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Abstract—Due to the rapidly increasing design complexity
in modern IC designs, metal-only engineering change order
(ECO) becomes inevitable to achieve design closure with a low
respin cost. Traditionally, preplaced redundant standard cells
are regarded as spare cells. However, these cells are limited by
predefined functionalities and locations, and they always consume
leakage power despite their inputs being tied off. To overcome the
inflexibility and power overhead, a new type of spare cells, called
metal-configurable gate-array spare cells, are introduced. In this
paper, we address a new ECO problem, which performs design
changes using metal-configurable gate-array spare cells. We first
study the properties of this new ECO problem and propose a
new cost metric, aliveness, to model the capability of a spare
gate array. Based on aliveness and routability, we then develop
two ECO optimization frameworks, one for timing ECO and the
other for functional ECO. Experimental results show that our
approach delivers superior efficiency and effectiveness.

Index Terms—Engineering change order, gate array, mixed
integer linear programming

I. Introduction

DUE TO THE rapidly growing design complexity, some
timing and functional failures might not be detected until

late design stages. To remedy these late-found failures in a
short turn-around time and with a low respin cost [1], metal-
only engineering change order (ECO) realizes incremental de-
sign changes by only metal-layer modifications. Consequently,
metal-only ECO becomes an essential process in the modern
IC design flow.

Metal-only ECO has been extensively studied in recent
literature [2]–[12]. To enable metal-only ECO, these works use
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Fig. 1. Metal-configurable gate-array spare cells. (a) Spare array. (b) Pre-
defined cell dimensions. (c) Configuring metal layers to realize a specific
functionality.

preinserted redundant standard cells as spare cells. To avoid
gate floating, the inputs of these redundant cells should be
connected to tie cells for ESD reliability. Once a design failure
is detected, proper spare cells are activated by rewiring their
inputs and outputs. However, the weaknesses of using standard
cells as spare cells are twofold: First, these standard spare
cells are limited in functionality, quantity, and location. This
inflexibility may result in unfixed failures due to a shortage
of proper spare cells. Second, these standard spare cells and
tie cells always draw leakage current. Since leakage is of
particular importance not only to hand-held mobile devices but
also to standby circuit operations, the power overhead limits
the allowable number of inserted spare cells.

To overcome the inflexibility and power overhead issues,
a new type of spare cells, called metal-configurable gate-
array spare cells, are proposed [14]–[18]. The gate-array spare
cells are developed by combining gate arrays and structured
ASICs [19]. As shown in Fig. 1, a block of gate-array spare
cells, named a spare array, is an array of tiles. Each tile is
composed of unwired transistors, which consume no power.
A designated functionality can be formed by configuring the
metal layers on top of several consecutive tiles. Hence, a
spare array can provide a flexible resource to realize ECO
for neighboring gates.

In a related work [20], Chen et al. propose reconfig-
urable decoupling capacitance (decap) cells which can be
programmed as functional cells. These configurable decap
cells are inserted according to IR drop consideration, and thus
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they are separated instead of clustered as arrays. However,
a complex function may be realized by connecting several
decap cells. As shown in Fig. 2(a), the internal connection
among decap cells induces unwanted timing degradation. On
the other hand, as shown in Fig. 2(b), selecting consecutive
tiles in a spare array can realize a required function without
timing degradation. They greedily fix timing violations from
the gate with the maximum loading capacitance by configuring
extra decap cells as resized gates or buffers. They do not have
a global view to manage all decap cells, thus leaving some
timing violating paths unfixed. Consequently, their greedy
heuristic is suitable for small and local revisions.

Based on the above facts, using metal-configurable gate-
array spare cells to accomplish ECO is practical and promising
for modern IC designs. In addition, timing satisfaction is
essential for ECO. In this paper, we first introduce a new
problem of timing ECO optimization using metal-configurable
gate-array spare cells, where timing violations are fixed by
gate sizing and buffer insertion, implemented by configuring
spare arrays.

This new ECO problem is quite different from the
conventional one. There are two issues to consider for spare
arrays: fragmentation and congestion. A fragmented spare
array is adverse to ECO because unabutted free tiles may not
form the required function. On the other hand, the input and
output pins of the allocated cells within a spare array should
be connected to external cells, so a high pin density within a
spare array and long input/output nets may incur congestion.
Hence, when realizing ECO using spare arrays, we shall
keep spare arrays alive, the free tiles should be capable of
implementing as many functions as possible, and routable,
the congestion should be well-controlled.

To fully utilize the capability of spare arrays, we consider
aliveness, routability, and timing satisfaction in our timing
ECO optimization framework. We collect gates on timing
violating paths and check if there exist gates whose timing
can be improved. Most timing critical gates are extracted from
these improvable gates. With a global view, we insert buffers
or size the critical gates by appropriate spare arrays with
aliveness, routability, and timing considerations. Finally, spare
arrays are further packed to reduce wirelength. This procedure
is repeated until no timing violations or no fixable gates can
be found. We solve the spare array assignment and packing
by mixed-integer linear programming (MILP).

On the other hand, functional rectification is prevalent in
ECO. Based on the functional flexibility of spare arrays,
we extend our MILP formulation to functional ECO opti-
mization. Consider a set of ECO patches that describe the
logic difference between the original design and the revised
specification. We extract available spare arrays and generate
technology remapping candidates for each patch. We then
adequately configure spare arrays to implement these patches
with aliveness and routability consideration. Similarly, we
solve the spare array assignment and packing of functional
ECO optimization by MILP.

Our contributions are summarized as follows.
1) We address new ECO problems. To overcome the in-

flexibility and power overhead of using standard cells

Fig. 2. Reconfigurable decap cells versus metal-configurable gate-array
spare cells. Consider that the shaded AND cell is required to be resized by
two decap cells or two tiles. (a) Additional wiring between decap cells incurs
extra delay. (b) Tiles in a spare array are adequately selected to realize the
gate sizing.

as spare cells, we address new problems of timing and
functional ECO optimization using metal-configurable
gate-array spare cells.

2) We model the aliveness of spare arrays. To avoid
fragmentation, we shall keep spare arrays alive. To
achieve this goal, we propose the aliveness metric to
model the capability of each spare array by a piece-
wise linear function, which can be incorporated into our
MILP.

3) We adopt iterative MILP for timing ECO optimization.
It might not be feasible to consider all gates on tim-
ing violating paths in one single MILP for large-scale
designs. In addition, the estimated timing improvement
may not be accurate enough, and thus more than one
MILP may be needed. As a result, we use a set of
independent and small MILPs to fix timing critical gates.
Experimental results show that this reduction delivers
superior efficiency and effectiveness.

4) We extend our MILP formulation to functional ECO
optimization. Because of functional flexibilities, spare
arrays are suitable for functional ECO optimization. Our
MILP can handle spare array assignment and packing
well not only for timing but also for functional ECO
optimization.

5) We can simultaneously consider standard spare cells
and spare arrays. In addition to spare arrays, a de-
sign typically contains standard spare cells released
from earlier ECO runs or inserted along with spare
arrays. Simple ECO tasks can be done by spare cells,
while difficult ones can be realized by spare arrays. A
standard spare cell can be viewed as a special spare
array. Through adequate modifications, our framework
is readily extended to handle a mix of standard spare
cells and spare arrays.

The remainder of this paper is organized as follows.
Section II describes the cost metrics (including aliveness)
and problem formulation for timing ECO optimization. Sec-
tion III gives the generic and reduced MILP formulations
for timing ECO using metal-configurable gate-array spare
cells. Section IV presents our timing ECO optimization
framework based on iterative MILP and demonstrates how
to handle a mix of standard spare cells and spare arrays.
Section V extends to functional ECO optimization. Section VI
shows our experimental results. Section VII concludes this
paper.
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II. Problem Formulation and Cost Metrics

In this section, we introduce spare arrays, detail the cost
metrics, and give the problem formulation of timing ECO
optimization.

A. Spare Arrays

By combining gate arrays and structured ASICs [19], metal-
configurable gate-array spare cells are proposed to provide
a flexible resource to realize metal-only ECO [14]–[18]. As
shown in Fig. 1(a), a spare array is an array of tiles. Each tile
(base cell) is composed of unwired transistors, which consume
no power. A designated functionality is formed by configuring
the metal layers on top of several tiles.

To accommodate a sufficient and flexible resource of spare
cells for metal-only ECO, spare arrays are scattered over
the layout at the placement stage and/or filled into empty
spaces after the placement stage [18]. Furthermore, to facilitate
timing/power characterization and mask generation, the di-
mension of a certain cell type is predefined. Since an irregular
shape might incur performance degradation, the shape of a
functional cell is typically regular. In addition, to keep the
same driving strength, a functional cell generated by spare
array tiles is somewhat slower and less area-efficient than a
standard spare cell. Even so, if such a functional cell is close
to a gate that should be fixed, this cell is definitely faster than
a standard spare cell far away because interconnect dominates
gate delay. On the other hand, tie cells are necessary when
standard spare cells are used; their area overhead should be
considered as well. Hence, the area deficiency of spare arrays
is minor.

To facilitate metal-only ECO synthesis, a spare array cell
library is constructed. As mentioned above, the cell dimension
in current technology is set to multiple consecutive tiles in a
single row [Fig. 1(b)]. For example, as shown in Fig. 1(c),
an inverter uses one tile, while a flip-flop uses six tiles. In
addition to the dimension, a spare array cell library also stores
timing/power characteristics and layout of each cell type. The
timing model is based on Synopsys’ Liberty library [21]. The
delay and output transition of a cell depend on its input transi-
tion and output capacitance, and these values are characterized
by lookup tables. The output capacitance of a cell includes its
output-pin capacitance, the input-pin capacitance of its fanout
gates, and the wire loading. The wire loading is proportional
to the wirelength of its output net.

B. Aliveness

We propose a new metric, aliveness, to model the capability
of a spare array. Given a spare array cell library which contains
m different sizes of functional cells; each size of the functional
cells occupies si tiles. Consider a spare array with k free
tiles. Let zi denote the number of cells of size si that are
implemented by this spare array, zi ∈ N. We have

s1z1 + s2z2 + · · · + smzm ≤ k

zi ≥ 0, ∀1 ≤ i ≤ m. (1)

The linear equation s1z1 + s2z2 + · · · + smzm = k defines a
hyperplane in the m-dimensional space. The distance between

Fig. 3. Aliveness. The aliveness of a spare array is modeled by the volume
of the polytope defined by the hyperplane and the three axes.

the origin to the intersection point of this hyperplane and
axis zi is k/si. The hyperplane and m axes form a convex
polytope. Each integer point inside the polytope represents
a feasible combination of cell sizes that the spare array can
implement. Fig. 3 shows an example for a library with three
different cell sizes. Since a spare array is desired to be capable
of implementing as many functions as possible, we model
the aliveness of a spare array by the total number of integer
points within this polytope. Furthermore, we use the volume
of this polytope to approximate this number. Hence, aliveness
is defined as follows.

Definition 1: The aliveness of a spare array is defined as
the volume of the polytope given by inequality (1).

C. Routability

Congestion may incur unwanted detours, thus making the
aforementioned wire loading computation inaccurate. Hence,
it is necessary to consider routability during ECO. First,
the layout is divided into uniform and non-overlapping bins
to construct the routing grid graph. In the graph, a node
represents a bin, and an edge connects each pair of adjacent
bins. Each edge is associated with a routing capacity, which
is the number of routing tracks available for nets passing
through the corresponding bin boundary. The routability of an
edge is computed by the difference between its capacity and
the number of occupied tracks (density), while the routability
of a bin is thus the total routability values on the edges
of its boundaries. We adopt the routing model proposed by
Hsu et al. in [24], since it is efficient yet sufficiently accurate.
Each net is first decomposed into two-pin nets by FLUTE [22]
which is a fast and accurate rectilinear Steiner minimal tree
(RSMT) algorithm. Each two-pin net is then routed by upper-L
and lower-L patterns with 50% probability for each direction
[Fig. 4].

D. Problem Formulation

Different from standard spare cells, we shall avoid frag-
mentation and congestion when using spare arrays. Hence, we
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Fig. 4. Routability. (a) One net is decomposed into two-pin nets by
FLUTE [22]. (b) Each two-pin net is routed by upper-L and lower-L patterns.
Each direction has 50% probability.

consider aliveness and routability in our problem formulation.
In addition, timing satisfaction is essential for ECO. In this
paper, consequently, we first focus on timing ECO optimiza-
tion. Typically, timing violations are fixed by gate sizing and
buffer insertion. Gate sizing is an operation that changes the
driving strength of some cell on a timing violating path, while
buffer insertion is an operation that inserts a buffer along a
timing violating path.

The timing ECO problem is thus formulated as follows.
Problem: Given a placed design, timing violating paths, the

placement of spare arrays and the corresponding cell library,
select tiles from spare arrays to perform gate sizing and/or
buffer insertion such that the timing constraint is satisfied, and
the aliveness and routability of spare arrays are maximized.

III. Single MILP Formulation for Timing ECO

In this section, we give two mixed integer linear pro-
gramming (MILP) formulations of spare array assignment for
timing ECO using metal-configurable gate-array spare cells.

A. Generic Single MILP

First of all, we show the generic single MILP formula-
tion of spare array assignment for timing ECO using metal-
configurable gate-array spare cells. Consider all timing violat-
ing paths and their related paths (the paths that fork or join
with some timing violating path). The notation used in this
MILP formulation is as follows.

1) G′: set of gates on all timing violating and their related
paths.

2) S: set of spare arrays, a spare array means a maximal
set of consecutive free tiles in a single row.

3) H : set of timing violating paths and their related paths.
4) Mi: set of fanin gates of gate i.
5) sb

i,j: required size of the inserted buffer if gate i is
assigned to spare array j.

6) s
g
i,j: required size of the sized gate if gate i is assigned

to spare array j

7) kj: the number of free tiles of spare array j.
8) x0

i : 0-1 variable indicating if gate i remains unmodified.
9) xz

i : 0-1 variable indicating if gate i is a buffer and
bypassed.

10) xb
i,j: 0-1 variable indicating if gate i is assigned to spare

array j and buffer insertion is performed.
11) x

g
i,j: 0-1 variable indicating if gate i is assigned to spare

array j and gate sizing is performed.
12) aj: aliveness of spare array j.
13) rb

i,j: routability by assigning gate i to spare array j and
performing buffer insertion.

14) r
g
i,j: routability by assigning gate i to spare array j and

performing gate sizing.
15) rj: routability contributed by spare array j.
16) trh: timing requirement of path h.
17) d0

i : original delay of gate i.
18) dz

i : composed delay of gate i if gate i is a bypassed
buffer.

19) db
i,j: composed delay of gate i by assigning gate i to

spare array j and performing buffer insertion.
20) d

g
i,j: composed delay of gate i by assigning gate i to

spare array j and performing gate sizing.
21) pd

j : the pin density bound of spare array j.
22) pi: pin count of gate i.
23) α, β: user-specified parameters used to trade between

aliveness and routability. α + β = 1.
Based on the above notation, the generic single MILP

formulation can be written as follows:

maximize α
∑

j∈S

aj + β
∑

j∈S

rj

subject to aj = f (kj −
∑

i∈G′
(xb

i,js
b
i,j + x

g
i,js

g
i,j)), ∀j ∈ S (2)

rj =
∑

i∈G′
(xb

i,jr
b
i,j + x

g
i,jr

g
i,j), ∀j ∈ S (3)

∑

i∈G′
(xb

i,js
b
i,j + x

g
i,js

g
i,j) ≤ kj, ∀j ∈ S (4)

x0
i + xz

i +
∑

j∈S

(xb
i,j + x

g
i,j) = 1, ∀i ∈ G′ (5)

∑

i∈G′
(2xb

i,j + x
g
i,jpi) ≤ pd

j , ∀j ∈ S (6)

∑

j∈S

(xb
m,j + x

g
m,j) +

∑

j∈S

x
g
i,j ≤ 1, ∀i ∈ G′, m ∈ Mi (7)

∑

i∈h

(x0
i d

0
i + xz

i d
z
i +

∑

j∈S

(xb
i,jd

b
i,j + x

g
i,jd

g
i,j)) ≤ trh, ∀h ∈ H (8)

x0
i , x

z
i , x

b
i,j, x

g
i,j ∈ {0, 1}, ∀i ∈ G′, j ∈ S. (9)

The objective function is to maximize the weighted sum
of aliveness and routability. If the input design is short of
free tiles in spare arrays or will undergo many ECO runs, we
prefer a larger α; if the input design is highly congested, we
prefer a larger β. Equations (2) and (3) define the aliveness
and routability of each spare array, respectively. Based on
Definition 1, the aliveness of a spare array is defined by
the volume of the polytope formed by inequality (1). To
incorporate the volume computation into our MILP, we use
a piece-wise linear function f to approximate the volume.
Since the input and output pins of the allocated cells within
a spare array should be connected to external cells, long
input/output nets and a high pin density within a spare array
may incur congestion. The routability rj of a spare array j

is used to optimize the total congestion values induced by its
related input/output nets. rb

i,j (respectively, r
g
i,j) is computed by

cmax − cb
i,j (respectively, cmax − c

g
i,j), where cb

i,j (respectively,
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c
g
i,j) denotes the sum of congestion values of input/output nets

induced by assigning gate i to spare array j for buffer insertion
(respectively, gate sizing), and cmax = maxi,j max(cb

i,j, c
g
i,j).

The congestion value of a net is the number of bin boundaries
crossed based on FLUTE [22], e.g., the congestion value of
the net shown in Fig. 4(a) is 6.0. Constraint (4) ensures that
the total sizes of allocated cells do not exceed the number
of free tiles for each spare array. Constraint (5) describes
that exactly one of the following options is selected for
each gate: unmodified, buffer bypassing, buffer insertion, or
gate sizing. In addition to the routability optimized by the
objective function, (6) limits the pin density of each spare
array [24]. Based on the shielding effect1 [2], (7) avoids
performing buffer insertion and/or gate sizing on directly con-
nected gates at the same time. Constraint (8) guarantees timing
satisfaction for all timing violating paths and their related
paths.

The number of paths considered in (8) is exponential
to the gate count. Hence, the generic MILP formulation is
impractical. In the subsequent subsection, we apply a reduction
technique to reduce the complexity.

B. Reduced Single MILP

In this subsection, we adopt block-based timing analysis to
reduce the MILP complexity. Most of variables used in the
reduced single MILP formulation are the same as the generic
one. We introduce the following three additional variables.

1) N: set of primary outputs or pseudo primary outputs
(flip-flops) with timing violations.

2) tri : timing requirement of gate i.
3) tai : arrival time of gate i.

Therefore, the reduced single MILP formulation can be
written as follows:

maximize α
∑

j∈S

aj + β
∑

j∈S

rj

subject to aj = f (kj −
∑

i∈G′
(xb

i,js
b
i,j + x

g
i,js

g
i,j)), ∀j ∈ S (10)

rj =
∑

i∈G′
(xb

i,jr
b
i,j + x

g
i,js

g
i,j), ∀j ∈ S (11)

∑

i∈G′
(xb

i,js
b
i,j + x

g
i,js

g
i,j) ≤ kj, ∀j ∈ S (12)

x0
i + xz

i +
∑

j∈S

(xb
i,j + x

g
i,j) = 1, ∀i ∈ G′ (13)

∑

i∈G′
(2xb

i,j + x
g
i,jpi) ≤ pd

j , ∀j ∈ S (14)

∑

j∈S

(xb
m,j + x

g
m,j) +

∑

j∈S

x
g
i,j ≤ 1, ∀i ∈ G′, m ∈ Mi (15)

tam + x0
i d

0
i + xz

i d
z
i +
∑

j∈S

(xb
i,jd

b
i,j + x

g
i,jd

g
i,j) ≤ tai

∀i ∈ G′, m ∈ Mi (16)

tai ≤ tri , ∀i ∈ N (17)

x0
i , x

z
i , x

b
i,j, x

g
i,j ∈ {0, 1}, ∀i ∈ G′, j ∈ S. (18)

1The shielding effect means that sizing a gate or inserting a buffer influences
only the delays of its fanin and fanout gates [2].

Fig. 5. (a) Single MILP versus (b) iterative MILP.

Constraint (8) in the generic MILP formulation is trans-
formed to (16) and (17). Based on block-based timing analysis,
(16) describes that the arrival time of each gate i should be
greater than or equal to the arrival time of its fanin gate
plus its composed delay. Constraint (17) guarantees that the
arrival time of the endpoint of each path satisfies the timing
requirement. It can be seen that the number of variables and
constraints considered in (16) and (17) are linear with the
number of gates and wires. However, even with the reduction
technique, our results show that the reduced single MILP
formulation still exceeds the capability of a typical MILP
solver [30].

IV. Our Timing ECO Optimization Framework

In this section, we detail our timing ECO optimization
framework.

A. Overview

We propose our timing ECO framework to achieve tim-
ing closure using metal-configurable gate-array spare cells.
To fully utilize the capability of spare arrays, we consider
aliveness, routability, and timing satisfaction in our framework.
As revealed in Section III, it might not be feasible to model
all gates on timing violating paths into one single MILP for
large-scale designs, due to the high complexity of MILP’s.
[Fig. 5(a)] Therefore, it is necessary to develop more effective
reduction techniques to reduce the number of variables and
constraints. In addition, the estimated timing improvement
may not be accurate enough, and thus the optimality cannot
be preserved and more than one MILP may be needed. As
a result, we resort to iterative MILP in our timing ECO
framework, where a set of independent and small MILPs
are computed. [Fig. 5(b)] To minimize the deviation from
the optimality, we try to reduce the number of iterations by
relaxing the timing constraints to the objective function of
MILPs. It is clear later that this approach delivers superior
efficiency and effectiveness.

Fig. 6 gives the overview of our timing ECO framework.
First, timing analysis reports timing violating paths. Second,
we collect gates on these paths and check if there exist
gates whose timing can be improved by gate sizing or buffer
insertion. Third, timing critical gates are extracted from these
fixable gates. Fourth, we assign only extracted critical gates
(instead of all gates on timing violating paths and their related
paths) to appropriate spare arrays with aliveness, routability,
and timing considerations. Fifth, spare arrays are further
packed to reduce wirelength. This procedure is repeated until
no timing violations or no fixable gates can be found.
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Fig. 6. Overview of our timing ECO framework.

B. Fixable and Critical Gate Extraction

To effectively reduce the problem size for MILP, we extract
only timing critical gates from timing violating paths. Chang
et al. propose a new metric of timing criticality—fixability—
which can accurately identify the most timing critical gates
along the timing violating paths [11]. Hence, in this paper, we
extract the timing critical gates based on fixability.

First of all, we check if there exist gates on the timing
violating paths whose timing can be improved by gate sizing
or buffer insertion. Considering a gate and a spare array, the
configuration (either gate sizing or buffer insertion) resulting
in the best timing improvement is recorded for subsequent
steps. Second, we calculate the fixability for these fixable
gates. Finally, timing critical gates are extracted from these
fixable gates based on the method proposed in [11].

To further reduce the problem size, for each investigated
gate, we consider only the spare arrays located inside its
bounding polygon. The bounding polygon defined in [2]
specifies a search region so that the spare arrays outside the
bounding polygon are negligible. In addition, the query of
spare arrays is accelerated by using R-trees [23] to efficiently
categorize the neighboring resource.2

C. Spare Array Assignment

As shown in Fig. 7, after extracting critical gates, we assign
appropriate spare arrays to perform gate sizing or buffer inser-
tion for these gates. Since we adopt iterative MILP, we relax
the timing satisfaction constraint to the objective function.
Therefore, at each iteration, the objective function of spare
array assignment is to maximize the aliveness, routability, and
timing improvement.

The complete notation used in the iterative MILP formula-
tion for spare array assignment is listed as follows.

1) G: set of critical gates.
2) S: set of spare arrays, a spare array means a maximal

set of consecutive free tiles in a single row.

2An R-tree is a height-balanced tree which is widely used for indexing
spatial objects such as points, rectangles, or polygons.

Fig. 7. Spare array assignment.

3) si,j: required size of either the sized gate or the inserted
buffer if gate i is assigned to spare array j; this value
is obtained from critical gate extraction described in
Section IV-B.

4) kj: the number of free tiles of spare array j.
5) xi,j: 0-1 variable indicating if critical gate i is assigned

to spare array j. For critical gate i, only the spare arrays
within its bounding polygon are considered.

6) aj: aliveness of spare array j.
7) ri,j: routability by assigning gate i to spare array j.
8) rj: routability contributed by spare array j.
9) ti,j: timing improvement by assigning gate i to spare

array j.
10) tj: timing improvement contributed by spare array j.
11) pd

j : the pin density bound of spare array j.
12) pi: pin count of gate i. pi = 2 if buffer insertion is

performed.
13) α, β, γ: user-specified parameters used to trade

among aliveness, routability, and timing improvement.
α+β+γ=1.

Based on the above notation, the spare array assignment
problem can be formulated as follows:

maximize α
∑

j∈S

aj + β
∑

j∈S

rj + γ
∑

j∈S

tj

subject to aj = f (kj −
∑

i∈G

xi,jsi,j), ∀j ∈ S (19)

rj =
∑

i∈G

ri,j, ∀j ∈ S (20)

tj =
∑

i∈G

ti,j, ∀j ∈ S (21)

∑

i∈G

xi,jsi,j ≤ kj, ∀j ∈ S (22)

∑

j∈S

xi,j = 1, ∀i ∈ G (23)

∑

i∈G

xi,jpi ≤ pd
j , ∀j ∈ S (24)

xi,j ∈ {0, 1}, ∀i ∈ G, j ∈ S. (25)

The objective function is to maximize the weighted sum of
aliveness, routability, and timing improvement. If the input
design is short of free tiles in spare arrays or will undergo
many ECO runs, we prefer a larger α; if the input design is
highly congested, we prefer a larger β; if the input design
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Fig. 8. Fragmented versus consecutive packing. A fragmented spare array
is adverse to ECO.

incurs large timing violations, we prefer a larger γ . Based
on our experiments, the desirable ranges of parameters are
reasonably large. Hence, we may set α = β = γ by default.
Equations (19), (20), and (21) define the aliveness, routability,
and timing improvement of each spare array, respectively.
Similar to (2), we use a piece-wise linear function f to approx-
imate the volume of the polytope formed by Inequality (1).
Similar to (3), the routability rj of spare array j is used to
optimize the total congestion values induced by its related
input/output nets. ri,j is either r

g
i,j or rb

i,j according to the
configuration recorded for assigning gate i to spare array j.
Thus, ri,j is computed by cmax − ci,j , where ci,j denotes the
sum of congestion values of input/output nets induced by
assigning gate i to spare array j, and cmax = maxi,j ci,j . The
timing improvement ti,j , relaxed from the timing satisfaction
constraint, is computed assuming the resized gate or inserted
buffer i is located at the center of spare array j. Similar to
(4), (22) ensures that the total sizes of allocated cells do not
exceed the number of free tiles for each spare array. Constraint
(23) guarantees that each critical gate is assigned to exactly
one spare array. Similar to (6), in addition to the routability
optimized by the objective function, (24) limits the pin density
of each spare array [24]. It can be seen that because only
critical gates are considered in the iterative MILP formula-
tion for spare array assignment, the problem size is greatly
reduced compared with the generic and reduced single MILP
formulations described in Section III. By introducing timing
improvement to the objective function, we can reduce the
number of iterations and thus minimize the deviation from the
optimality. Later, our results show that the number of iterations
of our iterative MILP is quite small, and the overall runtime
is short.

D. Spare Array Packing

After spare array assignment, each spare array is assigned
with a set of critical gates to which gate sizing or buffer inser-
tion will be applied. Spare array packing further determines
the actual tiles allocated for each of these critical gates with
minimum wirelength.

Since a spare array is much smaller than a bin size, different
packings do not influence routability, but affect aliveness and
wire loading. First of all, as shown in Fig. 8, if allocation is
not in continuity, there is some gap between allocated tiles.
Consecutive allocation is better in terms of aliveness, and
thus we have the following property that can be proved by
an exchange argument.

Theorem 1: There is an aliveness optimal packing with no
fragmentation.

Proof: Without loss of generality, assume a fragmented
spare array with two groups of free tiles is aliveness optimal.
These two groups have k1 and k2 free tiles, and k3 allocated
tiles are in between them. Consider a new packing for this
spare array where k3 allocated tiles are swapped with k2 free
tiles. The new packing has k = k1 + k2 free tiles. The alivenss
of the new packing is as follows.

f (k) ≥ f (k1) + f (k2). (26)

Therefore, the new packing is also aliveness optimal.
Based on the property, we adopt consecutive allocation

for spare array packing. Furthermore, we formulate an MILP
for each spare array to determine the actual allocation with
wirelength minimization. For spare array j∗, we pack the tiles
for the gates whose xi,j∗ = 1 after spare array assignment. The
notation used in the MILP formulation for spare array packing
is as follows.

1) G: set of critical gates assigned to the investigated spare
array.

2) T : set of free tiles in the investigated spare array.
3) si: the required size of gate i. si is determined by spare

array assignment, si =
∑

j si,jxi,j .
4) yi,j: 0-1 integer variable that denotes if gate i is as-

signed to tile j. When yi,j = 1, gate i occupies tiles
j, j + 1, . . . , j + si − 1.

5) wi,j: wirelength for gate i assigned to tile j. wi,j counts
the external connections induced by input/output nets
since the wirelength between tiles within the same spare
array is negligible.

Based on the above notation, the spare array packing
problem can be written as follows:

minimize
∑

i∈G

∑

j∈T

wi,jyi,j

subject to
∑

j

yi,j = 1, ∀i ∈ G (27)

∑

i∈G

j∑

k=j−si+1

yi,k = 1, ∀j = 1, . . . ,
∑

i∈G

si (28)

∑

i∈G

j∑

k=j−si+1

yi,k = 0, ∀j =
∑

i∈G

si + 1, . . . , |T |. (29)

The objective function is to minimize the total wirelength.
Constraint (27) ensures that each critical gate is assigned to
exactly one position. Constraints (28) and (29) guarantee that
each tile is occupied by at most one gate. Based on Theorem 1,
tiles 1 to

∑
i∈G si should be occupied, and from tile (

∑
i∈G si +

1) to tile |T | should not be occupied. When yi,j = 1, gate i

occupies tiles j, j+1, . . . , j+si−1, as shown in Fig. 9. Hence,
tile j is occupied by gate i if yi,j−si+1 = 1, . . . , or yi,j = 1.

E. Extension to Mixed Standard Spare Cells and Spare Arrays

In this subsection, we discuss how to extend our timing ECO
framework to utilize a mix of standard spare cells and spare
arrays. Standard spare cells and spare arrays may co-exist in a
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Fig. 9. Spare array packing. Each tile can be occupied by at most one gate.

Fig. 10. Spare array assignment considering standard spare cells and spare
arrays. A standard spare cell can be viewed as a special spare array with a
fixed functionality.

design to afford resources for ECO. In some designs, standard
spare cells may be inserted along with spare arrays at the
placement stage. In addition, a design might need to undergo
many ECO runs. Hence, some standard cells are freed up by
ECO. At later ECO runs, the freed-up cells can be recycled
and serve as spare cells. Simple ECO tasks can be done by
spare cells, while difficult ones can be realized by spare arrays.

Basically, a standard spare cell can be viewed as a special
spare array with a fixed functionality. Hence, for spare array
assignment, as shown in Fig. 10, if spare cell k matches
the configuration determined for gate i (Section IV-B), xi,k is
created, and si,k = kk = k’s cell area. Otherwise, we delete xi,k

or set xi,k = 0. For spare array packing, selected standard spare
cells do not need packing. At this step, only spare arrays are
processed. Based on the above modifications, our framework
is readily extended to handle a mix of standard spare cells and
spare arrays.

V. Extension to Functional ECO Optimization

Metal-only functional ECO is a practical and effective
process for functional rectification and/or specification revision
in modern IC design flow. However, conventional standard
spare cells are limited in functionality, quantity, and location.
This inflexibility may result in unfixed functional failures due
to a shortage of proper spare cells. In contrast, spare arrays
can flexibly be configured to designated functionalities. This
flexibility makes spare arrays as superior resources for metal-
only functional ECO. In this section, we extend our work to
functional ECO optimization.

A. Problem Formulation and Overview

The functional ECO problem is formulated as follows.
Problem: Given a placed design, ECO patches, the place-

ment of spare arrays and the corresponding cell library,
select tiles from spare arrays to perform functional changes

Fig. 11. Overview of our functional ECO framework.

such that the aliveness and routability of spare arrays are
maximized.

The ECO patches describe the logic difference between
the original design and the revised functionality/specification.
These patches are generated by logic difference tools
[25]–[28]. Similar to timing ECO, we consider aliveness and
routability in our functional ECO framework. Fig. 11 shows
the overview of our functional ECO framework. First, the
bounding box of each patch is calculated to collect available
spare arrays. Second, resynthesis and technology remapping
are performed for each patch to generate multiple remapping
candidates. Third, the candidate gates are assigned to appropri-
ate spare arrays with aliveness and routability considerations.
Fourth, spare arrays are further packed to reduce wirelength.
If the MILP fails to find a feasible spare array assignment,
we enlarge the bounding box and generate more remapping
candidates of each patch. This procedure is iterated until a
feasible solution is found or no more solution candidates can
be generated.

The following subsections detail the first three steps of our
functional ECO framework. Here, spare array packing is the
same as timing ECO. Based on the modifications made in
Section IV-E, we can also handle functional ECO using a mix
of standard spare cells and spare arrays.

B. Bounding Box Calculation

To reduce the problem size, we define the bounding box of
an ECO patch and then consider only the spare arrays inside
the bounding box.

Definition 2: The bounding box of an ECO patch is defined
as the bounding box covering the primary inputs and primary
outputs of this ECO patch.

Fig. 12 shows an example with two ECO patches, u1 and
u2. Only the spare arrays inside the union of all bounding
boxes will be considered in the following steps.
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Fig. 12. Bounding boxes of ECO patches.

C. Candidate Generation

We adopt ABC [29] to perform technology remapping for
each ECO patch according to the spare array cell library. We
force ABC to restructure the AIG of each ECO patch, and
thus several remapping solution candidates are generated. For
example, in Fig. 13, there are two ECO patches, and each
patch has two solution candidates. Patch u1 can be remapped
to candidate v1 (one AND plus one NAND gate) or candidate
v2 (one INV and two NAND gates).

After that, to ensure that there are sufficient spare tiles, we
check if the maximum number of required tiles is greater
than the number of free tiles. If free tiles are insufficient,
the bounding boxes will be enlarged to collect more available
spare tiles. This procedure is repeated until sufficient spare
tiles are collected or the union of bounding boxes reaches the
circuit size.

D. Spare Array Assignment for Functional ECO

We solve the spare array assignment problem for functional
ECO optimization by one MILP. The notation used in this
MILP formulation is as follows.

1) G: set of gates in all solution candidates generated by
technology remapping.

2) S: set of spare arrays, a spare array means a maximal
set of consecutive free tiles in a single row.

3) U: set of ECO patches.
4) Vu: set of solution candidates of ECO patch u.
5) su,v,i: required size of gate i which belongs to patch u’s

solution candidate v.
6) kj: the number of free tiles of spare array j.
7) xu,v: 0-1 variable indicating if patch u is assigned to

solution candidate v.
8) xu,v,i,j: 0-1 variable indicating if gate i which belongs to

patch u’s solution candidate v is assigned to spare array
j.

9) aj: aliveness of spare array j.
10) ru,v,i,j: routability by assigning gate i which belongs to

patch u’s solution candidate v to spare array j.
11) rj: routability contributed by spare array j.
12) pd

j : the pin density bound of spare array j.
13) pu,v,i: pin count of gate i which belongs to patch u’s

solution candidate v.

Fig. 13. Example of ECO patches.

14) α, β: user-specified parameters used to trade between
aliveness and routability. α + β = 1.

Based on the above notation, the spare array assignment
problem for functional ECO optimization can be formulated
as follows:

maximize α
∑

j∈S

aj + β
∑

j∈S

rj

subject to aj = f (kj −
∑

i∈G

xu,v,i,jsu,v,i), ∀j ∈ S (30)

rj =
∑

i∈G

xu,v,i,jru,v,i,j, ∀j ∈ S (31)

∑

i∈G

xu,v,i,jpu,v,i ≤ pd
j , ∀j ∈ S (32)

∑

v∈Vu

xu,v = 1, ∀u ∈ U (33)

∑

j∈S

xu,v,i,j = xu,v, ∀i ∈ G (34)

∑

i∈G

xu,v,i,jsu,v,i ≤ kj, ∀j ∈ S (35)

xu,v ∈ {0, 1}, ∀u ∈ U, v ∈ Vu (36)

xu,v,i,j ∈ {0, 1}, ∀u ∈ U, v ∈ Vu, i ∈ G, j ∈ S. (37)

The objective function is to maximize the weighted sum of
aliveness and routability. If the input design is short of free
tiles in spare arrays or will undergo many ECO runs, we prefer
a larger α; if the input design is highly congested, we prefer
a larger β. Based on our experiments, the desirable ranges of
parameters are reasonably large. Hence, we may set α = β by
default. Similar to the timing ECO framework, (30) and (31)
define the aliveness and routability, respectively. Constraint
(32) limits the pin density of each spare array. Constraint
(33) ensures that exactly one solution candidate is selected
for each ECO patch. Constraint (34) guarantees that each gate
is assigned to exactly one spare array if the corresponding
solution candidate is selected. Constraint (35) ensures that the
total size of allocated cells do not exceed the number of free
tiles for each spare array.

VI. Experimental Results

Our approach was implemented in the C++ programming
language on a platform with a 2.53 GHz Intel Core 2 Duo
T9400 CPU and 4 GB memory. The CPLEX [30] was ap-
plied to solve the formulated MILPs. We did two sets of
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TABLE I

Comparison Between [20] and Our Framework

TABLE II

ILP Statistics of Timing ECO

TABLE III

Functional ECO Comparison Between [8] and our Framework

experiments to evaluate our timing ECO and functional ECO
frameworks.

A. Timing ECO Optimization

The experiments were conducted with five industrial de-
signs, where the spare arrays are uniformly filled into the
layout. Because of the flexibility of spare arrays, only 0.5%
to 1% of the chip area is occupied by spare arrays. (Note that
this ratio is very low, compared with 2% to 5% for standard
spare cells.) Each spare array contains 3 × 10 tiles. A cell
in the spare array cell library incurs an average 20% timing
degradation compared with the cell in the standard cell library
with the same driving strength. The statistics of these circuits
are summarized in Table I, including the benchmark name
(Circuit name), the number of gates in each design (Gate
count), the number of available spare cells (#Spare cells), the
clock period (Cycle), the number of timing violating paths
(#Critical paths), the total number of gates passed by the
critical paths (#Gate passed), the worst negative slack (WNS),
and the total negative slack (TNS).

We tried to feed the generic and reduced single MILP
formulations into CPLEX, but they both failed to generate
solutions due to out of memory/time problems. Table II lists
the statistics of generic single MILP, reduced single MILP and

iterative MILP, including the number of related paths in each
design (#Path), the number of nodes (#Node), the number of
edges (#Edge), the number of constraints (#Constraint), and
the number of variables (#Variable). It can be seen that the
complexity of single MILPs is extremely large compared with
the iterative MILP.

We implemented the greedy heuristic proposed by Chen et
al. in [20] with adequate modifications to handle the spare
arrays. Chen et al. reprogram decap cells to fix as many
timing violations as possible under the IR drop constraint. For
fair comparison, we remove the IR drop constraint and use
spare arrays instead of decap cells. In our implementation, all
free tiles in spare arrays can be used to fix timing violations.
For each timing violating path, they greedily fix timing from
the gate with the largest output loading. At each iteration,
for the investigated gate, they find the spare array that can
improve the delay of this gate best (either by gate sizing or
by buffer insertion). The search region is set to the bounding
box defined by this gate and its fanin/fanout gates. They
then configure the selected spare array and perform the in-
cremental static timing analysis (STA). Because of the greedy
assignment, some timing violations cannot be fixed well
because the best candidates have been occupied in previous
iterations.
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Fig. 14. Routing congestion map for Industry5 after timing ECO is applied.
H (L) indicates high (low) congestion. (a) Without routability consideration.
(b) With routability consideration.

Table I compares the above heuristic [20] with our iterative
MILP in terms of the resulting TNS, the number of iterations
(#Ite.), and the running times (Runtime). “STA” means the
runtime consumed by incremental STA, “ILP” means the run-
time used by MILP, and “CPU” means the runtime consumed
by the remaining part. For [20], “#Ite” represents the number
of iterations actually applied, while for our approach, “#Ite.”
represents the number of MILPs generated. Although not
shown here, based on our experiments, the desirable ranges
of parameters are reasonably large. Hence, we set α = β = γ

in these experiments. First of all, we can successfully fix
all timing violations because we consider aliveness during
ECO optimization, while [20] fails for Industry3, Industry4,
and Industry5 because their method does not have a global
view to manage all spare arrays. Second, our iterative MILP
is very efficient, achieving a 16.43X speedup. Fig. 14 shows
the routing congestion map for Industry5. It can be seen that
ECO with routability consideration indeed results in better
routability, thus facilitating subsequent rewiring.

B. Functional ECO Optimization

For functional ECO, one industrial design was used. We
applied three different sets of functional ECO patches to
the industrial design. Table III shows the statistics of the
ECO patches, including the number of patches (#Patch), the
total number of candidate gates of these patches (#Candidate
gate), the ratio of spare arrays spread in the design (Spare
arrays), and the gate count of the design (Gate count). Among
the three cases, Case1 demonstrates the situation when the
functional ECO is applied on the congested area, Case2 shows
an example when the number of available spare arrays is low
after many ECO runs, and Case3 illustrates a larger case.

We implemented the state-of-the-art work [8] with proper
modifications as the baseline. For each ECO patch, the work
[8] generates a solution candidate and allocates nearest spare
arrays. Then, pair-wise swapping between allocated spare
arrays is applied for better aliveness and routability. If the
candidate is infeasible, another candidate is generated and the
procedure is repeated. As listed in Table III, our proposed
functional ECO framework outperforms [8] with average 23%
A/R improvement and 1.33X speedups. Interestingly, the run-
time of Case2 and Case3 by [8] are somewhat longer because
of the time-consuming pair-wise swapping.

Fig. 15. Aliveness and routability under different parameter setting for
functional ECO Case1.

Table III also compares three settings of the weight of
aliveness and routability for each case, [considering both
aliveness and routability (α = 0.5), considering only aliveness
(α = 1.0), and considering only routability (α = 0.0)]. It can
be seen that our functional ECO framework can solve Case1
and Case2 pretty well. Case3 takes longer to be finished, but
the runtime is still acceptable. Fig. 15 shows the impact of
different parameter settings on aliveness and routability for
functional ECO Case1. It can be seen that the desirable ranges
of parameters are reasonably large. Hence, we set α = β = 0.5
in our experiments.

VII. Conclusion

Traditionally, preplaced redundant standard cells are re-
garded as spare cells for metal-only ECO. To overcome the
inflexibility and power overhead, we introduced a new problem
of ECO optimization using metal-configurable gate-array spare
cells. We first studied the properties for this new ECO problem
and proposed the aliveness metric to model the capability
of a spare gate array. We then adoptd iterative MILP to
solve the new timing ECO problem with aliveness, routability,
and timing consideration. We further extended to consider
functional ECO optimization using spare arrays. Moreover,
our ECO frameworks were readily extended to handle a mix
of standard spare cells and spare arrays. Experimental results
showed that our approach delivered superior efficiency and
effectiveness.
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