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In this Letter, the characteristics of set process of hafnium oxide based resistance random

access memory are investigated by different set processes with increasing compliance current.

Through current fitting, carrier conduction mechanism of low resistance state changes from

hopping to surface scattering and finally to ohmic conduction with the increase of setting compliance

current. Experimental data of current-voltage measurement under successive increasing temperature

confirms the conduction mechanism transition. A model of filament growth is eventually proposed in

a way by merging discrete metal precipitates and electrical field simulation by COMSOL Multiphysics

further clarifies the properties of filament growth process. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4825104]

Conventional nonvolatile floating memory is expected to

reach certain technical and physical limits in the future.

Alternative memories have been extensively investigated and

among different non-volatile memory (NVM), resistance ran-

dom access memory (RRAM) has attracted great attention in

next-generation NVMs applications owing to the advantages

of low operating power, fast operation speed, and high den-

sity integration.1–12 Researchers have done a lot of research

on RRAM including ways to modify its characteristics.13–21

The formation and rupture of filament are considered to

be the reason of resistance switching process in resistance

random access memory.22,23 However, the instantaneous re-

sistance switching is so fast that transcends the measurement

capability of modern instruments.

In our research, single layer hafnium oxide7,18 by ALD

(atomic layer deposition) was deposited to work as the

RRAM resistance switching layer. Different set processes

with increasing current compliance (C.C.) were applied so as

to analyze its characteristics. Conduction current fitting to-

gether with vary-temperature current-voltage measurement

data were thoroughly investigated, from which conduction

filament model was proposed. Finally, COMSOL Multiphysics

was applied to simulate electrical field distribution under dif-

ferent set processes with vary current compliance. In order to

further confirm the device properties, endurance and reten-

tion tests are also conducted.

First, a 200 nm TiN bottom electrode was deposited by

using RF sputter. Second, lithography process was taken to

pattern the cell size via. After that, dielectric layer with a

thickness of 10 nm was grown using the ALD process.

Finally, TiN/Ti layer was sputtered with a thickness propor-

tion of 40 nm/50 nm as our top electrode and acetone was

used to etch the photo resistor. The cell size of RRAM devi-

ces in this experiment is 0.24 lm � 0.24 lm.

The entire electrical measurements of devices were

performed using Agilent B1500 semiconductor parameter

analyzer.

Before standard current-voltage measurement, an elec-

troforming process was required to activate all of the RRAM

devices. Afterwards, DC sweeping was applied to investigate

RRAM resistance switching properties.24 In our experiment,

we mainly focused on the set process and in order to analyze

its characteristics, different set processes with increasing cur-

rent compliance were employed. Different set processes with

C.C. of 50 lA, 200 lA, 400 lA, and the corresponding low

resistance state (LRS) current fitting were shown in Figure

1(a). Through conduction current fitting, a noticeable transi-

tion of carrier conduction mechanism was found, which grad-

ually changed from hopping conduction to surface scattering

and finally to ohmic conduction with the increase of compli-

ance current.

To testify the validity of fitting, vary-temperature I-V

measurement was applied and the results were shown in

Figure 2. The C.C. for Figures 2(a)–2(c) were 50 lA, 400 lA,

and 200 lA, respectively. It can be observed from the experi-

mental data that the current of (a) was directly proportional to

temperature while the current of (b) was the opposite. And

the current of (c) was independent of temperature. All thea)Electronic mail: tcchang@mail.phys.nsysu.edu.tw

0003-6951/2013/103(16)/163502/4/$30.00 VC 2013 AIP Publishing LLC103, 163502-1
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experimental data were in accordance with their correspond-

ing conduction mechanism.

From the experimental results, a conduction filament

model of set process was proposed (Figure 3). As the inten-

sity of current was the main reason for the soft break down

of switching dielectric layer, it is easier to break down the

dielectric with the increase of conduction current intensity.

Thus, denser metal ions would accumulate to form conduc-

tion filaments. A current compliance of 50 lA was not strong

enough to form continuous filament, which resulted in carrier

hopping conduction owing to the discrete metal precipitates

(Figure 3(a)). With the intensity increasing of compliance

current, the density of metal precipitates will rise and it

became easier for those discrete metal dots to join and merge

with each other, from which relative complete filaments can

be formed, as shown in Figure 3(b). Because of the forma-

tion of smoother carrier conduction path and the independ-

ence of temperature, the carrier conduction mechanism

transformed from hopping conduction to surface scattering

(Figure 1(b)). But the filament is not thick enough for numer-

ous carriers to conduct through, which leads to the crowding

of carriers. And the carriers have to force out from the re-

stricted filament which is also the reason why we can find

space scattering conduction.25 Meanwhile, measurement

result of Figure 2(c) also complies with surface scattering

mechanism as current is independent with temperature. If the

FIG. 1. (a) Current conduction mechanism fitting of LRS with different set current compliance. (b) and (c) are the hopping and ohmic current fitting,

respectively.

FIG. 2. (a)–(c) are the I-V characteris-

tics of LRS measured under increasing

temperature environment. The current

compliance of set process for (a), (b),

and (c) is 50 lA, 400 lA, and 200 lA,

respectively.
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C.C. further rises to 400 lA, ohmic conduction mechanism

will dominate due to the formation of thicker and more con-

tinuous filament (Figure 3(c)). And the fitting result of ohmic

conduction is shown in Figure 1(c).

To better understand the mechanism of filament growth

with different C.C., we utilize COMSOL Multiphysics software

to simulate the distribution of electrical field. From Figure 4,

it can be obviously seen that there exists higher density of

electrical field around the tip of metal filament and the area

of micro-metal precipitates in dielectric layer. Thus, under

small C.C. condition, carriers will hop through those discrete

precipitates. While with the increase of C.C., the density of

metal precipitates will increase and the electrical field

around the vicinity of the precipitates will rise. Thus, there

exists more possibility for discrete metal precipitates merg-

ing together to form relative more complete filament. But as

the filament is not very thick, carriers will be restricted, lead-

ing to the surface scattering. If the C.C. of set process is big

enough, complete and stable filament will form. And that is

also the reason why we can observe ohmic conduction

phenomenon.

As endurance and retention properties are basic require-

ments for non-volatile memories, we have also carried out

the tests to confirm the performance and stability for the

multi-state behavior (not shown here). During more than

1000 cycling tests, resistance window remains stable without

observing any degradation, and to the retention characteris-

tics the four resistance states reveal good stability.

In conclusion, set process with different current compli-

ance is thoroughly investigated. With the increase of C.C,

the conduction mechanism transforms from hopping conduc-

tion to surface scattering and finally to ohmic conduction.

The transition of carrier conduction mechanism is explained

by our model, from which instantaneous resistance switching

and filament growth process can be better understood.

COMSOL Multiphysics is used to simulate the distribution of

electrical field together with the corroboration for endurance

and retention tests, which also confirms the phenomenon of

discrete metal precipitates merging process.
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