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Abstract: We demonstrate an approach to generate a class of 
pseudonondiffracting optical beams with the transverse shapes related to the 
superlattice structures. For constructing the superlattice waves, we consider 
a coherent superposition of two identical lattice waves with a specific 
relative angle in the azimuthal direction. We theoretically derive the general 
conditions of the relative angles for superlattice waves. In the experiment, a 
mask with multiple apertures which fulfill the conditions for superlattice 
structures is utilized to generate the pseudonondiffracting superlattice 
beams. With the analytical wave functions and experimental patterns, the 
pseudonondiffracting optical beams with a variety of structures can be 
generated systematically. 
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1. Introduction 

A nondiffracting wave field is comprehended as a monochromatic optical field, whose 
transverse shape remains invariant in free-space propagation. In 1987, Durnin proposed that 
the nondiffracting wave fields were exact solutions to the homogeneous Helmholtz equation 
[1]. Such particular solutions can be described as Bessel functions and are called 
nondiffracting Bessel beams. The realizable beams that propagate with relatively small 
divergence angle up to a certain range; they have the finite energy and are known as 
pseudonondiffracting optical beams. In the same year, Durnin et al. [2] first experimentally 
realized a pseudonondiffracting Bessel beam in a cylindrical coordinates system. Since the 
breakthrough research by Durnin, nondiffracting Bessel beams have been extensively studied 
and applied in diverse fields, such as optical manipulation [3–5], optical coherence 
tomography [6], and optical interconnects [7]. In recent years, scientists, mathematicians, and 
artists have been fascinated with two-dimensional (2D) kaleidoscopic nondiffracting optical 
patterns [8]. More recently, realizing nondiffracting optical patterns related to crystalline, 
quasicrystalline and other ordered structures has become an intriguing issue [9–12]. 

A 2D superlattice pattern is a spatially periodic structure composed of two or more simple 
planeforms. Since Kudrolli et al. [13] first observed superlattice patterns in a two-frequency 
forcing Faraday experiment, the superlattice patterns have been widely studied in the 
experiments of parametrically driven surface waves [14–16]. The superlattice patterns 
observed by Kudrolli et al. [13] are formed by the coherent superposition of two hexagonal 

lattice waves with a relative angle of ( )12sin 1 2 7 22− ≈ ° . Mathematically, there are 

numerous relative angles satisfying the condition for generating the superlattice waves from 
superposing two identical lattice waves. Even so, how to determine the specific relative 
angles for constructing the superlattice waves has not been explored in detail. Therefore, the 
determination of relative angles is the first issue for generating pseudonondiffracting optical 
beams with the superlattice structures. 

In this paper, we theoretically derive a general condition for the relative angles to 
construct the superlattice waves from superposing two identical lattice waves. With the 
derived formulas for the relative angles, numerous superlattice patterns are numerically 
demonstrated. To realize the pseudonondiffracting optical beams with superlattice structures, 
we generate the quasi-plane waves by employing a collimated coherent laser to illuminate a 
mask with multiple tiny apertures. The positions of the apertures are precisely manufactured 
with a stencil laser cutting machine to fulfill the condition for generating the superlattice 
patterns. We also analyze the influence of the aperture size on the formation of the transverse 
unit cell in the pseudonondiffracting superlattice beam. The experimental results are found to 
be in a good agreement with the numerical calculations. Furthermore, we manifest the 
structures of phase singularities for the superlattice patterns. The optical fields with phase 
singularities, also known as optical vortices, have been studied and generated a lot of interest 
in recent years [17, 18]. We expect that the pseudonondiffracting superlattice beams with 
phase singularities can be potentially beneficial to future applications for the optical vortex 
beams. 

2. Theoretical analysis for forming superlattice waves 

A 2D lattice wave in polar coordinates ( ),ρ φ  which is formed by the superposition of three, 

four or six plane waves can be expressed as [12] 

 ( )
1

0

1
, ; ,s

q
iK

q s
s

K e
q

ρψ ρ φ
−

⋅

=

= 
 

 (1) 

where ( ) ( )( )cos 2 , sin 2sK K s q K s qπ π= ⋅ ⋅


, ( ) ( )( )cos , sinρ ρ φ ρ φ= ⋅ ⋅
, sK


 is the wave 

vector, and q is equal to 3, 4, or 6. Considering the coherent superposition of two identical 
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lattice waves with a relative angle in the azimuthal direction, we can obtain the superposed 
waves as 

 ( ) ( ) ( ), ; , , ; , ; ,q s q q s q sK K Kρ φ ψ ρ φ ψ ρ φ ′Ψ Δ = +
  

 (2) 

where ( ) ( )( )cos 2 , sin 2s q qK K s q K s qπ π′    = ⋅ + Δ ⋅ + Δ   


, and qΔ  is the relative angle 

between sK


 and sK ′


. Figure 1(a)-1(c) depicts the wave vectors of the superposed waves with 

q = 3, 4, and 6, respectively. The solid and dashed vectors represent sK


 and sK ′


, respectively. 

 

(b) 4q =(a) 3q = (c) 6q =

qΔ qΔ
qΔ

 

Fig. 1. The schematic diagrams of the wave vectors of the superposed waves 

( ), ; ,
q s q

Kρ φΨ Δ


 with (a) q = 3, (b) q = 4, and (c) q = 6. 

The superposed waves are spatially periodic when the wave vectors are located on the 
reciprocal lattice points of the superposed wave fields. In other words, the wave vectors can 
be expressed as the linear combinations of reciprocal primitive translation vectors. For 
instance, since the reciprocal primitive translation vectors are orthogonal for q = 4, the wave 
vectors shown in Fig. 1(b) must be satisfied the following conditions 

 

1 2
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2 2 2 2

,

s s s

s s s
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K n b m b
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K b n m b n m K
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′ ′ ′= + = + =

 
 

 
 (3) 

where ( ),s sn m  and ( ),s sn m′ ′  are two coprime integer pairs, 1b


 and 2b


 are the reciprocal 

primitive translation vectors of the spatially periodic superposed waves, and 1 2b b b= =
 

. 

Combining all conditions of the wave vectors, the most general solutions of sn′  and sm′  are 
given by 

 .s s

s s

n m

m n

′ =
 ′ =

 (4) 

Therefore, sK ′


 can be rewritten in terms of sn  and sm  as 

 1 2 .s s sK m b n b′ = ⋅ + ⋅
 

 (5) 

There are some accidental solutions of sn′  and sm′  which are not included in Eq. (4). Because 
these cannot be expressed in an analytic form, we focus on the most general solutions given 
by Eq. (4). As a result, the specific relative angles qΔ  for spatially periodic waves are subject 

to following the condition 

 1 10 0 0 0
2 2

0 00 0

2
cos cos , for 4.q

K K n m
q

n mK K
− −
 ′  ⋅ ⋅ Δ = = =   +′   

 
      (6) 
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By utilizing the condition of relative angles, we can generate a class of superposed waves for 
q = 4 with spatial periodicity. With the wave vectors in terms of the reciprocal primitive 
translation vectors, the reciprocal lattice constant can be given by 

 1 2 2 2
0 0

, for 4.
K

b b b q
n m

= = = =
+

 
    (7) 

Equation (7) indicates that the spatial period becomes longer when the value of 2 2
0 0n m+  

gets larger. Following an analogous derivation, the criteria for spatial periodicity of 
superposed waves with q = 3 and 6 can be obtained. Since the scalar product of the reciprocal 
primitive translation vectors is −1/2 in the cases of q = 3 and 6, the condition of the relative 
angles leads to the equation 

 ( )
2 2

1 0 0 0 0

2 2
0 0 0 0

4
cos , for 3 or 6,

2
q

n m n m
q

n m n m
−
 − − + ⋅ Δ = =
 + − ⋅ 

     (8) 

and the reciprocal lattice constant is given by 

 
2 2

0 0 0 0

, for 3 or 6.
K

b q
n m n m

= =
+ − ⋅

     (9) 

Consequently, the superlattice waves can be constructed by the superposed waves 

( ), ; ,q s qKρ φΨ Δ


 with specific relative angles. 

Figures 2(a)-2(c) depict the calculated patterns for the intensity of the superlattice waves 

( ) 2
, ; ,q s qKρ φΨ Δ


 with q = 4. It can be seen that a rich variety of superlattice wave patterns 

can be constructed by controlling the specific relative angle. The numerical patterns for the 
intensity of superlattice waves with q = 3 and 6 are shown in Figs. 3(a)-3(c) and Figs. 3(d)-
3(f), respectively. These numerical patterns show that the specific relative angle can turn into 
the main parameter for generating nondiffracting optical superlattice beams. In the following 
section we present an approach to realize the pseudonondiffracting optical superlattice beams. 
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2 17 7
(c) 4, t cos
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Fig. 2. Numerical patterns for the intensity of the superlattice waves ( ) 2

, ; ,
q s q

Kρ φΨ Δ


 with 

q = 4. 
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Fig. 3. Numerical patterns for the intensity of the superlattice waves ( ) 2

, ; ,
q s q

Kρ φΨ Δ


 with 

(a)-(c) q = 3, and (d)-(f) q = 6. 

3. Generation of the pseudonondiffracting optical superlattice beams 

A pseudonondiffracting Bessel beam can be generated by an annular slit illuminated with a 
collimated light and placed in the focal plane in front of a lens [2]. Based on Fourier optics, 
the relation between the input field ( ),iE ρ φ′ ′  in the focal plane in front of a lens and the 

output field ( ), ,oE zρ φ  behind the lens at a distance z can be expressed as 

 ( )
( )

( )
( )

22
2 21 cos

2, , , ,

i f z z
i i

f f f
o i

ie
E z E e e d d

f

π
π ρ πρρλ φ φ
λ λρ φ ρ φ ρ ρ φ

λ

+ ′   ′− ′− − 
 − ′ ′ ′ ′ ′=   (10) 

where λ  is the wavelength of coherent light source, and f is the focal length of the lens. For a 
pseudonondiffracting Bessel beam, the input field is determined by an infinitesimally thin 
annulus at Rρ′ =  expressed as 

 ( ) ( ), ,iE Rρ φ δ ρ′ ′ ′= −  (11) 

where ( )δ •  is the Dirac delta function. A finite-energy pseudonondiffracting Bessel beam 

requires an annular ring of finite thickness at the input plane. The pseudonondiffracting 
beams with crystalline and quasicrystalline structures can be generated with a collimated light 
illuminating a mask with multiple apertures regularly distributed on a ring [12]. Therefore, 
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the input field just after the mask for the pseudonondiffracting beams with crystalline and 
quasicrystalline structures can be approximately given by 

 ( ) ( )
1

0

1 2
, ,

q

i
s

s
E R

q q

πρ φ δ ρ δ φ
−

=

 ′ ′ ′ ′= − − 
 

  (12) 

where R is the radius of the ring where the apertures are located on. Equation (12) implies that 
the aperture size must be infinitesimal for generating ideal nondiffracting beams with 
crystalline structures. For generating nondiffracting superlattice beams, the input field is 
given by 

 ( ) ( ) 1

0

2 2
, ,

q

i q
s

R s s
E

q q q

δ ρ π πρ φ δ φ δ φ
−

=

′  −    ′ ′ ′ ′= − + − − Δ    
    

  (13) 

where Δq satisfies the criteria of superlattice patterns in Eq. (6) or (8). However, an 
infinitesimal aperture is not realistic. Since the aperture sizes cannot be infinitesimal, the 
generated beams are called the pseudo-nondiffracting beams. Furthermore, the selection of 
the aperture size determines how many spatial periods can be included in the 
pseudonondiffracting superlattice beam. Therefore, the analysis for determining the aperture 
size is of crucial importance. For considering the effect of the aperture size with finite energy, 
we exploit the multiple Gaussian beams to model the input field just after the apertures. Based 
on the locations of the pinholes in Eq. (13), the multiple Gaussian waves for describing the 
input field is given by 

 

( ) ( )( )

( )( )
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−

=

′ ′ ′+ − ⋅ −′ ′ = −
⋅

′ ′ ′+ − ⋅ − − Δ
+ −

   
      

 
 
 



                                            

 (14) 

where the beam waist of the Gaussian beam is set to be the radius of the aperture a. Since the 
output field in the focal plane behind the lens can be found by the Fourier transform of the 
input field, the substitution of Eq. (14) into Eq. (10) and considering z = f lead to an equation 
for the output field 

 
( )

( )
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2

2

2

2 2

21 2
2

2

22 coscos

2
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.
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i f
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i fa

e e e d d

π
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πρρρ ρ φ φφ φ
λ

ρ φ
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ρ ρ φ

−

′′ ′− ′− −′−
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′ ′ ′× ⋅ ⋅                        

 (15) 

With transformation of coordinates from polar coordinates to Cartesian coordinates, Eq. (15) 
can be an analytical integration by utilizing Gaussian integral: 

 
2 22 / .x xe dx eα β β απ

α
∞ − −

−∞
=  (16) 

By some algebraic operation, the output field in polar coordinates can be derived as 

 ( )
( )

2
22

2 2 2 2 22 1 cos cos

0

, ; .
q

a
i f R s R sqf i i

f q f q
o

s

a e e
E f e e

i f

ππ ρ π π π πλλ ρ φ ρ φ
λ λπρ φ
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−
   − − − − − −Δ   
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 = ⋅ +
  

  (17) 
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It can be seen that the terms in the summation represent the superlattice waves with 

2K R fπ λ= . The factor of ( )2 2exp a fπ ρ λ−  shows that the larger the aperture size, the 

smaller visible region, namely the less energy in the final beam. Figures 4(a)-4(c) illustrate 
the numerical patterns for the intensity of the output fields ( ), ;oE fρ φ . It can be seen that 

more spatial periods can be observed with smaller size of apertures, but it is arduous to 
generate visible patterns with too small size of apertures in experiments. Thus, the radius of 
aperture is selected as 85 mμ  for generating clear pseudonondiffracting optical superlattice 
patterns. 

6mm 6mm 6mm

(b) 85a mμ=(a) 0a → (c) 120a mμ=  

Fig. 4. (a)-(c) Numerically patterns for the output intensity profiles of pseudonondiffracting 
optical superlattice patterns with different radii of apertures. 

Based on the theoretical analysis, an optical configuration is set up to realize 
pseudonondiffracting optical superlattice patterns, as shown in Fig. 5. The light source was a 
linearly polarized 20-mW He-Ne laser with central wavelength at 632.8 nm. A beam 
expander was employed to generate a collimated light and reduce the beam divergence less 
than 0.1 mrad. By using a laser stencil-cutting machine, we fabricate the steel masks with 
high precision. The radius of the ring and aperture are 3 mm and 85 mμ , respectively. The 
focal length of the lens is 1000 mm. Interference patterns formed in the region behind the 
focal lens were imaged by a CCD camera. 

He-Ne Laser

Spatial Filter & 
Beam Expander

Focusing 
lens

Mask

x̂

ŷ

ẑ

CCD camera
Imaging

lens

 

Fig. 5. Experimental setup for generating pseudonondiffracting optical beams with superlattice 
structures. 

Figures 6(a)-6(c) display the interference patterns for pseudonondiffracting optical 
superlattice structures with q = 4 observed in the experiment under the condition of the 
optimal alignment. It can be seen that the experimental observations agree very well with the 
numerical patterns shown in Fig. 2(a)-2(c). The experimental patterns reveal that the relation 
between the reciprocal lattice constant and the spatial period is satisfied in our theory. Figures 
7(a)-7(c) and Figs. 7(d)-7(f) illustrate the experimental results for pseudonondiffracting 
optical superlattice patterns with q = 3 and 6, respectively. Once again, the experimental 
results match very well the numerical calculations depicted in Figs. 3(a)-3(c) and Figs. 3(d)-
2(f), respectively. It can be experimentally observed that there are honeycomb strucutres in 
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some optical superlattice pattern with q = 3, as shown in Figs. 7(b) and 7(c). Moreover, in 
Fig. 7(f), the optical superlattice pattern with q = 6 displays the exotic kaleidoscopic structure. 
The excellent agreement validates the theoretical analysis of superlattice waves and confirms 
the experimental approach. The experimental patterns also confirm our analysis of the 
influence of the aperture size on the transverse unit cell. 
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1
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3 1qq − ⋅ ⋅ = Δ =  + 
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(b) 4, cos

4 1qq − ⋅ ⋅ = Δ =  + 
1

2 2

2 17 7
(c) 4, t cos

17 7qq − ⋅ ⋅ = Δ =  +   

Fig. 6. Experimental patterns observed for pseudonondiffracting optical superlattice beams 
with q = 4 under the optimal alignment. 
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Fig. 7. Experimental patterns observed for pseudonondiffracting optical superlattice beams 
with (a)-(c) q = 3, and (d)-(f) q = 6. 

The reliable generation of optical beams with complex structures has become increasingly 
important in the studies of optical manipulations. The complex optical fields with the phase 
singularities, so-called the optical vortex beams, have been extensively employed. For 
superlattice waves, the phase singularities are the undefined locations in the phase angle fields 
which are given by 
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 ( ) ( ) ( ){ }1, ; , tan Im , ; , Re , ; , ,q s q q s q q s qK K Kρ φ ρ φ ρ φ−    Θ Δ = Ψ Δ Ψ Δ   
  

 (18) 

where ( )Im , ; ,q s qKρ φ Ψ Δ 


 and ( )Re , ; ,q s qKρ φ Ψ Δ 


 are the imaginary and real parts of 

the superlattice waves, respectively. Figures 8(a)-8(c) illustrate the contour plots of phase 

fields ( ), ; ,q s qKρ φΘ Δ


 for Figs. 3(a)-3(c) to display the feature of the phase singularities, 

respectively. The experimental results verify that the various vortex-lattice structures can be 
generated by the pseudonondiffracting optical superlattice patterns with q = 3. 

4. Conclusions 

In conclusion, the general conditions of the relative angles for constructing the superlattice 
waves have been theoretically derived from superposing two identical lattice waves. With the 
derived formulas, we have numerically presented a variety of superlattice patterns. In order to 
realize pseudonondiffracting optical beams related to the superlattice structures, we have 
employed a collimated coherent laser to illuminate a mask with multiple tiny apertures. We 
have used a stencil laser-cutting machine to fabricate these apertures precisely, and make the 
positions of the apertures fulfill the conditions for generating superlattice patterns. 
Considering the realistic patterns, the influence of the aperture size on the number of the 
transverse unit cells has been also analyzed. The excellent agreement corroborates the 
theoretical analysis of superlattice waves and supports the experimental configuration for 
generating pseudonondiffracting optical superlattice beams. Furthermore, the structures of 
phase singularities for some superlattice patterns have been manifested. 
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 for the boxed regions shown in 

Fig. 3(a)-3(c), respectively. 
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