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This study examined the influence of external excitations on ball positioning in an automatic ball
balancer (ABB) installed in a rotor system. The authors' previous studies adopted a model that
considered the ABB as an autonomous system by neglecting external excitations. We examined
how the magnitude, the frequency and even the phase of an external excitation affected ball
positioning. Simulations were performed to predict the ball positions under various external
forces. Then, we constructed an experimental rig by employing a shaker to apply excitations to
the rotor system and the associated ABB to verify the theoretical development. Simulation results
indicated that the balancing balls of the ABB could counterbalance the external force by the
change of the ball positions. However, it was observed from the experiment that the ball would
not be displaced if the external force was applied after the ball had been positioned because the
excessive rolling resistance between the ball and the runway prevented the ball from moving to
desired positions.

© 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

An ABB can automatically and continually counteract the unbalance in rotating machinery, so it has been employed in various
machine tool systems. In practice, a large number of machine tools are installed on one floor, not necessarily the ground floor, of a
factory where the machining forces and floor vibrations resulted external excitations may not be avoidable. This may drastically
deteriorate the performance of the ABB because the external force causes inaccurate ball positioning.

Thearle [1] presented an early analysis of various types of balancing systems and found ball-type balancers to be superior to
other types because of their low friction, low cost, and ease of implementation. Majewski [2] investigated the rolling resistance of
ball motion, the eccentricity of the runway and the influence of external vibrations, which caused in accuracies in positions of the
balancing bodies. Huang et al. [3] introduced a simple stick-slip model and illustrated the unavoidable rolling friction between the
balancing balls and the runway flange, which actually deterred the balls from remaining precisely at the desired positions. Chao et
al. [4,5] presented non-planar and torsional motions dynamic modelling and analysis to reaffirm the capability of the ABB system.
Horvath et al. [6] set up an experimental investigation of ball balancer and find the rolling friction when the deformation of the
contact point of the ball and channel surface by the centripetal acceleration. DeSmidt [7] explored the dynamics and stability of an
unbalanced flexible shaft equipped with an ABB. An effective force ratio parameter governing the equilibrium behavior of flexible
shaft and ABB was identified. Liu and Ishida [8] presented a vibration suppression method utilising the discontinuous spring
characteristics together with an ABB. Ehyaei and Moghaddam [9] developed a system of unbalanced flexible rotating shafts
equipped with nABBs, where the unbalanced masses were distributed along the lengths of the shafts. Green et al. [10] presented a
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Nomenclature

GR Centre of gravity (C.G.) of the equivalent rotor
GS Centre of gravity of the equivalent stator
MR Mass of the equivalent rotor
MS Mass of the equivalent stator
OB Centre of a ball
OS Rotational centre of the rotor
OR Origin of the inertial coordinate system
Or Centre of the circular runway of the balancer
e Unbalanced eccentricity
β Lead angle of the unbalance
ϕi Angles of ball's positions
Bi Number of balls
m Ball mass
r Ball radius
KX Stiffness in the X direction
KY Stiffness in the Y direction
CX Damping in the X direction
CY Damping in the Y direction
p Speed ratio ω=ωn

ε Scaling parameter
ffiffiffiffiffiffiffiffiffi
m=M

p
ωn Natural frequency of the suspension
τ Normalised time scale
R Runway radius
α1 Adhesive coefficient
α0 Rolling friction coefficient of the ball balancer
θ Rotating angle of the disc
F External force
ωe External force frequency
ωr Rotational frequency
δ Phase angle of external force
Ff Friction force between the ball and runway flange
η Angle corresponding to the coefficient of rolling friction
at Tangential acceleration of the ball
an Inertial acceleration of the ball
aw Runway flange acceleration
€αB Ball angular acceleration relative to runway outer flange
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nonlinear bifurcation analysis of a two-ball, automatic, dynamic balancing mechanism for eccentric rotors. Rodrigues et al. [11]
presented a model of a two-plane ABB that included the effects of support anisotropy and rotor acceleration. Chan et al. [12]
investigated the effects of non-linear suspensions of an ABB installed in a rotor system on ball positioning. Lu and Wang [13]
analysed a new design of an auto balancer that was designed to increase the stable region of perfect balancing. The effects of
vibration reduction by the ABB, therefore, need to be re-evaluated with an emphasis on the influence of rolling friction. Quangang
et al. [14] and Chan et al. [15] investigated the influence of friction in an ABB. DeWouw et al. [16] evaluated the performance of an
ABB with dry friction. Except the use of automatic ball balancers, Horvath et al. [17] demonstrated analytically that a
two-pendulum self-balance system, in conjunction with a spherical joint, could eliminate both dynamic and static imbalances in a
rotating disc.

The authors' previous studies adopted a model that considered the ABB as an autonomous system by neglecting external
excitations. That is, the excitation force on the rotor is resulted solely from the unbalance of the rotor system itself. We will examine
how themagnitude, the frequency and even the phase of an external excitation affected ball positioning. The equations governing the
motions of the rotor system and the balancing balls under external forces will be derived by the Lagrange method. Then, simulations
will be performed to predict the ball positions under various external forces. Finally, an experimental rig is established by employing a
shaker to apply excitations to a rotor system and the associated ABB to verify the theoretical development.

2. Mechanical modelling and governing equations

The unbalance in rotating machinery commonly produces harmonic excitation to the rotor system. Meanwhile, the rotor
system may also experience external excitations to cause additional vibrations. For example, a large number of machine tools are
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Fig. 1. Residual vibration of a rotor system due to its unbalance and an external excitation.
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often installed on one floor of a factory where the machining forces and floor vibrations may create excitations upon each other.
External forces can be broadly characterised as either impulse, random or harmonic excitation. For example, a single-DOF system
with rotating unbalance, meωr

2 sin ωrt, is excited by an external force F = F0 sin ωet with the forcing frequency identical to the
rotational frequency, i.e., ωe = ωr. As the system is not installed with automatic ball balancer (ABB), it can be observed in Fig. 1
that the external force does increase the amplitude of the residual vibration of the rotor system. In the following study, it is proved
that the balancing balls of the ABB can counterbalance an external force by changing their positions if the ball's driving force is
larger than the rolling resistance between the ball and the runway. Otherwise, the external excitation may significantly
deteriorate the performance of the ABB because the balls cannot move to the desired positions.

The physical system of an ABB is simplified and illustrated schematically in Fig. 2. An equivalent model of the rotor represents
the rotating parts of the system containing the disc and the rotor of the spindle motor. The non-rotating parts constitute an
equivalent stator that contains the foundational structure and the stator of the spindle motor, and its driving unit. The rotor shaft
is treated as a rigid body, and the stator of the spindle motor, its foundation, and drive unit is also considered as rigid bodies.
Fig. 2. Mechanical model of the rotor system.
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The motion of the unbalanced rotor is mainly in the radial direction because of the horizontal flexibility of the damping
washers that constitute the suspension system. The flexibility of these washers is assumed to be characterised by equivalent
linear springs and dampers, denoted by (KX,KY) and (CX,CY), respectively. With the following assumptions for the stator–
rotor-foundation system, the radial vibrations are reduced by ball balancers.

The shape of the balancer's runway is a perfect circle and the balls are assumed to be perfect spheres. While the balls,
considered as point masses, move along the runway, they always keep point contacts with the outer flange of the runway, which
is true during actual operation at the steady state because of the centrifugal force. The gravitational effect on the balls is small
compared to the centrifugal field. No slip occurs while the balls move because the slip friction is much greater than the rotational
friction. The following analysis is based on the physical system in Fig. 2, where, without a loss of generality, only two balls with
massm and radius r are illustrated. GR and GS denote the centres of gravity (C.G.s) of the equivalent rotor and stator, respectively,
MR and MS are the corresponding masses, OB1 and OB2 denote the centres of the balls, and OR denotes the origin of the inertial
coordinate system ORXRYR. Or denotes the centre of the balancer's circular runway, and the origin of the moving coordinate system
is OrXrYr. The C.G. eccentricity of the equivalent rotor relative to Or is represented by e; i.e., e ¼ OrGR

�� ��. The angle θ, defined in
coordinate system OrXrYr, denotes the rotation angle of the disc. The angle β, defined in coordinate system OrXrYr, denotes the lead
angle of the rotor's C.G. location with respect to the current angular position of the rotor. The angles ϕ1 and ϕ2, defined in
coordinate system OrXrYr, denote the lead angles of the balls' positions with respect to the current angular position of the rotor.

2.1. Kinetic energy

Using the notation defined, the kinetic energy can be obtained as follows. Let
where
→
ORGR ¼ X

Y

� �
þ e cos β þ θð Þ

sin β þ θð Þ
� �

ð1Þ

→
OROB ¼ X

Y

� �
þ R cos ϕþ θð Þ

sin ϕþ θð Þ
� �

ð2Þ

→
OROr ¼ X

Y

� �
ð3Þ

→
OROW ¼ X

Y

� �
þ Rþ rð Þ cos ϕþ θð Þ

sin ϕþ θð Þ
� �

; ð4Þ

→
ORGR ,

→
OROB ,

→
OROr , and

→
OROW represent the displacement vectors of the equivalent stator, the two balls, the rotor, and the
where

runway flange for the balancing ball, respectively. The kinetic energy of the system is contained in the equivalent stator, the balls,
the rotor and the runway. Herein, the moment of inertia of the ball is considered. According to the assumptions of no slip between
the ball and the runway and the perpendicularity of the ball's spinning axis to the ABB circular bottom plane, the angular velocity

of the ball spin is _αB, where _αB ¼ →OROW

˙
−
→
OROB

˙
=r

����
����. The rotational energy of the ball is
TBr ¼
1
2
IB _αB

2 ¼ 1
2
IB
r2
→
OROW

˙
−
→
OROB

˙
����

����
2
; ð5Þ

IB and r are the moment of inertia and radius of the balancing ball, respectively. Based on Eqs. (1)–(5), the total kinetic
where
energy can be obtained as
T ¼ Ts þ TR þ 2 TB þ TBrð Þ ¼ 1
2
MS
→
ORGR

:����
����
2
þ 1
2
MR
→
OROr

:����
����
2
þmi
→
OROB

:����
����
2
þ IB
r2
→
OROW

:

−
→
OROB

:����
����
2
: ð6Þ
2.2. Potential energy

The deformation of the spring creates the potential energy V:
V ¼ 1
2
KXX

2 þ 1
2
KYY

2
; ð7Þ

KX and KY are the stiffnesses in the X and Y directions of the washers, respectively.
2.3. Generalised forces

Assuming no slip occurs between the ball and the runway flange, the friction force, denoted by Ff, induces a rolling moment on
the ball. Acting on the ball area drag force D due to the interaction between the ball motion and surrounding fluid and a rolling
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resistance moment Mf, mainly, due to the rolling friction with the runway's outer flange. The interactive dynamics between the
balancing and runway flange is next discussed to derive the equations of motion for balancing balls. Fig. 3(a) shows the free-body
diagram of balancing ball where ball material is assumed much stiffer than the runway material which causes a small bump
deformation in the frontal area of running ball. Then, defined in the inertia coordinates ORXRYR, are next derived to capture the
dynamics of the ball. As illustrated in Fig. 3(c), the net ball acceleration can be decomposed into tangential acceleration at and
runway flange acceleration aw. Through the transformations bridging the inertial coordinates ORXRYR and the translating
coordinate OrXrYr, at and aw can be formulated by
at ¼ R €ϕ þ €θ
� �

−€X sin ϕþ θð Þ þ €Y cos ϕþ θð Þ ð8Þ

aw ¼ Rþ rð Þ€θ−€X sin ϕþ θð Þ þ €Y cos ϕþ θð Þ: ð9Þ
Compared to the case of motionless ball, this deformation shifts the contact point between the ball and runway flange from
downright position to the one with a corresponding angle, η, deviating from the downright direction. In order to construct the
equations of motion of the ball that is described in the coordinates defined, the acting point of the forces in the original free-body
diagram is translated to the downright position as shown in Fig. 3(b) with the generation of a moment
Mf ¼ Nr sin ηþ Ff r 1− cos ηð Þ ð10Þ

deters the ball rolling forward, thus named by “rolling resistance moment.” In Eq. (10), η, in practice, can be assumed small,
which
thus, Mf ≈ Nr sin η. N is the reaction force which is equivalent to the inertial force generated by the ball in the centrifugal field.
N = man, where an represents the inertial acceleration of the ball induced by the centrifugal field. an can be formulated by
an ¼ R _θ þ _ϕ i

� �2−€X cos θþ ϕið Þ−€Y sin θþ ϕið Þ: ð11Þ
a

b

c

Fig. 3. Actions of forces on the ball: (a) Free-body diagram, (b) equivalent free-body diagram, and (c) accelerations.



120 C.K. Sung et al. / Mechanism and Machine Theory 69 (2013) 115–126
Balancing the forces and moments acting on the ball as shown in Fig. 3(a) leads to two equilibrium equations
where
Ff−D sgn _ϕ
� �

¼ mat ð12Þ

Ff r−Mf − sgn _ϕ
� �h i

¼ I €αB; ð13Þ

€αB is the ball angular acceleration relative to runway outer flange, and the term D sgn _ϕ
� �

represents the drag force due to
where
the interaction between ball motion and surrounding fluid. This term can be assumed in an alternative form α1R _ϕ, the product of
the adhesive coefficient α1 and relative velocity of the ball to runway flange.

F = F0 sin(ωet + δ) is the external force with frequency ωe and phase angle δ. The generalised forces due to the damping
washers can be represented as−CX

_X and−CY
_Y acting in the X and Y directions, respectively. Thus, the generalised forces can be

derived as
Qqk ¼ −CX
_X−CY

_Y−D−
Mf

r
− sgn _ϕ

� �
þ F0 sin ωet þ δð Þ: ð14Þ
Herein, D is the product of the adhesive coefficient α1 and the relative velocity of the balls to the runway flange.
D ¼ α1R _ϕ ð15Þ
The moment Mf is obtained from
Mf ¼ α0m R _θ þ _ϕ i

� �2−€X cos θþ ϕið Þ−€Y sin θþ ϕið Þ
� �

; ð16Þ

α0 is the rolling friction coefficient of the ball, given by α0 ≡ r sin η.
2.4. Equations of motion

Given the kinetic energy, the potential energy, and the generalised forces, the equations governing the motion of the system
can be derived with Lagrange's equation
d
dt

∂L
∂ _qk

� 	
− ∂L

∂ _qk

� 	
¼ Qqk; ð17Þ

L = T − V, Qqk is the generalised forces, and qk is the generalised coordinates. Thus, the equations of motion for the rotor
where
system can then be obtained as follows:
M€X þ CX
_X þ KXX ¼ F0 sin ωet þ δð Þ þMR e€θ sin θþ βð Þ þ e _θ2 cos θþ βð Þ

h i

þm
Xn
i¼1

R €θ þ €ϕ i

� �
sin θþ ϕið Þ þ R _θ þ _ϕ i

� �2
cos θþ ϕið Þ

� �
; ð18Þ

M€Y þ CY
_Y þ KYY ¼ MR −e€θ cos θþ βð Þ þ e _θ2 sin θþ βð Þ

h i

þm
Xn
i¼1

−R €θ þ €ϕ i

� �
cos θþ ϕið Þ þ R _θ þ _ϕ i

� �2
sin θþ ϕið Þ

� �
;

ð19Þ

mi þ
I
r2

� 	
R €ϕ i þ €θ
� �

¼ mi
€X sin ϕi þ θð Þ−€Y cos ϕi þ θð Þ

h i

−α1R _ϕ i−
Mf

r
sgn _ϕ i

� �
þ Rþ rð Þ

r2
I€θ;

ð20Þ

M = MR + MS + nm, withMR,MS, andm denoting the masses of the equivalent rotor, the stator, and the ball, respectively,
where
and n denotes the number of balls.

Rearranging Eq. (20) yields the equation for the driving forces applied to the balancing ball
mi þ
I
r2

� 	
R€ϕ i ¼ mi

€X sin ϕi þ θð Þ−€Y cos ϕi þ θð Þ
h i

−α1R _ϕ i−
Mf

r
sgn _ϕ i

� �
þ I

r
−miR

� 	
€θ:

ð21Þ



Table 1
Values of system parameters.

Parameter Symbol Values (unit)

Natural frequency of the linear spring ωn 11.2 Hz
Mass of the equivalent stator MS 110 g
Mass of the equivalent rotor MR 40 g
Ball mass m 0.14 g
Ball radius r 1 mm
Runway radius R 16.5 mm
Equivalent suspension damping CX & CY CX = CY ≈ 2ζMωn

Damping ratio ζ 0.025
C.G. eccentricity e 0.1 mm
Adhesive coefficient α1 2 × 10−5(N × s/m2)
Lead angle of the unbalance Β 90°
Rolling friction coefficient α0 0 m
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Eq. (21) can be rewritten in the following form
where
mi þ
I
r2

� 	
R €ϕ i

� �
¼ FI þ FD þ FR ð22Þ

FI ¼
I
r
−miR

� 	
€θ; FD ¼ mi

€X sin ϕi þ θð Þ−€Y cos ϕi þ θð Þ
h i

; FR ¼ −α1R _ϕ i−
Mf

r
sgn _ϕ i

� �

and FR are, respectively, the driving forces on the ball generated from angular acceleration of the rotor, the translational
FI, FD
vibration of the suspension, and the rolling resistance and the viscous drag between ball and runway.

Approximate solutions are sought by assuming some scaling to manipulate the equations of motion, Eqs. (18)–(20), and by
applying techniques of asymptotic multiple-scale analysis [12,15]:
ε ¼ ffiffiffiffiffiffiffiffiffiffi
n=M

p
;ωn

ffiffiffiffiffiffiffiffiffiffi
K=m

p
; εx ¼ X=R; εy ¼ Y=R;p ¼ ωr=ωn; τ ¼ ωnt; ε

2λ2 ¼ e=R; εζ1 ¼ α1=mωn; μ ¼ m= mþ I=r2
� �

;

ελ ¼ r þ Rð ÞI=mr2R; Feq ¼ F0=MRω2
n; εζ ¼ C=Mωn; εζ0 ¼ α0=r;α ¼ MR=M;

ð23Þ

the small parameter ε serves as a small scaling parameter, and τ is a normalised time scale. Substituting Eq. (23) into the
where
system equations of motion, Eqs. (18)–(20) are solved for the case of two balls (n = 2) and a constant rotational speed near the
point of linear resonance. Note that €θ ¼ 0; _θ ¼ p; θ ¼ pτ. To facilitate the ensuing asymptotic analysis, the square of the speed ratio
p is represented by p2 = 1 + εσ, where σ captures the scaled deviation of p2 from one. Note that the scaling p2 = 1 + εσ implies
that the analysis in this paper is only valid near the natural frequency of the system. However, because of weak excitation, no
super or sub-harmonic resonance is present, as shown in the equations, the approximate solutions may be able to predict the
dynamics away from the primary resonance. Substituting, we obtain
€x þ p2x ¼ ε
−ζ _x þ σxþ αp2λ2 cos pτ þ βð Þ þ €ϕ1 sin pτ þ ϕ1ð Þ þ €ϕ2 sin pτ þ ϕ2ð Þ
þ pþ _ϕ1

� �2
cos pτ þ ϕ1ð Þ þ pþ _ϕ2

� �2
cos pτ þ ϕ2ð Þ þ Feq sin τωr=ωe þ δð Þ

2
4

3
5; ð24Þ

€y þ p2y ¼ ε
−ζ _y þ σyþ αp2λ2 sin pτ þ βð Þ−€ϕ1 sin pτ þ ϕ1ð Þ−€ϕ2 sin pτ þ ϕ2ð Þ
þ pþ _ϕ1

� �2
sin pτ þ ϕ1ð Þ þ pþ _ϕ2

� �2
sin pτ þ ϕ2ð Þ

2
4

3
5; ð25Þ
Ball2 Ball1

Desired ball positions

GR

150o150o

Ball1

Ball2

GR

30o

90o

60o

Fig. 4. Initial angles of balls and desired ball positions.
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€ϕ1 ¼ εμ
€x sin pτ þ ϕ1ð Þ−€y cos pτ þ ϕ1ð Þ−ζ1

_ϕ1−ζ0 pþ _ϕ1

� �2−ε€x cos pτ þ ϕ1ð Þ
�

−ε €yð Þ sin pτ þ ϕ1ð Þ
i
sgn _ϕ1

� �
8><
>:

9>=
>;; ð26Þ

€ϕ2 ¼ εμ
€x sin pτ þ ϕ2ð Þ−€y cos pτ þ ϕ2ð Þ−ζ1

_ϕ2−ζ0 pþ _ϕ2

� �2−ε€x cos pτ þ ϕ2ð Þ
�

−ε€y sin pτ þ ϕ2ð Þ
i
sgn _ϕ2

8><
>:

9>=
>;: ð27Þ
Using Eqs. (24)–(27), we could conduct the following simulations.

3. Simulations

The parameters and their corresponding values, listed in Table 1, are related to optical disc drives manufactured by Lite-On IT
Corporation, Taiwan. The maximal counterbalance (two balls sticking together) has to be greater than the inherent unbalance in
this case (2mR > MRe).

Fig. 4 illustrates the positions of the pair of balls, which are initially at the angles 30° and 60°. The balancing balls are situated
150° opposite from the inherent unbalance, Gr, when the external forcing frequency is not equal to rotational frequency
(ωe ≠ ωr), or the magnitude of the external force F0 = 0. The prefect balancing of the ball positions can be verified by the
following equation:
2�m� R� Cos 180−150ð Þ∘ ¼ MR � e: ð28Þ
Magnitudes of External Forces (N)   
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Fig. 6. Ball positions affected by the magnitudes of external forces when ωr = ωe.
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When an external force F = F0 sin(ωet + δ) is applied to the rotor system in X direction with a magnitude of 10 N and a
frequency equal to the rotational frequency (ωe = ωr), the balancing balls are situated 156° from the inherent unbalance. Thus,
the ball positions are affected by the external force when its frequency is equal to the rotational frequency (ωe = ωr), as shown in
Fig. 5.

Fig. 6 shows that the two balls come closer together until they contact with each other as the magnitude of the external force
increases. It indicates that the balancing balls of the ABB can also counterbalance the external force by changing their positions.
The oscillatory variation of the ball positions shown in Fig. 7 presents the effect of the phase angle of the external force when
ωe = ωr. The ball positions are affected by both the magnitude and the phase angle of the external force when the external
forcing frequency is equal to the rotational frequency; i.e., ωe = ωr. The two balancing balls may interchange steady-state
position on the basis of the different magnitudes, the frequency and even the phase of an external excitation. The driving force of
the balancing balls is also affected by the varying phase angle of the external force, as shown in Fig. 8. The variation of the ball
positions can counterbalance the centrifugal force of the unbalanced mass and the external force.

4. Experimental study

An experimental study was performed to verify the derived mathematical expressions. Fig. 9 shows a photograph of the
experimental apparatus which includes six subsystems: a balancer system containing two balancing balls, a spindle motor
accompanied by a servo box, a shaker associated with a load cell, two accelerometers, a stroboscope and a signal analyser.

In the experiment, the spindle motor and the shaker were started up simultaneously until the rotor was accelerated to the
desired speeds. We used the stroboscope to observe the steady-state angular positions of the balls. As the balls settled into their
steady-state positions, the force and accelerations of the rotor were measured by the load cell and accelerometers, respectively,
and were recorded by the signal analyser. Fig. 10 illustrates two external forces acting on the system: one with the forcing
frequency identical to rotational one while the other not identical. The forces measured by the load cell were generated from not
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Fig. 8. The driving force of balancing balls with a varying phase angle of the external force.



Fig. 9. Photograph of the experimental apparatus.
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only the shaker but also the rotor's residual vibrations. It can be observed in Fig. 11 that the ball positions are affected by the
external force whenωr = ωe, which are close to the theoretical predictions shown in Fig. 6 with an external force, F0 = 15 N. The
results verify the capability of the mathematical model constructed in the previous section.
ωr ≠ ωe ωr = ωe

Fig. 10. Forces acting on the system with different frequencies (ωr = 97Hz, ωe = 70 Hz) and (ωr = ωe = 97 Hz).

Unbalanced mass

ωr ≠ ωe ωr = ωe

Fig. 11. Influence of the external forcing frequency on ball positioning (F0 = 15 N).
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The experimental results of the X-axis residual vibration of the rotor system with various external forcing frequencies are shown
in Fig. 12. It illustrates that the balancing balls of the ABB can counterbalance the external force to result in smaller residual vibration
when ωr = ωe by changing the ball positions. In essence, the influence of external force on an ABB is similar to that of unbalance.
However, it is observed from the experimental results shown in Fig. 13 that the balls may not be displaced because the excessive
rolling resistance between the ball and the runway during high operation speed prevents the balls frommoving. This situation exists
frequently when the external force is applied after the ball has been settled into its steady-state position because of a lack of driving
force on balls. This may further deteriorate the balancing performance and cause larger undesired residual vibrations.

5. Conclusions

This study explored how the magnitude, the frequency and even the phase of an external excitation affected ball positioning.
The equations governing the motions of the rotor system and the balancing balls were first derived using the Lagrange method
and the technique of asymptotic multiple scale analysis. Then, simulations were performed to predict the ball positions under
various external forces. Finally, an experimental rig was constructed by using a shaker to apply various excitations to the rotor
system. The results indicate that the positions of the balls are not affected when the external forcing frequency is not equal to
rotational frequency (ωr ≠ ωe). On the other hand, the ball positions are changed by the external force when its frequency is
equal to the rotational frequency (ωr = ωe). Therefore, the force acting on the balls as well as the residual vibration becomes
larger at the condition of ωr ≠ ωe. Moreover, it was also observed from the experiment that the ball would not be displaced
because the excessive rolling resistance between the ball and the runway prevented the ball from moving. This phenomenon
occurs frequently when the external force is applied after the ball had been positioned. This may further deteriorate the balancing
performance and cause larger undesired residual vibrations.
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