 19.74

5 16.45 16.42 16.42 16.42 16.42 16.42 [16.4]

10 16.43 16.41 16.41 16.41 16.41 16.41 (16.47)

15 16.43 16.41 16.41 16.41 16.41 16.41 {16.4}

20 16.42 16.41 16.41 16.41 16.41 16.41

2(A) 0 49.49 49.49 49.35 49.35 49.35 49.35

5 29.40 28.04 27.99 27.98 27.97 27.97 [27.77]

10 28.03 27.97 27.84 27.82 27.80 27.80 (27.43)

15 28.02 27.85 27.81 27.80 27.79 27.77 {28.01}

20 28.01 27.83 27.81 27.79 27.78 27.77

3(S) 0 49.49 49.49 49.35 49.35 49.35 49.35

5 47.41 47.25 47.23 47.23 47.23 47.22 [47.26]

10 47.23 47.22 47.22 47.21 47.21 47.21 (47.27)

15 47.23 47.21 47.21 47.21 47.21 47.21 {47.30}

20 47.22 47.21 47.21 47.21 47.21 47.21

4(A) 0 79.17 79.17 78.96 78.96 78.96 78.96

5 66.53 66.53 66.50 66.50 66.49 66.49 [65.73]

10 65.94 65.94 65.90 65.90 65.89 65.89 (65.19)

15 65.92 65.92 65.78 65.78 65.77 65.77 {65.97}

20 65.88 65.88 65.78 65.78 65.76 65.76

5(S) 0 139.6 100.1 100.1 98.72 98.72 98.70

5 77.83 77.16 77.16 76.47 76.47 76.41 [76.37]

10 77.12 76.49 76.49 76.39 76.39 76.37 (76.60)

15 76.71 76.43 76.43 76.38 76.38 76.37 {76.39}

20 76.64 76.40 76.40 76.37 76.37 76.37

Note [ ]: results from Stahl and Keer [10].

( ): results from Liew et al. [7].

{ }: results from Su et al. [17].
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the results of Liew et al. [7] were obtained using 513 admissible
functions, which are much more than that used for the present
results. In terms of the first three significant figures, the second
and fourth frequencies, in Tables 2 and 3, obtained by Liew et al.
are less than those of Stahl and Keer, another indication that the
solutions of Liew et al. are not guaranteed to be upper bounds on
the exact frequencies.

It should be specially mentioned that the present results were
obtained by using k¼ k¼ 1.5 in Eq. (6). To show the effects of
different values of k and k on the convergence of solutions,
similar to the presentation in Tables 1 and 3, Tables 4 and 5
illustrate the corresponding convergence studies by using k¼
k¼ 2:5 in Eq. (6). Comparing Tables 4 and 5 with Tables 1 and 3,
respectively, one finds that the convergence rates of the solutions
are slightly changed when changing k¼ k¼ 1.5–2.5.

To investigate the effects of crack inclination and boundary
conditions of the plate on the convergence of the present solu-
tions, Table 6 summarizes the convergence studies of nondimen-
sional frequency parameters for a simply supported square plate
with an inclined crack (a¼451) having length d/a¼0.5, while
Table 7 shows the convergence study for a completely free square
plate with a horizontal crack having length d/a¼0.5. The middle
point of the crack coincides with the center of plate. Notably,
there are three rigid body modes for a complete free plate, having
zero frequencies, which are not shown in Table 7. Comparing
these data with those in Table 2, one finds that the convergence
rates of frequencies with increased number of modified corner
functions in the admissible functions are different for the results
in these three tables. However, using I¼ J¼9 and N¼15 (totally
141 terms) in the admissible functions still gives at least three



Table 6

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported square

plate with an inclined center crack (x0/a¼y0/b¼0.5, d/a¼0.5, a¼451).

Mode no. N1, N2, N3, N4

for Wc in

Eq. (5)

Orthogonal polynomials (I� J)

4�4 5�5 6�6 7�7 8�8 9�9

1 0 19.74 19.74 19.74 19.74 19.74 19.74

5 17.60 17.57 17.54 17.54 17.53 17.53

10 17.57 17.55 17.54 17.54 17.53 17.53

15 17.57 17.54 17.54 17.53 17.53 17.53

20 17.56 17.54 17.53 17.53 17.53 17.53

2 0 49.49 49.49 49.35 49.35 49.35 49.35

5 43.46 43.07 42.92 42.91 42.87 42.86

10 42.97 42.93 42.88 42.87 42.86 42.85

15 42.94 42.88 42.86 42.86 42.85 42.85

20 42.92 42.88 42.86 42.85 42.85 42.85

3 0 49.49 49.49 49.35 49.35 49.35 49.35

5 48.43 48.43 48.35 48.35 48.34 48.34

10 48.37 48.37 48.33 48.33 48.33 48.33

15 48.37 48.36 48.33 48.33 48.33 48.33

20 48.36 48.36 48.33 48.33 48.33 48.33

4 0 79.17 79.17 78.96 78.96 78.96 78.96

5 74.43 73.91 73.63 73.58 73.57 73.55

10 73.92 73.67 73.60 73.57 73.56 73.55

15 73.89 73.59 73.58 73.56 73.56 73.55

20 73.87 73.59 73.57 73.56 73.56 73.55

5 0 139.6 100.1 100.1 98.72 98.72 98.70

5 90.93 90.30 90.20 90.01 90.00 89.96

10 90.72 90.03 90.03 89.97 89.96 89.95

15 90.64 90.01 89.99 89.96 89.96 89.95

20 90.62 89.00 89.98 89.96 89.95 89.95

Table 7

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a completely free square

plate with a horizontal center crack (x0/a¼y0/b¼0.5, d/a¼0.5, a¼01).

Mode no. N1, N2, N3, N4

for Wc in

Eq. (5)

Orthogonal polynomials (I� J)

4�4 5�5 6�6 7�7 8�8 9�9

1(A) 0 13.66 13.66 13.47 13.47 13.47 13.47

5 13.50 13.50 13.47 13.47 13.47 13.47

10 13.47 13.47 13.47 13.47 13.47 13.47

15 13.47 13.47 13.47 13.47 13.47 13.47

20 13.47 13.47 13.47 13.47 13.47 13.47

2(S) 0 22.45 19.73 19.73 19.60 19.60 19.60

5 18.34 17.88 17.88 17.64 17.64 17.60

10 17.99 17.67 17.67 17.61 17.61 17.59

15 17.90 17.65 17.65 17.61 17.61 17.59

20 17.79 17.63 17.63 17.60 17.60 17.58

3(S) 0 30.59 24.54 24.54 24.27 24.27 24.27

5 22.48 22.15 22.15 22.12 22.12 22.11

10 22.35 22.13 22.13 22.11 22.11 22.10

15 22.24 22.13 22.13 22.11 22.11 22.10

20 22.19 22.12 22.12 22.11 22.11 22.10

4(A) 0 39.23 35.61 35.29 34.81 34.80 34.80

5 34.50 34.35 33.81 33.68 33.67 33.66

10 33.75 33.71 33.67 33.66 33.65 33.65

15 33.72 33.68 33.65 33.65 33.65 33.65

20 33.71 33.67 33.65 33.65 33.65 33.64

5(S) 0 39.23 35.61 35.29 34.81 34.80 34.80

5 35.08 34.88 34.55 34.40 34.40 34.40

10 34.50 34.43 34.40 34.39 34.39 34.39

15 34.44 34.40 34.39 34.39 34.39 34.39

20 34.42 34.40 34.39 34.39 34.39 34.39
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significant figure convergence for the first five nonzero frequen-
cies in each case.

4. Frequencies and mode shapes

Based on the convergence studies given in the previous
section, I¼ J¼9 and N¼10 (totally 121 terms) and I¼ J¼9 and
N¼15 (totally 141 terms) in the admissible functions were
employed to determine the first five nonzero frequencies and
corresponding mode shapes of square cracked plates having crack
length d/ar0.3 and d/aZ0.4, respectively. Tables 8 and 9,
respectively, list the nondimensional frequency parameters for
simply supported and completely free square plates having
internal cracks with various lengths (d/a¼0.1, 0.2,y,0.6), differ-
ent inclination angles (a¼01, 151, 301, and 451), and different
locations ((x0/a, y0/b)¼(0.5, 0.5) and (0.5, 0.75)). All frequency
results are guaranteed upper bounds to the exact values and are
exact to at least three significant figures. This is the most
comprehensive and accurate set of frequencies to date for
rectangular plates with internal cracks or slits. It is also the first
published vibration data for cracks, which are inclined (aa01)
and for completely free plates with internal cracks.

Results of Stahl and Keer [10] for simply supported cracked
plates are also given in Table 8. Agreement with at least three
significant figures is found between the present results and
results of Stahl and Keer, who achieved their excellent results in
1972 with much less computer capability.

The first five nondimensional frequency parameters for a
simply supported square plate with no cracks are 19.74, 49.35,
49.35, 78.96, and 98.70 (see Table 1), and they are 13.47, 19.60,
24.27, 34.80, and 34.80 (see Table 7) for a completely free intact
plate. The differences in frequencies between intact plates and
cracked plates with small crack length (d/a¼0.1) are much less
than 1%, regardless of the orientation and location of crack.
It is clear that increasing crack length leads to decreasing
frequencies because of the decrease in stiffness in a plate, with no
significant change in its mass. This is clearly seen for most of the
vibration modes in Tables 8 and 9. Nevertheless, for completely
free plates (Table 9) the first nonzero frequencies with horizontal
cracks and the fifth nonzero frequencies with inclined cracks
(a¼301 and 451) are not sensitive to the crack length. The changes
in frequency for such modes are less than 0.3% when d/a¼0
changes to d/a¼0.6.

Some clear effects of the orientation of crack on the natural
frequencies are observed from Tables 8 and 9. In the cases of simply
supported plates, increasing the inclined angle of crack (a¼01
changes to 451) yields the decrease in first four frequencies.
Different trends are found for completely free plates, and increase
in a causes the decrease in first and third frequencies but the
increase in second, fourth, and fifth frequencies.

For plates with center cracks ((x0/a, y0/b)¼(0.5, 0.5)) on one of
their symmetry axes, the vibration mode shapes are still either
symmetric or anti-symmetric to the axes. This is observed in the
nodal patterns (lines of zero vibration displacement) shown in
Figs. 3 and 4 when a¼01 or 451. When a¼01 and d/a¼0.2 (a small
horizontal crack), the small crack only cause the fifth mode shape
significantly different from that for an intact plate with simply
support conditions; and similar observation is found for the
second modes for completely free plates. As the crack is getting
large (d/a¼0.6), more significant changes are revealed for such
modes as well as for the third and fourth modes for completely
free cracked plates. Adding an inclined crack with a¼451 to an
intact plate leads to substantial changes of modal shapes in the
fourth and fifth modes with simple support boundary conditions
and in the first mode for completely free boundary conditions.

When a horizontal crack is not on the symmetry axis of the
plate but its middle point is, the mode shapes of the cracked plate
are either symmetric or anti-symmetric to the symmetry axis



Table 8

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for simply supported square plates with internal cracks at various locations and with different orientation and lengths.

a (deg.) (x0/a, y0/b) d/a Mode

1 2 3 4 5

0 (0.5, 0.5) 0.1 19.66 49.34 49.35 78.96 97.79

0.2 19.33 [19.3] 49.19 [49.17] 49.32 [49.33] 78.95 [78.96] 94.13 [93.96]

0.3 18.85 48.50 49.24 78.89 89.73

0.4 18.29 [18.2] 46.65 [46.62] 49.03 [49.03] 78.61 [78.60] 85.56 [85.51]

0.5 17.72 [17.7] 43.06 [43.03] 48.69 [48.70] 77.72 [77.73] 82.18 [82.15]

0.6 17.19 [17.1] 37.99 [37.98] 48.22 [48.22] 75.59 [75.58] 79.60 [79.59]

0 (0.5, 0.75) 0.1 19.69 48.95 49.35 78.95 98.17

0.2 19.51 47.60 49.34 78.88 96.29

0.3 19.22 45.77 49.29 78.57 93.04

0.4 18.81 43.81 49.15 77.86 85.95

0.5 18.30 41.92 48.89 73.05 76.69

0.6 17.73 40.08 48.44 60.50 75.15

15 (0.5, 0.5) 0.1 19.65 49.34 49.35 78.93 97.78

0.2 19.33 49.18 49.32 78.79 94.39

0.3 18.85 48.48 49.23 78.43 90.43

0.4 18.27 46.60 49.00 77.59 87.04

0.5 17.67 43.00 48.60 76.10 84.57

0.6 17.10 37.96 48.06 74.03 82.19

30 (0.5, 0.5) 0.1 19.66 49.34 49.35 78.88 97.84

0.2 19.32 49.17 49.32 78.49 94.86

0.3 18.83 48.44 49.20 77.63 91.71

0.4 18.23 46.52 48.92 76.14 89.46

0.5 17.58 42.91 48.43 74.25 88.14

0.6 16.93 37.87 47.70 72.29 84.71

45 (0.5, 0.5) 0.1 19.66 49.34 49.35 78.85 97.89

0.2 19.32 49.17 49.32 78.35 95.12

0.3 18.82 48.41 49.19 77.27 92.31

0.4 18.21 46.48 48.89 75.56 90.57

0.5 17.53 42.85 48.33 73.55 89.95

0.6 16.84 37.85 47.51 71.60 84.58

Note: [ ]: results of Stahl and Keer [10].

Table 9

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free square plates with internal cracks at various locations and with different orientation and lengths.

a (deg.) (x0/a, y0/b) d/a Mode

1 2 3 4 5

0 (0.5, 0.5) 0.1 13.47 19.57 24.18 34.80 34.80

0.2 13.47 19.40 23.73 34.77 34.79

0.3 13.47 19.07 23.14 34.66 34.75

0.4 13.47 18.50 22.55 34.34 34.63

0.5 13.47 17.59 22.10 33.65 34.39

0.6 13.46 16.41 21.82 32.26 33.98

0 (0.5, 0.75) 0.1 13.47 19.59 24.23 34.79 34.80

0.2 13.47 19.55 24.06 34.75 34.80

0.3 13.47 19.46 23.78 34.64 34.79

0.4 13.47 19.28 23.39 34.39 34.76

0.5 13.46 18.96 22.91 33.91 34.70

0.6 13.45 18.36 22.43 33.02 34.56

15 (0.5, 0.5) 0.1 13.46 19.58 24.18 34.80 34.80

0.2 13.44 19.45 23.73 34.78 34.79

0.3 13.41 19.20 23.13 34.68 34.76

0.4 13.34 18.76 22.50 34.41 34.69

0.5 13.24 18.08 22.01 33.81 34.54

0.6 13.06 17.21 21.69 32.55 34.28

30 (0.5, 0.5) 0.1 13.46 19.59 24.17 34.80 34.80

0.2 13.40 19.55 23.73 34.79 34.80

0.3 13.29 19.47 23.09 34.74 34.79

0.4 13.13 19.31 22.39 34.59 34.78

0.5 12.89 19.05 21.75 34.21 34.77

0.6 12.54 18.66 21.29 33.31 34.74

45 (0.5, 0.5) 0.1 13.46 19.60 24.19 34.80 34.80

0.2 13.38 19.60 23.73 34.80 34.80

0.3 13.24 19.60 23.07 34.78 34.80

0.4 13.03 19.59 22.31 34.71 34.80

0.5 12.74 19.58 21.55 34.50 34.79

0.6 12.35 19.56 20.86 33.89 34.78
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Fig. 3. Nodal patterns for a simply supported square plate with an internal crack.
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perpendicular to the crack. This is found in Figs. 3 and 4 when
a¼01 and (x0/a, y0/b)¼(0.5, 0.75). The existence of the crack
causes significant changes in the mode shapes of the symmetric
modes from those for an intact plate.

When a crack completely destroys the symmetry of plate, the
crack causes considerable changes in all mode shapes from those
for an intact plate, which is seen in Figs. 3 and 4 when a¼15o.
When the crack length becomes larger, the changes in mode
shapes become more significant.
5. Concluding remarks

This paper has proposed a new set of admissible functions for
plates with internal cracks for the Ritz method based on the classical
plate theory. The proposed set of admissible functions is capable of
describing the stress singularity behaviors around the crack tips and
showing discontinuities of the transverse displacement and slopes
across the crack. The main superiority of the present solutions over
the existing solutions based on the Ritz method is that the present
solutions guarantees to provide upper bounds to the exact solutions,
which is very important feature for a good numerical solution.
Additionally, the present solutions using a less number of admissible
functions are at least as accurate as those previously published.

The proposed solutions have been validated through compre-
hensive convergence studies for simply supported plates having
cracks with various lengths. The convergent solutions show
excellent agreement with those obtained by Stahl and Keer [10]
accurately solving homogeneous Fredholm integral equations.
The proposed solutions have been further applied to obtain the
accurate frequencies and nodal patters for simply supported and
completely free square plates having internal cracks at different
locations ((x0/a, y0/b)¼(0.5, 0.5) and (0.5, 0.75)), with various
lengths (d/a¼0.1–0.6) and orientations (a¼01, 151, 301, and 451).
The results are novel, and are the first published vibration data for
cracks which are inclined (aa01) and for completely free plates
with internal cracks.

Although only rectangular plates with straight internal cracks
have been investigated here, the present solutions are easy to
extend to consider plates with other shapes (i.e., circular or skew
trapezoidal plates) through proper transformations of coordinates.
The present approach can also be extended to consider plates with
multiple cracks, and each crack needs a set of the proposed
admissible functions. Furthermore, there are lots of possible



Fig. 4. Nodal patterns for a completely free square plate with an internal crack.
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extensions of the present work. It will be interesting to explore the
possibility of applying similar methodology to determine stress
intensity factors of a cracked thin plate because the Ritz method is
recognized to be not good in accurately determining stress resul-
tants. The proposed methodology of constructing modified corner
functions can be extended to analyze vibrations of thick plates with
internal cracks based on the first order or third order shear
deformation plate theory or 3D elasticity theory. The proposed set
of modified corner functions can be further applied to the element
free Galerkin method for accurately solving the static or dynamic
problems of plates involving internal cracks. It is believed that only
the few terms of the modified corner functions with lower orders in
r1 or r2 combining with regular polynomial basis functions will be
sufficient for solving such problems.
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