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Abstract An efficient palladium-catalyzed strategy thro-
ugh C–H bond activation for the synthesis of 2(2′-biphenyl)-
benzimidazoles is reported herein. The regioselective C–C
bond formation proceeds in a sealed tube via oxidative C–H
activation of ortho-directed 2-aryl-benzimidazole to couple
with various iodobenzene analogs in high yields. This aryla-
tion exhibited high regioselectivity which is able to increase
molecular diversity in difficult functionalized positions of
parent molecules. This strategy provides a convenient and
simple synthesis of biphenyl heterocyclic compounds with
high regioselectivity.

Keywords Palladium catalyst · C–H activation ·
C–C bond formation · Benzimidazole ·
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Introduction

Transition metal catalyzed C–C bond formation has signif-
icant impact on the strategies used to simplify the synthe-
sis of worthwhile bioactive scaffolds, building blocks, and
relative complex molecules in organic and organometallic
chemistry [1–3]. During the past several decades, devel-
opment of palladium-catalyzed C–H activation and C–C
bond forming reactions (e.g., Sonogashira, Negishi, Stille,
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Suzuki-Miyaura, Heck reaction) have received utmost atten-
tion [4–6]. The alkylation or arylation of aryl C–H bonds
could be directly achieved by utilizing ruthenium, rhodium,
palladium, iridium, and other metals with olefins or aryl
organometallic fragments [1–10].

Enhancement in the regioselective activation of aromatic
sp2 and sp3 C–H bonds with the help of directing effect of
functional groups coordination is a predominant feature in
the synthesis of many biological active compounds [11–14].
General methods construct biaryls by using transition-metal-
catalyzed coupling reactions with the ortho-directing groups
such as imine, pyridine, acetamine, carboxylic acid, oxazo-
line, and imidazole (Fig. 1) [15–18].

Benzimidazole containing molecules are fragment motifs
in nature and have potential uses in medicinal chemistry
as antitumor and antiparasitic agents [19,20]. Substituted
biaryls imidazoles have important applications in phar-
maceuticals such as farnesyl-protein transferase inhibitors
[21,22] and sodium channel blockers in neuropathic pain
[23]. Telmisartan and Candesartan are used for the treatment
of hypertension an angiotensin II receptor antagonist (Fig. 2)
[24–26]. Consequently, the synthesis of polysubstituted ben-
zimidazoles and 2-biaryl benzimidazole via arylation of aro-
matic sp2 C–H activation has received a lot of attention in
recent years [27–33].

For example, Miura and co-workers [34] have reported
the regioselective ortho arylation of 1-methyl-2-phenyl
benzimidazole with sodium tetraphenylborate and [RhCl
(cod)]2/ClCH2COEt/KF catalyst at 140 ◦C. The palladium-
catalyzed synthesis of benzo4,5imidazo[2,1-a] isoquinolines
via nucleophilic addition of 2-aryl benzimidazoles to alkynyl
bromine followed by intermolecular C–H vinylation was
reported by Li and co-workers [35].

These synthetic processes are usually complicated, have
low efficiency and are accompanied with harmful by-products
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Fig. 1 Arylation with N
containing o-directing groups

Fig. 2 Structurally related
biologically active compounds
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led to the search for improved methods to synthesize
2-biaryl benzimidazoles. Among the transition metals, palla-
dium complexes are of utmost interest because of their cost-
effectiveness and efficiency for direct sp2 C–H activation and
arylation to address the above mentioned problems.

As a part of our ongoing program to develop strategies
for the synthesis of novel polyfunctionalized benzimidazole
for medical scaffolds [36,37], we have investigated the reac-
tion of substituted 2-aryl-benzimidazole 1 with iodobenzene
2 leading to the 2(2′-biphenyl)-benzimidazole framework
through regioselective oxidative cleavage of C–H bond. The
mechanistic pathway of this new process and its potential
effectiveness in the synthesis of 2-biphenyl-1-benzimidazole
directly from easily available starting components is pre-
sented.

Results and discussion

To understand the current protocol, we thoroughly studied the
reaction between 2-aryl-benzimidazole 1 and iodobenzene 2
in different solvents using various metal catalysts and several
additives (Scheme 1). We used the benzimidazole as an ortho-
directing group in our current investigation due to direct
coordination by palladium metal to functionalize the ortho

C–H bond of 2-substituted aryl ring, and further elaboration
through ortho C–H activation may proceed. When the model
reaction was carried out in acetic acid in the presence of
5 mol.% Pd(dba)3 and AgOAc (1.5 equiv.) at 120 ◦C for
120 h, product 3a was isolated in only 29 % yield. Encour-
aged by this result, we decided to enhance the yield of desired
product by examining various reaction parameters (Tables 1,
2). The reaction was performed with several metal catalysts
in acetic acid with AgOAc as an additive and the results
obtained are summarized in Table 1.

A significant drop in reactivity was observed when
Pd(dba)3 was replaced with other catalysts such as [(cymene)
RuCl2]2 or Rh2(OAc)4 and the coupling reaction did not pro-
ceed even after prolonged heating at high temperature (Table
1, entries 2–5). A low yield of 3a was obtained when the reac-
tion was catalyzed by Pd(dppf)Cl2 (Table 1, entry 9). Since
a palladium catalyst is essential in this approach for sp2 C–H
activation, we have examined a number of palladium cata-
lysts for this transformation (Table 1, entries 1, 6–9).

After several reactions, a catalytic amount of Pd(OAc)2

with AgOAc in a sealed tube was found to be the most effi-
cient system to the desired 2-(2′-biphenyl)-benzimidazole 3a
(Table 1, entry 8).

Next, we proceeded to optimize the reaction by varying
solvents, additives, and temperature and the results obtained

Scheme 1 Synthesis of
2-biphenyl-benzimidazole
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Table 1 Catalysts study for synthesis of 2-biphenyl-benzimidazole

Entries Catalysts T (◦C) t (h) Yielda

(%)

1 Pd2(dba)3 120 120 29

2 Rh2(OAc)4 120 120 NR

3b Rh2(OAc)4 150 120 NR

4 [(Cymene)RuCl2]2 120 120 NR

5b [(Cymene)RuCl2]2 150 120 NR

6 Pd(OAc)2 120 120 43

7 Pd(dppf)Cl2 120 120 45

8b Pd(OAc)2 150 72 56

9b Pd(dppf)Cl2 150 72 46

All reactions were performed in HOAc with 5 mol.% catalyst and
AgOAc (1.5 equiv.)
NR no reaction
a Isolated yield after column chromatography
b Reaction was carried out in a sealed tube

Table 2 Reaction optimization for the synthesis of 2-biphenyl-
benzimidazole

Entriesa Additives Solvents t (h) Yieldb

(%)

1 AgOAc HOAc 120 65

2 Cu(OAc)2 HOAc 120 Trace

3 Cu(OTf)2 HOAc 120 45

4 K2S2O8 HOAc 120 Trace

5 Oxone HOAc 120 Trace

6 PhI(OAc)2 HOAc 120 Trace

7 AgOTf HOAc 120 71

8 AgOTf TFA 72 85

9 AgOTf 1,4-Dioxane 120 NR

10 AgOTf IPA 120 NR

11 AgOTf EDC 120 16

12 AgOTf ACN 120 11

All reaction performed with Pd(OAc)2 5 mol.% in a sealed tube
(150 ◦C)
NR no reaction
a Reaction carried out with 3 equiv. of additives
b Isolated yield after column purification

are summarized in Table 2. Initially, increasing the amount of
additives to 3 equiv., the yield of 3a increased to 65 % (Table
2, entry 1). When AgOAc additive was replaced by copper,
this resulted in a lower yield of desired product because for-
mation of biphenyl product was observed via Ullmann cross
coupling reaction (Table 2, entries 2, 3). Potassium salts such
as K2S2O8, oxone, and PhI(OAc)2 (Table 2, entries 4–6)
failed to deliver the desired product. Addition of silver salt
AgOTf in 1,4-dioxane or isopropyl alcohol did not deliver the
desired product (Table 2, entries 9, 10). In contrast, when the
reaction was performed in acetonitrile and ethylene dichlo-

ride the desired product obtained in lower yields (Table 2,
entries 11, 12).

After several trials, the reaction carried out in trifluo-
roacetic acid (TFA) in the presence of Pd(OAc)2 and AgOTf.
This led to the formation of 3a in 85 % yield (Table 2, entry
8). The use of TFA was found to be crucial for the success
of this arylation strategy which could be attributed to the in
situ replacement of (–OAc) group from palladium by triflu-
oromethanesulfonate (–OTf), a strong electron withdrawing
group which helped to enhance reactivity and productivity
[38]. Among the silver salt additives, AgOTf in TFA (Table 2,
entry 8) was efficacious in palladium catalytic system and
gave the high regioselectivity with best yields of 2-biarylated
benzimidazoles.

Based on these results, a plausible mechanism for the
reaction of 2-aryl-benzimidazoles 1 with iodobenzene 2,
through directed metalation involving palladacycle interme-
diate A and B is proposed in Scheme 2. In the first step,
coordination of the nitrogen of benzimidazole in the 2-
position of directing group on phenyl ring to Pd(II) species
is the key for the regioselective C–H bond cleavage. The
oxidative insertion of iodobenzene in palladacycle inter-
mediate A to intermediate B, followed by reductive elim-
ination to offer corresponding product 3 with regenerated
palladium(II) by silver salt, and reuses in next catalytic
cycles.

It was also observed that the C–C bond formation reac-
tion between the aryl iodide and 2-phenyl-benzimidazoles
can tolerate both electron-withdrawing groups and electron-
donating groups (EDG) and the results are outlined in Table 3.
2-Aryl benzimidazoles containing EDG gave excellent iso-
lated yields (68–85 %) in a short span of reaction time at
150 ◦C in TFA (Table 3, entries 3b, d–g, k, l). The absolute
configuration and unambiguous structural elucidation of
compound 3p is accomplished by single crystal X-ray dif-
fraction (CCDC-936241) illustrated in Fig. 3. The residue
at N2 (benzyl group in 3p) distinctly occupies the space
perpendicular to the basic skeleton of benzimidazole. The
crystallographic data reveal that the benzimidazole ring is
perpendicular to the 2-phenyl group. Both N2 benzyl group
and 2-biphenyl of benzimidazoles orient in a relative anti-
position to each other. Such similar L-shaped benzimidazole
nucleus with structural resemblance to the recently reported
benzimidazole fluorophores may have interesting optical and
electronic properties [39].

In summary, the present study has demonstrated that
2-phenyl benzimidazole and iodobenzene efficiently undergo
regioselective arylation in a palladium catalytic system lead-
ing to 2-biaryl-benzimidazoles in high yields. Importantly,
the challenging nature of this transformation is high regios-
electivity for monoarylation to synthesize numerous 2-(2′-
biphenyl)-benzimidazoles via C–H activation. These highly
functionalized benzimidazoles are excellent building blocks
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Scheme 2 Proposed mechanism
pathway for
2-biphenyl-benzoimidazoles
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for biological studies. Application of benzimidazole as a
direction group constructs a C-heteroatom attachment and
further exploration of the scope and utility is currently under
investigation.

Experimental

Materials and methods

All reactions were carried out oven-dried glassware using
standard sealed tube, syringe, cannula, septa, and other
apparatus. Solvents were dried with calcium hydride or
sodium/benzophenone and distilled before use. The 1H NMR
and 13C NMR spectra were recorded with a Bruker DRX-
300 NMR in chloroform-d1 (CDCl3, δ = 7.24 ppm [part per
million] (as standard). Chemical shifts are reported in delta
(δ) units, ppm. Data are reported as follows: chemical shift,
multiplicity (s = singlet, d = doublet, t = triplet, td = triplet of
doublets, q = quartet, m = multiplet), coupling constants are
reported in Hertz (Hz) and integration. The reactions were
monitored by thin layer chromatography (TLC) using Merck
TLC silica gel 60 F254. High resolution ESI mass experi-
ments were operated on a Thermo Finnigan Model: MAT
95 XL spectrometer. Infrared (IR) spectra were recorded
(neat samples) on a HORIBA FT-720 Fourier Transform IR
spectrophotometer and the characteristic IR absorption fre-
quencies are reported in cm−1. X-ray single crystal struc-
ture, relative and absolute configurations were assigned on
a Bruker smart 1000 CCD single-crystal X-ray diffractome-

ter. Unless otherwise noted, reagents were purchased from
commercial sources and used without further purification.

General procedures for methyl-2-(biphenyl-2-yl)-1-(2-
methylpropyl)-1H-benzimidazole-5-carboxylate
(3a)

To a solution of the methyl 1-isobutyl-2-phenyl-1H -benzo[d]
imidazole-5-carboxylate 1 (0.144 g, 0.47 mmol) in TFA
(10 mL) were added iodobenzene 2 (0.381 g, 1.87 mmol),
Pd(OAc)2 (0.0132 g, 0.059 mmol) and AgOTf (0.1811 g,
0.705 mmol) at room temperature. The resulting reaction
mixture was heated in a sealed tube for 72 h. The reac-
tion progress was monitor by TLC, after the reaction was
complete, mixture was cooled to room temperature and
solvent was removed by extraction with water and ethyl
acetate. The crude product was purified by column chro-
matography (eluent: 15 % EA in hexane) to afford the cor-
responding methyl-2-([1,1′-biphenyl]-2-yl)-1-isobutyl-1H -
benzo[d]imidazole-5-carboxylate 3a in 80 % yield. This gen-
eral procedure was applied for the synthesis of all compound
3 analogs.

Methyl-2-(biphenyl-2-yl)-1-(2-methylpropyl)-1H-
benzimidazole-5-carboxylate (3a)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.56
(d, J = 1.2 Hz, 1H), 7.95 (dd, J = 8.7, 1.2 Hz, 1H), 7.71 (dd,
J = 7.5, 1.4 Hz, 1H), 7.64–7.47 (m, 3H), 7.18–7.15 (m, 6H),
3.94 (s, 3H), 3.20 (d, J = 7.5 Hz, 2H), 1.89 (m, 1H), 0.55
(d, J = 6.6 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 168.1,

123



Mol Divers (2013) 17:641–649 645

Table 3 Substrate scope studies

All reaction preformed in TFA
with 5 mol.% Pd(OAc)2 and 3
equiv. Ag(OTf) in a sealed tube,
aryl iodide (4 equiv.); in
parenthesis isolated yield after
column purification

 

 

156.0, 142.8, 141.7, 140.2, 138.4, 132.5, 131.0, 130.3, 129.2,
128.9, 128.9, 128.1, 127.9, 124.7, 124.4, 122.5, 110.4, 52.5,
51.6, 28.6, 20.2; IR (cm−1, neat) 2958, 1716, 1616; MS (EI-
MS) m/z 384 [M+]; HRMS calculated for C25H24N2O2 m/z
384.1838; found 384.1836.

Methyl-2-(4-methylbiphenyl-2-yl)-1-(2-methylpropyl)-1H-
benzimidazole-5-carboxylate (3b)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard)δ 8.56
(d, J = 1.2 Hz, 1H), 7.96 (dd, J = 8.5, 1.2 Hz, 1H), 7.54 (s,
1H), 7.46–7.41 (m, 2H), 7.18–7.13 (m, 6H), 3.95 (s, 3H),
3.19 (d, J = 7.8 Hz, 2H), 2.46 (s, 3H), 1.83 (m, 1H), 0.55
(m, 6H); 13C NMR (75 MHz, CDCl3) δ 168.1, 156.2, 142.6,
140.2, 138.7, 138.3, 138.1, 132.9, 131.8, 130.2, 128.9, 128.8,
128.8, 127.6, 124.7, 124.4, 122.4, 110.43, 52.5, 51.6, 28.5,
21.4, 20.2; IR (cm−1, neat) 2958, 1716, 1616; MS (EI-MS)

m/z 398 [M+]; HRMS calculated for C26H26N2O2 m/z
398.1994; found 398.1995.

Methyl-2-(biphenyl-2-yl)-1-(2-methoxyethyl)-1H-
benzimidazole-5-carboxylate (3c)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.54
(d, J = 1.3 Hz, 1H), 7.95 (dd, J = 8.4, 1.3 Hz, 1H), 7.66–7.46
(m, 4H), 7.30 (d, J = 8.4 Hz, 1H), 7.24–7.14 (m, 5H), 3.92
(s, 3H), 3.68 (t, J = 5.6 Hz, 2H), 3.07 (t, J = 5.6 Hz, 2H),
2.98 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 168.1, 155.8,
142.7, 141.8, 140.2, 138.5, 132.5, 131.1, 130.3, 129.1, 129.0,
129.0, 128.9, 127.9, 124.8, 124.6, 122.4, 110.7, 69.0, 59.0,
52.4, 41.3; IR (cm−1, neat) 2948, 1714, 1616; MS (EI-MS)
m/z 386 [M+]; HRMS calculated for C24H22N2O3 m/z
386.1630; found 386.1631.
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Fig. 3 ORTEP diagram of compound 3p

Methyl-1-(2-methoxyethyl)-2-(3′-methyl-4-nitrobiphenyl-2-
yl)-1H-benzimidazole-5-carboxylate (3d)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ

8.56 (d, J = 1.6 Hz, 1H), 8.52 (d, J = 1.7 Hz, 1H), 8.41 (dd,
J = 8.6, 1.6 Hz, 1H), 8.00 (dd, J = 8.4, 1.7 Hz, 1H), 7.72
(d, J = 8.6 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.07–7.06 (m,
3H), 6.99–6.95 (m, 1H), 3.93 (s, 3H), 3.70 (t, J = 5.3 Hz,
2H), 3.19 (t, J = 5.2 Hz, 2H), 3.01 (s, 3H), 2.14 (s, 3H); 13C
NMR (75 MHz, CDCl3) δ 167.9, 153.6, 148.2, 147.1, 142.7,
139.1, 138.1, 137.9, 131.3, 130.5, 130.1, 129.6, 129.1, 128.0,
126.0, 125.6, 125.31, 125.1, 122.7, 110.6, 70.2, 59.1, 52.6,
44.6, 21.6; IR (cm−1, neat) 2948, 1714, 1617; MS (EI-MS)
m/z 445 [M+]; HRMS calculated for C25H23N3O5 m/z
445.1638; found 445.1639.

Methyl-1-(2-methoxyethyl)-2-(3′-methoxy-4-nitrobiphenyl-
2-yl)-1H-benzimidazole-5-carboxylate (3e)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.60
(d, J = 1.9 Hz, 1H), 8.57 (d, J = 1.5 Hz, 1H) 8.47 (dd, J = 8.7,
1.9 Hz, 1H), 8.05 (dd, J = 8.7, 1.5 Hz, 1H), 7.77 (d, J = 8.7 Hz,
1H), 7.36 (d, J = 8.7 Hz, 1H), 7.20 (t, J = 8.0 Hz, 1H), 6.89 (d,
J = 7.8 Hz, 1H), 6.83 (dd, J = 8.3, 1.8 Hz, 1H), 6.76–6.75 (m,
1H), 3.98 (s, 3H), 3.76 (t, J = 5.3 Hz, 2H), 3.44 (s, 3H), 3.24 (t,
J = 5.3 Hz, 2H), 3.06 (s, 3H); 13C NMR (75 MHz, CDCl3) δ

167.8, 160.1, 153.6, 147.8, 147.2, 142.6, 139.3, 138.1, 131.3,
130.5, 130.4, 128.0, 125.7, 125.4, 125.2, 122.6, 121.2, 115.9,
113.5, 110.6, 70.2, 59.1, 55.4, 52.6, 44.6; IR (cm−1, neat)
2948, 1716, 1617; MS (ESI-MS) m/z 462 [M+1]+; HRMS
calculated for C25H23N3O6 m/z 461.1587; found 462.1666
(M+1)+.

Methyl-1-(2-methoxyethyl)-2-(4-nitrobiphenyl-2-yl)-1H-
benzimidazole-5-carboxylate (3f)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.61
(d, J = 1.9 Hz, 1H), 8.56 (d, J = 1.4 Hz, 1H), 8.48 (dd, J = 8.4,
1.9 Hz, 1H), 8.04 (dd, J = 8.6, 1.4 Hz, 1H), 7.76 (d, J = 8.4 Hz,
1H), 7.34 (d, J = 8.7 Hz, 1H), 7.32–7.25 (m, 5H), 3.98 (s, 3H),
3.74 (t, J = 5.4 Hz, 2H), 3.22 (t, J = 5.4 Hz, 2H), 3.05 (s, 3H);
13C NMR (75 MHz, CDCl3) δ 167.8, 153.4, 148.1, 147.2,
142.2, 138.0, 137.9, 131.5, 130.2, 129.4, 129.3, 128.9, 128.1,
125.8, 125.6, 125.3, 122.6, 110.7, 70.1, 59.2, 52.6, 44.7; IR
(cm−1, neat) 2948, 1716, 1617; MS (EI-MS) m/z 431 [M+];
HRMS calculated for C24H21N3O5 m/z 431.1481; found
431.1479.

Methyl-1-(2-methoxyethyl)-2-(4-methyl-[1,1′-biphenyl]-2-
yl)-1H-benzo[d]imidazole-5-carboxylate (3g)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.53
(d, J = 1.4 Hz, 1H), 7.98 (dd, J = 8.6, 1.4 Hz, 1H), 7.50–7.44
(m, 3H), 7.32 (m, 1H), 7.26–7.14 (m, 5H), 3.97 (s, 3H), 3.70
(t, J = 5.8 Hz, 2H), 3.07 (t, J = 5.8 Hz, 2H), 3.03 (s, 3H), 2.47
(s, 3H); 13C NMR (75 MHz, CDCl3) δ 167.7, 155.8, 142.6,
139.8, 138.3, 138.2, 137.6, 132.6, 131.4, 129.8, 129.8, 128.6,
128.4, 127.3, 124.3, 124.1, 122.1, 110.2, 70.0, 58.6, 52.1,
43.9, 20.9; IR (cm−1, neat) 2925, 1714, 1616; MS (ESI-MS)
m/z 401 [M+1]+; HRMS calculated for C25H24N2O3 m/z
400.1787; found 401.1864 (M+1)+.

Methyl-2-(3′,4-dimethyl-[1,1′-biphenyl]-2-yl)-1-(2-
methoxyethyl)-1H-benzo[d]imidazole-5-carboxylate (3h)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ

8.54 (s, 1H), 7.98 (dd, J = 8.5, 1.6 Hz, 1H), 7.49–7.41 (m,
3H), 7.33 (d, J = 8.6 Hz, 1H), 7.08–6.99 (m, 4H), 3.98 (s,
3H), 3.71 (m, 2H), 3.06 (m, 2H), 3.04 (s, 3H), 2.47 (s, 3H),
2.16 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 167.7, 155.9,
142.4, 139.6, 138.5, 138.2, 138.2, 137.5, 132.5, 131.4, 129.8,
129.3, 128.4, 128.3, 128.0, 125.7, 124.3, 124.1, 122.0, 110.2,
70.1, 58.6, 52.1, 43.9, 21.3, 20.9; IR (cm−1, neat) 2925,
1716, 1616; MS (ESI-MS) m/z 415 [M+1]+; HRMS cal-
culated for C26H26N2O3 m/z 414.1943; found 415.2025
[M+1]+.

Methyl-2-(biphenyl-2-yl)-1-cyclopentyl-1H-benzimidazole-
5-carboxylate (3i)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ

8.54 (s, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.63–7.44 (m, 4H),
7.30 (d, J = 8.7 Hz, 1H), 7.18–7.17 (m, 5H), 4.16 (m, 1H),
3.92 (s, 3H), 1.88–1.40 (m, 8H), 0.68 (m, 1H); 13C NMR
(75 MHz, CDCl3) δ 168.1, 156.3, 143.7, 141.7, 140.2, 135.9,
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132.4, 130.9, 130.2, 129.4, 129.1, 129.0, 128.1, 128.0, 124.4,
123.9, 122.8, 111.7, 57.9, 52.4, 30.9, 28.4, 25.2. IR (cm−1,

neat) 2952, 2875, 1716, 1616; MS (EI-MS) m/z 396 [M+];
HRMS calculated for C26H24N2O2 m/z 396.1838; found
396.1840.

Methyl-1-cyclopentyl-2-(3′-methyl-4-nitrobiphenyl-2-yl)-
1H-benzimidazole-5-carboxylate (3j)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ

8.56–8.54 (m, 2H), 8.45 (dd, J = 8.5, 2.4 Hz, 1H), 7.97
(dd, J = 8.6, 1.9 Hz, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.35 (d,
J = 8.7 Hz, 1H), 7.15–6.98 (m, 4H), 4.09 (m, 1H), 3.96 (s,
3H), 2.17 (s, 3H), 1.95–1.80 (m, 4H), 1.65–1.47 (m, 3H),
0.65 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 167.8, 153.6,
148.3, 147.3, 143.2, 139.3, 138.0, 135.7, 131.3, 130.6, 130.1,
129.7, 129.3, 127.7, 126.2, 125.7, 125.1, 124.6, 123.0, 111.9,
58.3, 52.6, 31.1, 28.6, 25.2, 21.6; IR (cm−1, neat) 2952, 1714,
1616; MS (EI-MS) m/z 455 [M+]; HRMS calculated for
C27H25N3O4 m/z 455.1845; found 455.1845.

Methyl-1-cyclopentyl-2-(4-nitrobiphenyl-2-yl)-1H-
benzimidazole-5-carboxylate (3k)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ

8.57–8.55 (m, 2H), 8.46 (dd, J = 8.7, 2.3 Hz, 1H), 7.97
(dd, J = 8.7, 1.5 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.35 (d,
J = 8.7 Hz, 1H), 7.30–7.25 (m, 5H), 4.08 (m, 1H), 3.96 (s,
3H), 1.90–1.79 (m, 4H), 1.62–1.46 (m, 3H), 0.62 (m, 1H);
13C NMR (75 MHz, CDCl3) δ 167.7, 153.4, 148.1, 147.3,
142.9, 138.0, 135.6, 131.5, 130.4, 129.5, 129.5, 129.1, 127.8,
125.9, 125.2, 124.8, 122.9, 112.1, 58.3, 52.6, 31.2, 28.5, 25.2;
IR (cm−1, neat) 2952, 1716, 1617; MS (EI-MS) m/z 441
[M+1]+; HRMS calculated for C26H23N3O4 m/z 441.1689;
found 441.1690.

Methyl-1-cyclopentyl-2-(3′-methoxy-4-nitrobiphenyl-2-yl)-
1H-benzimidazole-5-carboxylate (3l)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.57
(s, 1H), 8.56 (s, 1H), 8.47 (dd, J = 8.7, 1.7 Hz, 1H), 7.99
(dd, J = 8.6, 1.7 Hz, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.38 (d,
J = 8.7 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 6.92 (d, J = 7.5 Hz,
1H), 6.84 (dd, J = 8.3, 2.3 Hz, 1H), 6.70 (s, 1H), 4.11 (m,
1H), 3.99 (s, 3H), 3.37 (s, 3H), 1.97–1.48 (m, 8H); 13C NMR
(75 MHz, CDCl3) δ 167.8, 160.3, 153.7, 147.9, 147.4, 143.8,
139.3, 135.8, 131.2, 131.1, 130.5, 127.6, 125.7, 124.9, 124.5,
123.1, 121.4, 116.2, 113.6, 111.9, 58.2, 55.5, 52.6, 31.2,
28.6, 25.3; IR (cm−1, neat) 2954, 1716, 1616; MS (ESI-MS)
m/z 472 [M+1]+; HRMS calculated for C27H25N3O5 m/z
471.1794; found 472.1875 [M+1]+.

Methyl-2-(biphenyl-2-yl)-1-(3-methoxypropyl)-1H-
benzimidazole-5-carboxylate (3m)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ

8.57 (d, J = 1.4 Hz, 1H), 7.99 (dd, J = 8.4, 1.4 Hz, 1H),
7.68 (d, J = 8.3 Hz, 1H), 7.64–7.49 (m, 3H), 7.28–7.17
(m, 6H), 3.96 (s, 3H), 3.61 (t, J = 6.9 Hz, 2H), 3.08 (s,
3H), 2.97 (t, J = 5.7 Hz, 2H), 1.48 (m, 2H); 13C NMR
(75 MHz, CDCl3) δ 168.1, 155.8, 142.7, 141.7, 140.2,
138.3, 132.2, 131.1, 130.4, 129.0, 128.9, 128.9, 128.0, 127.9,
124.8, 124.5, 122.4, 110.2, 69.0, 58.8, 52.5, 41.3, 29.3; IR
(cm−1, neat) 2925, 1714, 1616; MS (EI-MS) m/z 400 [M+];
HRMS calculated for C25H24N2O3 m/z 400.1787; found
400.1784.

Methyl-2-(biphenyl-2-yl)-1-(3-methylbutyl)-1H-
benzimidazole-5-carboxylate (3n)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.54
(d, J = 1.2 Hz, 1H), 7.96 (dd, J = 8.4, 1.2 Hz, 1H), 7.64 (d,
J = 8.4 Hz, 1H), 7.60–7.46 (m, 3H), 7.24–7.14 (m, 6H), 3.93
(s, 3H), 3.47 (t, J = 7.6 Hz, 2H), 1.29 (m, 1H), 1.12–1.11 (m,
2H), 0.63 (d, J = 6.3 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ

168.1, 155.8, 142.9, 141.7, 140.2, 138.1, 132.4, 131.1, 130.3,
129.1, 128.9, 128.9, 128.1, 127.9, 124.7, 124.4, 122.5, 110.2,
52.4, 42.9, 37.6, 25.9, 22.4; IR (cm−1, neat) 2954, 1716,
1616; MS (EI-MS) m/z 398 [M+]; HRMS calculated for
C26H26N2O2 m/z 398.1994; found 398.1993.

Methyl-2-(biphenyl-2-yl)-1-cyclooctyl-1H-benzimidazole-
5-carboxylate (3o)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.55
(d, J = 1.4 Hz, 1H), 7.92 (dd, J = 8.6, 1.4 Hz, 1H), 7.66–7.46
(m, 4H), 7.38 (d, J = 8.6 Hz, 1H), 7.32–7.17 (m, 5H), 3.94
(s, 3H), 3.89 (m, 1H), 2.05–1.92 (m, 2H), 1.63–1.16 (m,
11H), 0.51–0.48 (m, 1H); 13C NMR (75 MHz, CDCl3) δ

168.1, 155.2, 143.2, 141.8, 139.9, 136.3, 132.2, 131.1, 130.1,
129.4, 129.2, 129.0, 128.0, 128.0, 124.4, 124.0, 122.5, 112.4,
58.4, 52.5, 33.6, 31.5, 26.6, 26.2, 26.0, 25.7, 25.0; IR
(cm−1, neat) 2923, 1716, 1616; MS (EI-MS) m/z 438 [M+];
HRMS calculated for C29H30N2O2 m/z 438.2307; found
438.2310.

Methyl-1-benzyl-2-(biphenyl-2-yl)-1H-benzimidazole-5-
carboxylate (3p)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.57
(s, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H),
7.60–7.41 (m, 3H), 7.26–7.05 (m, 8H), 6.96 (d, J = 8.7 Hz,
1H), 6.63 (m, 2H), 4.68 (s, 2H), 3.89 (s, 3H); 13C NMR
(75 MHz, CDCl3) δ 167.9, 156.2, 143.1, 142.0, 140.2, 138.2,
135.6, 132.3, 131.1, 130.4, 1292, 129.1, 129.1, 129.1, 128.9,
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128.1, 128.0, 126.9, 124.9, 124.6, 122.6, 110.8, 52.4, 48.3; IR
(cm−1, neat) 2923, 1716, 1616; MS (EI-MS) m/z 418 [M+];
HRMS calculated for C28H22N2O2 m/z 418.1681; found
418.1680.

Methyl-2-(4-bromobiphenyl-2-yl)-1-butyl-1H-
benzimidazole-5-carboxylate (3q)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ

8.53 (d, J = 1.2 Hz, 1H), 7.97 (dd, J = 8.4, 1.2 Hz, 1H),
7.83 (d, J = 2.1 Hz, 1H), 7.74 (dd, J = 8.3, 2.1 Hz, 1H),
7.43 (d, J = 8.3 Hz, 1H), 7.26–7.16 (m, 6H), 3.95 (s, 3H),
3.45 (t, J = 7.2 Hz, 2H), 1.26–1.16 (m, 2H), 1.04–0.92
(m, 2H), 0.67 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz,
CDCl3) δ 167.9, 154.1, 142.7, 140.7, 139.1, 138.0, 135.0,
134.2, 131.8, 130.8, 129.1, 128.8, 128.3, 125.0, 124.7,
122.6, 122.1, 110.4, 52.5, 44.4, 30.9, 20.1, 13.7; IR (cm−1,

neat) 2956, 1716, 1616; MS (EI-MS) m/z 462 [M+];
HRMS calculated for C25H23BrN2O2 m/z 462.0943; found
462.0945.

Methyl-1-butyl-2-(4-methylbiphenyl-2-yl)-1H-
benzimidazole-5-carboxylate (3r)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.53
(d, J = 1.2 Hz, 1H), 7.95 (dd, J = 8.4, 1.2 Hz, 1H), 7.47–
7.38 (m, 3H), 7.21–7.13 (m, 6H), 3.93 (s, 3H), 3.44 (t,
J = 7.2 Hz, 2H), 2.43 (s, 3H), 1.24–1.16 (m, 2H), 1.02–
0.89 (m, 2H), 0.64 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz,
CDCl3) δ 168.1, 156.1, 142.8, 140.1, 138.8, 138.1, 138.1,
132.9, 131.9, 130.2, 128.9, 128.9, 128.6, 127.7, 124.7,
124.4, 122.4, 110.3, 52.4, 44.3, 30.8, 21.3, 20.1, 13.7; IR
(cm−1, neat) 2956, 1716, 161; MS (EI-MS) m/z 398 [M+];
HRMS calculated for C26H26N2O2 m/z 398.1994; found
398.1995.

Methyl-1-cyclopentyl-2-(4′-methyl-4-nitrobiphenyl-2-yl)-
1H-benzimidazole-5-carboxylate (3s)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ

8.57 (d, J = 1.5 Hz, 1H), 8.55 (d, J = 1.8 Hz, 1H), 8.46 (dd,
J = 8.6, 1.5 Hz, 1H), 7.99 (dd, J = 8.6, 1.8 Hz, 1H), 7.75 (d,
J = 8.4 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.14 (d, J = 8.4 Hz,
2H), 7.08 (d, J = 8.1 Hz, 2H), 4.12 (m, 1H), 3.99 (s, 3H), 2.30
(s, 3H), 1.96–1.49 (m, 8H); 13C NMR (75 MHz, CDCl3) δ

167.9, 153.8, 148.2, 147.1, 143.7, 139.7, 135.9, 135.2, 131.2,
130.7, 130.1, 128.9, 127.7, 125.7, 124.9, 124.5, 123.2, 111.9,
58.2, 52.5, 31.1, 28.5, 25.2, 21.5; IR (cm−1, neat) 2952,
1716, 1616; MS (ESI-MS) m/z 456 [M+1]+; HRMS: cal-
culated for C27H25N3O4 m/z 455.1845; found 456.1295
[M+1]+.

Methyl-2-([1,1′-biphenyl]-2-yl)-1-isopropyl-1H-
benzo[d]imidazole-5-carboxylate (3t)

1H NMR (300 MHz, CDCl3, δ = 7.24 ppm as standard) δ 8.57
(d, J = 1.3 Hz, 1H), 7.95 (dd, J = 8.6, 1.3 Hz, 1H), 7.67–7.49
(m, 4H), 7.45 (d, J = 8.7 Hz, 1H), 7.28–7.19 (m, 5H), 4.10
(m, 1H), 3.97 (s, 3H), 1.27 (d, J = 6.9 Hz, 3H), 0.71 (d,
J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 168.0, 155.4,
141.9, 140.1, 136.1, 132.2, 131.1, 130.2, 129.3, 129.3, 129.1,
129.1, 128.2, 128.0, 124.6, 124.2, 122.5, 112.1, 52.5, 49.4,
21.7, 19.9; IR (cm−1, neat) 2983, 1716, 1616; MS (ESI-MS)
m/z 371 [M+1]+; HRMS calculated for C24H22N2O2 m/z
370.1681; found 371.1750 [M+1]+.
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