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a b s t r a c t

In this paper, a true-direction flux reconstruction of the second-order quiet direct simulation (QDS-
2N) Smith et al. (2009) [3] as an equivalent Euler equation solver, called QDS-N2, is proposed. Because
of the true-directional nature of QDS, where volume-to-volume (true-direction) fluxes are computed,
as opposed to fluxes at cell interfaces as employed by traditional finite volume schemes, a volumetric
reconstruction is required to reach a totally true-direction scheme. The conserved quantities are
permitted to vary (according to a polynomial expression) across all simulated dimensions. Prior to the
flux computation, QDS particles are introduced using properties based on weighted moments taken over
the polynomial reconstruction of the conserved quantity fields. The resulting flux expressions are shown
to exactly reproduce the existing second-order extension for a one-dimensional flow, while providing
a means for true multi-dimensional reconstruction. The new reconstruction is demonstrated in several
verification studies. These include a shock–bubble interaction problem, an Euler-four-shock interaction
problem, and the advection of a vortical disturbance. These results are presented, and the increased
computation time and the effect of higher-order extension are discussed in this paper. The results show
that the proposedmulti-dimensional reconstruction provides a significant increase in the accuracy of the
solution.We show that, despite the increase in the computational expense, the computational speed of the
proposedQDS-N2 method is several times higher than that of the previously proposedQDS-2N scheme for
a fixed degree of numerical accuracy, at least, for the test problemof the advection of vertical disturbances.

© 2013 Published by Elsevier B.V.
1. Introduction

There are a number of approaches for the simulation of gas
flows, depending on the nature and level of rarefaction of the
flow. Computational fluid dynamics (CFD) typically uses the finite
volume method to solve a set of discretized governing equations,
usually the Euler or Navier–Stokes equations for continuum
flows. Contemporary finite-volume CFD divides the computational
domain into a grid of cells, and fluxes of mass, momentum, and
energy are calculated through the interfaces between these cells.
This technique may suffer from the major disadvantage that the
poor alignment of the grid with the flow field may result in large
errors for some important flows (e.g., explosive blast wave), since
fluxes can only occur between cells that share an interface, i.e.,
no reflection of the true-direction nature of the gas flow. Thus,
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CFD requires a careful grid design to ensure accurate results,
convergence, and stability.

Since the development of direct simulationMonte Carlo (DSMC)
by Bird [1] for statistically solving the Boltzmann equation, a
large number of continuum kinetic theory-based schemes have
emerged following a similar spirit. In 1980, Pullin [2] proposed
the equilibrium flux method (EFM) as an analytical equivalent to
the equilibrium particle simulation method (EPSM), which is a di-
rect simulation method where particles are forced to assume the
Maxwell–Boltzmann equilibrium velocity probability distribution
function instead of performing collisions. Later, Smith et al. [3]
proposed a general form of the EFM method known as the true-
direction equilibrium flux method (TDEFM), which captures rel-
atively accurately the transport mechanism employed by EPSM.
Fluxes calculated by TDEFM represent the true analytical solution
to the molecular free flight problem, under the assumptions of
thermal equilibrium and uniformly distributed quantities in each
cell.

http://dx.doi.org/10.1016/j.cpc.2013.05.007
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cpc.2013.05.007&domain=pdf
mailto:chongsin@faculty.nctu.edu.tw
http://dx.doi.org/10.1016/j.cpc.2013.05.007


Y.-J. Lin et al. / Computer Physics Communications 184 (2013) 2378–2390 2379
Albright et al. [4] developed a numerical scheme for the solution
of the Euler equations, known as the quiet direct simulationMonte
Carlo (QDSMC) method. In this method, the integrals encountered
in the TDEFM formulation are replaced by approximations using
Gaussian numerical integration, effectively replacing the continu-
ous velocity distribution function with a series of discrete veloc-
ities. The method was later renamed the quiet direct simulation
(QDS) method, because of the lack of stochastic processes, and was
extended to second-order spatial accuracy [5]. The lack of complex
mathematical functions results in a computationally very efficient
scheme with a considerably higher performance than EFM while
maintaining the advantages of true-directional fluxes like TDEFM.

Because of the assumption of unrestricted motion during free
flight, each of the abovementioned kinetic solvers has a large
amount of (cell-size-based) numerical diffusion. To combat this
dissipation, a common strategy, employed in conventional finite
volume methods, is to apply the higher-order reconstruction of
properties or fluxes.Macrossan [6] applied EFMusing higher-order
spatial extensions, while Smith [7] attempted the analytical in-
clusion of gradients into true-direction volume-to-volume fluxes,
only to find that the complete analytical inclusion of gradient terms
in the TDEFM flux expressions is impossible. Smith et al. [5] re-
duced the numerical diffusion by applying ‘‘simplified’’ flux recon-
struction at the interface that improves the original QDS to be
almost second order in spatial accuracy; this method is called
QDS-2N.

In this paper, we extend the second-order QDS algorithm (QDS-
2N) [5] to higher-order reconstruction through the true-direction
polynomial multi-dimensional reconstruction of conserved prop-
erties across each cell width; this method is called QDS-N2. The
net fluxes are computed through the individual contributions of
QDS particles, computed by taking moments over the polynomial
reconstruction. The particle properties are updated, considering
the average value of the conserved quantity between the region
bounds, which are required in translational directions and the
application of splitting. The fluxes of conserved properties are cal-
culated by a sum of weighted moments over the polynomial spa-
tial reconstruction of mass, momentum, and energy across the cell
width. The verification simulations of four two-dimensional cases
are carried out to show the improved accuracy of the proposed
QDS-N2 scheme for inviscid gas flow simulations.

2. Numerical method

2.1. Quiet direct simulation (QDS)

The normal random variable N(0, 1) is defined by the probabil-
ity density:

p(x) =
e−x2/2

√
2π

. (1)

By using a Gaussian quadrature approximation, the integral of
Eq. (1) over its limits can be approximated by:

∞

−∞

e−x2/2

√
2π

f (x)dx ≈

N
j=1

wjf (qj) (2)

where wj and qj are the weights and abscissas of the Gaussian
quadrature (also known as the Gauss–Hermite parameters), and N
is the number of terms. The abscissas are the roots of the Hermite
polynomials, which can be defined by the recurrence equation:

Hn+1(q) = 2qHn − 2nHn−1 (3)

whereH−1 = 0, andH0 = 1. The weights can be determined from:

wj =
2n−1n!

√
π

n2 [Hn−1(qi)]2
. (4)
The net fluxes ofmass,momentumand energy of a cell are given
by the sum of individual flux contributions from all the particles
flowing in and out as follows:
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(5)

where F J
MASS , F

J
MOM and F J

ENG is the individual mass flux, individual
momentum flux and individual energy flux from particle J respec-
tively, M and N is the number of inflow and outflow particles re-
spectively into the cell under consideration. Each of the individual
contributions (with first order spatial accuracy) can be described
by the expressions, e.g., in one-dimensional case:

F J
MASS =

vJ∆t
∆x

mJ F J
MOM =

vJ∆t
∆x

mJvJ

F J
ENG =

vJ∆t
∆x

mJ


1
2
v2
J + εJ

 (6)

where the particle massmJ , particle velocity vJ , and particle inter-
nal energy εJ are expressed as:

mJ =
ρ∆xwJ
√

π
vJ = u +

√
2σqJ

εJ =
(ξ − Ω) σ 2

2

(7)

where ρ is the density, u is the bulk (or mean) flow velocity, and
σ = (RT )1/2 in a given source cell. Note R is the universal gas con-
stant, and T is the gas temperature. The total number of degrees of
freedom ξ is defined as ξ = 2(γ − 1)−1 where γ is the specific
heat ratio (= Cp/Cv), and Ω is the number of simulated degrees
of freedom (e.g., Ω = 1 for one dimensional flow). In the exist-
ing QDS-2N [5], the values of ρ, u, and σ employed in QDS particle
initialization are taken from reconstructions based on linear vari-
ations between neighbor cells. Despite fluxes being true direction
in nature, the reconstructions performed in previous implementa-
tions are directionally decoupled—i.e. a flux is computed through
the product of (separate) fluxes previously computed (for 2D flow)
in the x and y directions. For the 2D case, the particle mass and ve-
locities in Eq. (7) become:

mJK =
ρ∆x∆ywJwK

π
vJ = ux +

√

2σ 2qJ

vK = uy +

√

2σ 2qK
(8)

where there are K = 1, . . . ,M particles in the y-direction and the
definition of other variables are the same as those in 1D case. The
internal energy remains identical to the 1-D case, allowing for a
corresponding increase in Ω to account for the extra simulated
dimension. The fluxes from sources cell to any arbitrary destina-
tion cell can be calculated by the particle position distributions.
The fluxes of mass, momentum and energy, which are based on
the proportion of the overlapped area to the area of the original
cell, are given by:

FMASS =
A
As

mJK FMOM−X =
A
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mJKvJ
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A
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mJKvK
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As
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
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(9)
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Fig. 1. The special reconstruction convention for current amount of conserved
quantity Q in one cell.

Fig. 2. QDS flux procedure within a general (arbitrary) special reconstruction of
conserved quantity Q .

where A is the overlapped area as u ·v · dt2 and As is the source cell
area as dx · dy.

2.2. Spatial reconstruction and flux calculation

In the current study, referring to Fig. 1, the general extension to
higher order in QDS in one-dimensional case is performed using a
spatial reconstruction of the form:

Q (x) = Qc +


dQ
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x=0.5∆x
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
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(10)

where Q (x) is the value of a conserved property (mass, momen-
tum, or energy) at a distance x from the left hand side of the cell,
and integer n indicates the order of the reconstruction. Note Qc
is the value of Q (x) at the cell center. This value is calculated
from Q (x) integrating over the cell width divided by the cell width
equaling to the existing average value of the source cell Q s, pre-
sented below:
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By using our revised reconstruction, the bounds of integration
are XL = 0 and XR = ∆x. Then, Eq. (11) leads to:
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Alternatively, Qc can be expressed as follows:

Qc = Q s −
∆x2

24


d2Q
dx2


−

∆x4

1920


d4Q
dx4


− · · · −

2∆xn−1

n!


1
2

n dn−1Q
dxn−1


(13)

where n is assumed to be an odd number. This shows that the cor-
rection is only required when the scheme is third order (n = 3)
accurate or higher, otherwise Qc = Q s (e.g., n = 2). Thus, the com-
plete correct form of the higher order reconstruction of Q (x) using
Q s contains additional terms on every even derivative:
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Specifically, as n = 2, the above is reduced to the following form
because of Qc = Q s, as shown below:

Q (x) = Q s +
dQ
dx

(x − 0.5∆x) +
1
2!

d2Q
dx2

(x − 0.5∆x)2. (15)

The above reduces to exactly the same form as in QDS-2N [5].
Next, referring to Fig. 2, the outgoing flux value of average

conserved quantity successfully moving from the source cell into
the destination cell (denoted by Q tr ) is:
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where the bounds of integration are XL = ∆x− u∆t and XR = ∆x.
Now, the transition of mean values Q tr can be used to calculate

particle properties. Assigning the flux out of average conserved
propertiesQ 1tr ,Q 2tr andQ 3tr as themass,momentum, and energy,
respectively, the resultingQDS particle properties for particle J are:

mJ =
Q 1trWJ
√

π
,
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Fig. 3. Flowchart describing QDS particle computation with gradient inclusion.
To calculate the average value of conserved property for higher
order reconstruction, it is important how the flux limiting is cou-
pled. According to the value of conserved property Q (x) (see
Eq. (10)), the gradient of Qc is defined in flux limiting during the
reconstruction process. In each cell, we employ the monotonized
central difference (MC) limiter to the effective gradients of con-
served properties, as described below:
dQ
dx


=


dQ
dx


F
φ (θ) (18)

φ (θ) = max

0,min


2,

θ + 1
2

, 2θ


(19)

where φ is the equivalent flux limiter and F is the gradient calcu-
lated using forward differences. The θ is the ratio of the first order
gradient calculated using forward and backward differences:

θ =


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
B
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F
. (20)

Therefore, an alternate representation of the variation of Q (x) over
space can be:

Q (x) = Qc +
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Fig. 4. Two-dimensional motion of a single QDS particle showing ‘‘sub-particle’’
contributions.

2.3. 1D flux calculation and implementation

In QDS simulations, we require flux from a volume to another
volume. Since fluxes are split, the quantities of the fluxes depend
entirely on the region from which they originated. The flux
calculation is described as a flowchart in Fig. 3, and summarized
briefly as follows:

1. The gradients of conserved properties Q are first calculated
using standard finite difference approximations in each cell i. For
example, for a 5th order accurate reconstruction, onemight use the
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Fig. 5. Initial conditions of shock–bubble interaction problem.
Fig. 6. Shock–bubble Schlieren image with 1700×500 cells at time of 0.2. QDS 2nd order (a) 2N schemewith van Leer’s limiter, (b) N2 scheme, and (c) 2nd order TVD result
presented in [8] using the same resolution.
stencils like:
dQ
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2. For each QDS particle:

a. Calculate the approximate particle velocity based on the current
cellQ s, which should give the same particle velocity as 1st order
QDS.

vJ =
Q s2
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+

 2R
Cv

2

Q s3

Q s1
−

1
2


Q s2

Q s1

2
 1

2

qJ . (23)



Y.-J. Lin et al. / Computer Physics Communications 184 (2013) 2378–2390 2383
Fig. 7. Zoom of Schlieren image of shock–bubble problem at time 0.2; (a) QDS N2 schemewith 300×100 cells; (b) QDS 2N schemewith 300×100 cells; (c) QDS 2N scheme
with 450 × 150 cells; (d) QDS 2N scheme with 600 × 200 cells.
Fig. 8. The initial conditions for the first problem of Euler-four-shock interaction.

b. Calculate the integral bounds XL and XR:

If V > 0,

XR = ∆x − u∆t
XL = ∆x


,

otherwise

XR = 0
XL = u∆t


. (24)

c. Calculate the flux out values of average conserved properties
Q tr of particles to successfullymove into the destination region.
d. Calculate the particle properties based on the average values
Q tr .

e. Calculate the fluxes of conserved properties to neighboring cells
following the standard QDS algorithm [5].

2.4. 2 D flux calculation and implementation

Multi-dimensional extension is performed using the same prin-
ciple applied for a one-dimensional reconstruction. The variation
of conserved quantity Q (x, y) over two dimensional space is as-
sumed to be:

Q (x, y) = Qc +
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Fig. 9. Zoom of density contour line of Euler-four-shock problem. Comparing the second-order QDS N2 solver (a) using 100× 100 grids with MC limiter, (b) 2N solver using
100 × 100 grids, (c) 200 × 200 grids, and (d) 300 × 300 grids with MC limiter at time of 0.4.
The subsequent cell centered value of Qc is:
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Following this, the average value of conserved quantity in the
region bounded by [XL, YB] − [XR, YT ] is formulated as:
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where YT and YB are the bounds of integration in y direction.
Since the average requires bounding regions in both transla-

tional directions, application of splitting (as applied to TDEFM
to improve computational efficiency) is impossible, and the full
QDS-N2 number of particles (i.e. 9 when 3 particles are used per
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Fig. 10. Density contour lines of Euler-four-shock problem. (a) The 2nd order TVD–MUSCL∗ scheme. (b) The third-order QDS N2 scheme used 1000 × 1000 grids with MC
limiter at time of 0.8. (c) The third-order QDS 2N scheme used 1000 × 1000 grids with MC limiter.
∗Source: Taken from Cada [8] using 1000 × 1000 points, CFL = 0.8.
direction, 16 for 4, etc.) are required for a complete flux computa-
tion. Previous extensions required only QDS-2N particles. Unlike
the one-dimensional reconstruction, each particle carries three
separate fluxes (for three different destination cells) and so any
single QDS particle possesses three ‘‘sub-particles’’ based on differ-
ent integral bounds. This concept is demonstrated in Fig. 4, show-
ing each unique sub-region (A–C). The area of the sub-region A is
u ·v ·dt2 as described earlier in Section 2.1 for the QDS-2Nmethod.

3. Results and discussion

In this section, we present four test cases for comparing the
QDS-N2 and the QDS-2N schemes that are hereafter referred to as
N2 and2N, respectively. These four test cases include shock–bubble
interaction, Euler-four-shock interaction, Euler-four-contact in-
teraction and advection of vortical disturbances. The major dis-
cussions focus on the time cost and accuracy between the two
schemes in two-dimensional problems.
3.1. Shock–bubble interaction

The strength of correct multi-dimension reconstruction is
demonstrated in a two-dimensional shock/bubble interaction
problem [8]. The initial conditions for this problem are shown in
Fig. 5. The simulation calculates a shock wave, moving from left
to right with a velocity of Mach number 2.85 in an ideal, inviscid
gas and interacting with a bubble at x = 0.3. The results are pre-
sented with the snapshot at t = 0.2. The results of the numerical
schlieren (gradients of density) are presented in Fig. 6 for various
QDS schemes and the TVD scheme on a grid of 1700 × 500 cells.
The application of correct multi-dimensional reconstructions re-
sults in a relatively high resolution of the circulation and reflected
shock located at x = 0.6.

Fig. 7 displays twoQDS schemeswith different numbers of cells.
We compare the N2 scheme with 300 × 100 cells (Fig. 7a) against
the 2N scheme (Fig. 7b–d) by using 300 × 100, 450 × 150, and
600 × 200 cells. For the sake of comparison, the limiter for each
simulation is themonotonized central (MC) limiter. In Fig. 7a and b,
the difference in resolution is clear despite the fact that both these
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Fig. 11. The initial conditions for the second problem of Euler-four-contact
interaction.

Fig. 12. Density profile of the four contacts problem for the second-order TVD–
MUSCL method.
Source: Taken from [8] using 1000 × 1000 cells at time 0.8.

schemes employ the same number of cells. As the number of cells
employed by the 2N scheme increases (shown up to 600 × 200
cells here), the results gradually approach those of the N2 scheme
with relatively few cells (1/4). Obviously, the multi-dimensional
computation (N2 scheme) achieves higher accuracy than the 2N
scheme.

Further, we consider the computation time required by each
scheme in this case. The N2 scheme is true-directional, in that
each possible combination of discrete velocity must be considered
(nine instances with three discrete velocities per direction), while
the 2N method employs approximate dimensional extension
and only requires six discrete velocity computations in a two-
dimensional simulation. Moreover, for each particle, three space-
averaging computations are required for each fraction falling into
separate destination cells. Therefore, the N2 scheme requires more
computation time for the same number of cells. The computation
time of the two solvers are summarized in Table 1. According
to these data, the N2 extension of QDS requires approximately
three times the computation time as compared to that of the
original 2N scheme for the same number of cells. However, for any
given degree of accuracy, we find that the N2 scheme provides an
increase in computational efficiency of almost three times (300 ×

100 vs. 600 × 200 for 2N vs. N2). Thus, the application of the N2

scheme is justified over that of the 2N scheme for high-resolution
solutions.
Fig. 13. Density contour obtained fromQDSN2 solver (a) and 2N solver (b) by using
1000×1000 cells, 2nd ordermethodwithMINMOD limiter at a time of 0.8. The CFL
number is 0.5. Level from 0 to 2.4 at 0.05 interval of line.

3.2. Euler-four-shock interaction

This test case was introduced in Salichs [9], which computed
the numerical solution employing the piecewise hyperbolic
method-Marquina’s flux formula (PHM-MFF) and power PHM-MFF
schemes. The test problem is initially divided into four quadrants
sharing a common corner at 0.75 and 0.75 in the domain [0, 1] ×

[0, 1], as illustrated in Fig. 8. These quadrants initially have the
following different but uniform conditions:

(ρ, u, υ, p)

=



(1.5, 0, 0, 1.5), [0.75, 1] × [0.75, 1] (A)
(0.5323, 1.206, 0, 0.3),

[0, 0.75) × [0.75, 1] (B)
(0.138, 1.206, 1.206, 0.029),

[0, 0.75) × [0, 0.75) (C)
(0.5323, 0, 1.206, 0.3),

[0.75, 1] × [0, 0.75) (D).

(28)

Fig. 9 shows four results of a comparison between the 2N and
N2 solvers at the time of 0.4. The Courant–Friedrichs–Lewy (CFL)
factor is set as 0.5. We compare the results of the two QDS solvers
using 100×100 to 300×300 cells. As can be seen, the result of the
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Fig. 14. Density contour obtained from QDS-2N solver with 5 particles (a) and 9 particles in each direction (b); QDS-N2 solver with 5 particles (c) and 9 particles in each
direction (d) by using 1000 × 1000 cells, 2nd order method with MINMOD limiter at time of 0.8. The CFL number is 0.5. Level from 0 to 2.1 at 0.05 interval of line.
Table 1
Comparison of computational expenses for QDS schemes using 2N
and N2 dimensional reconstruction.

Number of cells QDS scheme
2N (min) N2 (min)

300 × 100 8.41 23.15
450 × 150 28.9 78.3
600 × 200 68.56 183.6
1000 × 500 478.4 1282.6

N2 solver obtained using a coarse grid (100× 100 cells) is only ap-
proached by the 2N solver when employing considerably fine grids
(300 × 300 cells). Furthermore, the result that we obtained using
theN2 solver on a computational grid of 1000×1000 cells is similar
to that obtained using the total variation diminishing–monotone
upstream centered schemes for conservation laws (TVD–MUSCL)
scheme [8] (see Fig. 10a).

An investigation of the computational expense of each scheme
showed that the N2 solver takes approximately four times longer
to complete the simulation than the 2N solver. This comparison
of computational expense is summarized in Table 2. The increase
in computational time with the refinement of the computational
grid is due to the constant ‘‘kinetic’’ CFL condition that we employ,
Table 2
QDS scheme time cost in Euler-4-shocks interaction case.

Number of cells QDS solvers
2N N2

1000 × 1000 13.29 h 55.6 h
100 × 100 45 (s) 189 (s)
200 × 200 375 (s) 1520 (s)
300 × 300 1307 (s) 5199 (s)

which is defined as follows:

CFL = Max


√

u2 + 3 ∗
√
RT


∗ dt

dx

 ,


√

υ2 + 3 ∗
√
RT


∗ dt

dy

 . (29)

This basically ensures that particles in free flight do not travel
further than the adjacent cells. Although the result takes more
time to compute using the N2 solver, the accuracy is considerably
better than that of the 2N solver; in fact, it is not clear that the 2N
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Fig. 15. Density contour obtained from QDS-N2 solver using (a) 2000 × 2000 and
(b) 3000 × 3000 cells, 2nd order method with MINMOD limiter at time of 0.8. The
CFL number is 0.5. Level from 0 to 2.1 at 0.05 interval of line.

solverwill ever approach the solution obtained using theN2 solver,
irrespective of the number of cells employed.

3.3. Euler-four-contact interaction

This test case involves the Euler-four-contact interaction prob-
lem defined by Schulz-Rinne, Collins, and Glaz [10]. The same test
casewith a different higher-ordermethod is also presented in [11].
This Riemann problem briefly shows four constant states consist-
ing of four quadrants and two shocks generated clockwise at the
origin. The contact point is centered about the location (x, y) =

(0.5, 0.5). A representation of the initial conditions of the flow do-
main is illustrated in Fig. 11. The initial flow condition is imposed
by four difference shockwaves and satisfies the following relation:

(ρ, u, υ, p) =



(1, 0.75, −0.5, 1),
[0.5, 1] × [0.5, 1] (A)

(2, 0.75, 0.5, 1),
[0, 0.5) × [0.5, 1] (B)

(1, −0.75, 0.5, 1),
[0, 0.5) × [0, 0.5) (C)

(3, −0.75, −0.5, 1),
[0.5, 1] × [0, 0.5) (D).

(30)
Fig. 12 shows the numerical result of the second-order
TVD–MUSCL method for a density contour profile on a 1000 ×

1000 uniform grid, taken from [8]. For the QDS scheme, the result
obtained at the time of 0.8 on a 1000 × 1000 uniform grid can be
seen in Fig. 13. Two results are shown for the second-ordermethod
with theN2 and the 2N solvers. Both enforce a constant CFL number
of 0.25. The contours of density are presented with levels of 0–2.4.
In this case, a shock wave is generated and spirals from the contact
point in an unsteady fashion. By comparing the two figures,we find
that both the N2 and the 2N solver results are symmetrical and that
the result obtained using the N2 solver is closer to the TVD–MUSCL
result presented in Fig. 12. As in the previous test cases, in the
current test case, the accuracy of the N2 method is superior to that
of the 2N method. In this instance, however, the essentially non-
oscillatory weighted (WENO) results [11] are still superior to the
N2 results; this can be attributed to the small stencil employed for
the estimation of the higher-order gradients or to the flux splitting
employed and the inevitably associated numerical dissipation; this
deserves further investigation.

Further,wehave compared the timings and the accuracy for this
test problem with different N for both QDS-2N and QDS-N2 with
1000×1000 cells since both schemes scale differently with N . The
results are essentially the same as those obtained for N = 3 when
N increases to 5 or 9 for both the abovementioned methods, as
shown in Fig. 14. This is reasonable since the integration of a Gaus-
sian function with a polynomial, having two or fewer degrees, be-
comes exact, if the number of Gaussian–Hermite integration points
is 3 or more. Expectedly, the computation time increases roughly
3 times from N = 3 to N = 9 for both the methods. Further,
Fig. 15 shows the density contours when the grid resolution in-
creases from 1000 × 1000 cells to 2000 × 2000 and 3000 × 3000
cells. In brief summary, for both the QDS-2N and the QDS-N2 meth-
ods for solving the Euler equation, accuracy effectively increases
with increasing grid resolution, while it is essentially the same
when N ≥ 3.

3.4. Advection of vortical disturbance

The final test case consists of an inviscid unsteady flow inwhich
a vortex is located at the center of a uniform domain (xc, yc). The
mean flow for this case uses Mach number M∞ = 0.1. This case
tests the capabilities of the QDS scheme as compared to the exact
solution taken fromVisbal and Gaitonde [12] in order to accurately
advect vortical disturbances. This problem also appears in Tutkun
and Edis [13]. The initial conditions are as follows:

u = U∞ −
C(y − yc)

Rc
2 exp

−r2

2
, υ =

C(x − xc)
Rc

2 exp
−r2

2

p − p∞ =
ρC2

2Rc
2 exp(r2), r2 =

(x − xc)2 + (y − yc)2

Rc
2

(31)

where u, υ , and Rc determine the Cartesian velocity components
and the vortex core radius, respectively. C is the vortex strength
parameter, defined as follows:

C
(U∞Rc)

= 0.02. (32)

The density is assumed to be constant, and the vortex radius Rc
is taken to be 1.0 in this case.

Fig. 16 shows the vorticity contours of the N2 and the 2N solvers
with 800×800 cells using the second-ordermethod. The limiter in
this case is the monotonized central (MC) method. A constant CFL
number (0.1) is enforced such that the non-dimensional time step
size is ∆tU∞/Rc = 4.0×10−3. The result of the N2 solver is essen-
tially the same as the exact solution and shows a perfect circular
shape of the vorticity distribution while that of the 2N solver does
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Fig. 16. Vorticity magnitude contours compared (a) exact solution and two result using 2nd order (b) QDS 2N solver and (c) QDS N2 in 800 × 800 uniform cells. All results
are taken from CFL number to 0.1.
not. The result of the 2N solver shows more significant dissipation
and anisotropy errors as compared to that of the N2 solver. Fig. 17
shows the vorticity distributions of various simulations along a
horizontal line (at y = 8.0) passing through the vortex center in
Fig. 16. We have compared the results obtained by using the two
solvers (2N and N2) on a uniform grid containing three different
levels of resolution (160×160, 800×800, and 1600×1600 cells).
The result obtained using theN2 solver in the case of 800×800 cells
is in excellent agreement with the exact solution and radial sym-
metry, while the results obtained using the 2N solver are far from
the correct solution even in the case of 1600×1600 cells. Thus, the
influence ofmulti-dimensional reconstruction is significant for the
QDS, particularly on thenumerical accuracy of the solution for a gas
flow field as in the current problem.

The investigation of the computational expense again reveals a
trade-off between computational time and accuracy. The computa-
tional time of the N2 solver in terms of calculation time is approxi-
mately 3∼4 times less than that of the 2N solver for the same
computational grid, although the accuracy of the former is con-
siderably better than that of the latter. This leads to a question of
whether the use of the N2 method is worthwhile or not. Thus, we
compare the results obtained using the N2 method using 160×160
cells with those obtained using the 2N method using 1600× 1600
cells, as shown in Fig. 17. The results show that they are essen-
tially the same for the same level of accuracy; thus, the proposed
N2 solver is approximately 25 times faster than the 2N solver in
this case. Once again, we are unsure whether the 2N result will
ever converge to the analytical solution, thereby justifying the ap-
plication of the N2 solver and its proposed multi-dimensional re-
construction of QDS particles.

4. Conclusion

In this paper, a true-direction multi-dimensional higher-order
extension of the QDS method, referred to as the N2 solver, was in-
troduced and verified using various test cases. The results showed
that the N2 solver was considerably more accurate than the 2N
solver in general. It appeared that the N2 solver (i) improved
the solution in the flows unaligned with the computational grid
and (ii) significantly reduced the amount of numerical dissipation
within the solution. Despite the additional computational expense
associated with the N2 solver for the same computational grid, for
any given degree of accuracy, the proposed solver was found to be
several times (up to 25 times in the case of the advection of vorti-
cal disturbances) faster than the original 2N method. Of particular
interest was the test case of the advection of vortical disturbances,
where the N2 method improved the radial symmetry of the result
approaching the analytical solution, while the 2N method failed
to converge to the analytical solution even when a very fine grid
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Fig. 17. The vorticity profiles along the central line passing through the vortex.
The comparison contained the exact solution (blue squeal-symbol line), the QDS N2

solver using 160 × 160 cells (red line), 800 × 800 cells (black dash-dot line), and
2N solver using 800 × 800 cells (purple long-dash line), 1600 × 1600 cells (green
dotted line). Two solvers are computed in the MC limiter and CFL = 0.1 at time
8.0. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

was used. In the cases of both the QDS-2N and QDS-N2 methods
for solving the Euler equation, accuracy effectively increases with
increasing grid resolution, while it was essentially the same when
N ≥ 3 because the integration of the Gauss functionwith a polyno-
mial (degree ≤ 2) using the Gauss–Hermite integration technique
became exact.

A significant improvement on the errors associated with the
flow misalignment with the computational grid was demon-
strated through numerical experiments with the proposed multi-
dimensional reconstruction employed by the N2 method. The
method demonstrated a promising improvement over the 2N ex-
tension for future applications where resolution was critical. How-
ever, an analytical analysis of the difference between the two
schemes is necessary to further reveal the details; such an anal-
ysis is currently in progress and will be reported elsewhere in the
near future. Moreover, further research is focused on the exten-
sion of the method to efficient parallel computation for large-scale
problems using both conventional (MPI) parallelization and accel-
eration using graphics processing units (GPUs) by taking advantage
of the highly local nature of the QDS scheme.
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