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This work develops an augmented particle swarm optimization (AugPSO) algorithm using two new strate-
gies,: boundary-shifting and particle-position-resetting. The purpose of the algorithm is to optimize the
design of truss structures. Inspired by a heuristic, the boundary-shifting approach forces particles to move
to the boundary between feasible and infeasible regions in order to increase the convergence rate in search-
ing. The purpose of the particle-position-resetting approach, motivated by mutation scheme in genetic
algorithms (GAs), is to increase the diversity of particles and to prevent the solution of particles from
falling into local minima. The performance of the AugPSO algorithm was tested on four benchmark truss
design problems involving 10, 25, 72 and 120 bars. The convergence rates and final solutions achieved
were compared among the simple PSO, the PSO with passive congregation (PSOPC) and the AugPSO
algorithms. The numerical results indicate that the new AugPSO algorithm outperforms the simple PSO
and PSOPC algorithms. The AugPSO achieved a new and superior optimal solution to the 120-bar truss
design problem. Numerical analyses showed that the AugPSO algorithm is more robust than the PSO and
PSOPC algorithms.

Keywords: particle swarm optimization (PSO); optimization design; truss structures; stochastic
search method

1. Introduction

In the past two decades, stochastic search methods based on natural phenomena have been widely
used to solve structural optimization problems. Such methods include the genetic algorithm (GA)
(Wu and Chow 1995), the ant colony optimization (ACO) algorithm (Charles and Barron 2004,
Kaveh and Shojaee 2007) and the particle swarm optimization (PSO) algorithm (Fourie and
Groenwold 2002, Schutte and Groenwold 2003, Li et al. 2006, Liu et al. 2006 Fan and Chiu
2007, Fan and Chang 2009, 2010, Montazeri-Gh et al. 2012). Unlike conventional mathematical
optimization approaches, these stochastic-based approaches can find a solution without gradient
information and they therefore have a greater global search capacity. Despite their clear advan-
tages, they also have some drawbacks. The convergence of binary GA is slow and the result may
not be the optimal solution. The ACO has a longer search time than other methods and tends to
terminate at a non-optimal solution. Whereas PSO has a high convergence rate, it easily falls into a
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1252 Y.C. Lu et al.

local optimum in non-convex problems. The PSO algorithm, which is a probabilistic and iterative
approach, finds the optimal position in search space by simulating the behaviour of a flock of
foraging birds. Meanwhile, the PSO algorithm has fewer parameters and is easier to implement
than the GAs. For some problems, it also has a higher convergence rate than other evolutionary
algorithms (Kennedy et al. 2001).

The particle swarm originated as a model of social flocking behaviour. Reynolds (1987) was
fascinated by the aesthetics of bird flocking and used a particle system to capture this beauti-
ful phenomenon as a computer animation. Heppner and Grenander (1990) sought the underlying
rules that govern the synchronous flocking of numerous birds. The synchrony of flocking has been
thought to be a function of the efforts of birds to maintain an optimal distance between them-
selves and adjacent birds. Kennedy and Eberhart (1995) developed the particle swarm optimization
algorithm based on the synchrony of flocking behaviour and the assumption that individual mem-
bers of a flock share social information and experience in their search for food. The PSO algorithm
considers a population of particles as a group of potential solutions, and moves them around in
the search space to find the optimal solution. The motions of the particles are determined from
the best positions in the search space, which are updated whenever better positions are found by
the particles from time step to time step.

The PSO algorithms have proven effective in many applications and fields, including the training
of game agents, image and data clustering, power systems, applied mathematics, design opti-
mization, controller design, bioinformatics, data mining, and others (Engelbrecht 2005). These
algorithms can quickly obtain robust solutions to nonlinear, non-differentiable and multi-modal
problems (Shi and Eberhart 1998). Exploration and exploitation are two search strategies for
solving an optimization problem. The PSO balances exploration (global search) with exploita-
tion (local search) by selecting an appropriate PSO algorithm and parameters (Binkley and
Hagiwara 2008). Although the PSO algorithm can rapidly converge in the early searching
stage, premature convergence may cause the particle searching procedure to fall into a local
optimum.

Most modifications to the simple PSO have been made to improve its convergence rate and to
increase the diversity of the swarm. Shi and Eberhart (1998) enhanced the effectiveness of the
particle swarm optimizer by introducing the inertia weight concept to balance exploration and
exploitation. The inertia weight can be a positive constant or a positive function of time.A properly
chosen inertia weight ensures that the optimal solution is reached rapidly. Clerc (1999) introduced
a constriction particle swarm optimization (CPSO) that included a constriction factor for increas-
ing the convergence capacity of a local search. Eberhart and Shi (2000) compared CPSO and
PSO with methods based on inertia weight and concluded that the best method is to apply the
constriction factor while limiting the maximum velocity to a dynamic range in each dimension.
He et al. (2004b) introduced the concept of passive congregation, which affects particle velocity
according to the positions of other randomly selected particles. A particle swarm optimizer with
passive congregation (PSOPC) can improve the search efficiency and the probability of finding
the optimal solution. Shelokar et al. (2007) proposed a particle swarm ant colony optimization
(PSACO) approach that combines PSO for global search and ACO for local search. The PSACO
uses PSO for global optimization and uses an ant colony approach for updating particle positions
so that the feasible solution space can be rapidly identified. A heuristic particle swarm optimizer
(HPSO) introduced by Li et al. (2007), which combined PSOPC with harmony search, effec-
tively increased the convergence rate in the early stage and reached the optimal design more
rapidly than PSO or PSOPC. Kaveh and Talatahari (2009b) proposed a heuristic particle swarm
ant colony optimization (HPSACO) based on PSOPC, ant colony optimization and a harmony
search scheme. Their comparison results showed that their HPSACO has better efficiency and
robustness than other PSO-based algorithms and has a higher convergence rate than PSO and
PSOPC.
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Engineering Optimization 1253

Mutation is a powerful strategy employed in GA to maintain the diversity of the population and
to extend the exploration domain. Many mutation operators have been applied to PSO to increase
particle diversity in a swarm. A Cauchy mutation operator introduced by Stacey et al. (2003)
significantly improved performance in all dimensions of the Rastrigin and Rosenbrock functions
and in dimensions 20 and 30 of the Ackley function. The Cauchy distribution resembles a normal
distribution except for its higher probability in the tails. This increases the probability of generating
large values. Andrews (2006) used various mutation operators to compare performance in solving
optimization problems. His experimental results showed that including mutation operators in
PSO improves optimization performance in both the local and global versions; however, the
performance enhancement in each mutation operation depends on the difficulty of the optimization
problem. Ling et al. (2008) applied a wavelet theory-based mutation operation to improve solution
quality by enhancing the efficiency of the PSO in exploring the solution space. Wang et al. (2010)
adopted a unified tabu and mutation framework to increase search diversity and avoid stagnation
in local optima. Only the most frequently tabued particle is mutated in the mutation phase of the
proposed framework.

Throughout the particle searching procedure, balancing exploration and exploitation is crucial
for an effective optimization algorithm. The PSO has difficulty balancing global and local searches.
The goal of this work is to develop an augmented particle swarm optimization (AugPSO) algorithm
with an increased convergence rate in early search and increased diversity that does not fall
into a local optimum. The two major strategies used in the AugPSO algorithm are heuristic-
inspired boundary-shifting and mutation-like particle-position-resetting. The optimal solution
to constrained optimization problems is usually in the critical boundaries between the feasible
and infeasible regions (Singh et al. 2009). The boundary-shifting strategy, which is inspired by
heuristics, moves the particles near the critical area in the early iterations and increases the early
convergence rate. Motivated by mutation in GA, the particle-position-resetting strategy randomly
resets the particle position farther away from the current centre of convergence to maintain the
particle diversity and to avoid premature convergence to local minima. This study applies the
AugPSO algorithm to the problem of optimizing truss design. The performance of the AugPSO
algorithm is tested in four examples. The numerical convergence rate and final results are compared
with those of simple PSO, PSOPC and other algorithms in the literature. A stochastic analysis is
also performed to evaluate the performance of the algorithm.

2. Continuous design variables problem

This investigation presents a general truss structure design optimization problem under displace-
ment and stress constraints. The general form is as follows:

min O(X)

subject to hj(X) ≤ ej for j = 1, 2, . . . , J

xl
n ≤ xn ≤ xu

n for n = 1, 2, . . . , N

where the objective function O(X) is the total weight of the truss. The function hj(X) and ej are the
jth inequality constraint function and its predefined specified threshold, respectively. The decision
variable X is composed of N design variables, X = {x1, x2, . . . , xN }, which are the cross-sectional
areas of the bar members of a truss. These design variables define the design space; the objective
function is a ‘surface’ of N dimensions, embedded in a space of N + 1 dimensions. The design
variable xn represents the cross-sectional area of the nth member of a truss. The lower and upper
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1254 Y.C. Lu et al.

limits on the design variable xn are xl
n and xu

n , respectively. An available solution region (problem
search space) for the optimization problem is defined in terms of these limits. Inequality constraints
can then be applied to reduce the size of the feasible region.

3. Augmented particle swarm optimization algorithm

The AugPSO algorithm is based on simple PSO but applies two new mechanisms for enhancing
its convergence rate and particle diversity. The boundary-shifting approach is employed to move
particles close to the critical boundaries and to reduce the search time in the optimization process.
The particle-position-resetting mechanism is utilized to maintain the diversity of solutions in the
premature convergence process and to ensure that the final solution does not fall into a local
optimum. The following sections describe the simple PSO, the new boundary-shifting strategy
and the particle-position-resetting strategy.

3.1. Particle swarm optimization algorithm

The PSO developed by Kennedy and Eberhart (1995) is a population-based metaheuristic search
method that uses swarm intelligence. The algorithm comprises a population of particles that
are initiated with random potential solutions (positions). As these particles systematically move
around the problem search space, each generates a new position according to an inertial veloc-
ity vector and two experiences, its own search experience (including the best position found
in earlier searches) and the experience of the swarm (including the optimal solution currently
captured by the population). The respective equations used for updating particle velocities and
positions are:

V k+1
i = wV k

i + c1r1(P
k
i − Xk

i ) + c2r2(P
k
G − Xk

i ) (1)

Xk+1
i = Xk

i + V k+1
i for i = 1, 2, . . . , S (2)

where k is the number of iterations; i is the number of particles in a given swarm with S particles;
Xk

i and V k
i represent the position and velocity, respectively, of the ith particle in the kth iteration;

w is a given constant, denoting the inertia weight; c1 and c1 are positive constants for cognitive
and social scaling parameters, respectively; r1 and r1 are two working variables generated using
a uniform random function in the range [0,1]; Pk

i is the best position of the ith particle up to the
kth iteration, and Pk

G is the best global position at present among all particles in the swarm. The
objective function determines the particle solution quality. In Equation (1), the first term is particle
velocity, which is determined by particle inertia; the second term represents particle cognition;
the third term is the social activity of the swarm. The last two terms determine the change of
position in each time interval iteration, and both are velocity terms.

The problem of optimizing truss design is formulated by using a swarm of particles to denote
a group of S truss structures. Position Xk

i of a particle in the swarm represents the cross-sectional
areas of truss members of the ith structure in the kth iteration; the best position (solution) Pk

i of
ith particle (structure) can be obtained by applying the objective function to find the total weight
of the truss and then comparing it with Pk−1

i . The best global solution Pk
G in the kth iteration is the

best solution among all Pk
i for i = 1, 2, . . . , S. Since the current optimal structure is equivalent to

Pk
G, the new velocity V k+1

i and position Xk+1
i can be obtained by the above equations. Compared

to its previous position, the particle should then be closer to the optimal solution.
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Engineering Optimization 1255

3.2. Boundary-shifting strategy

Relative minima are found more often than the optimal solution to a constrained optimization
problem. The minima may be at a gradient of zero for the objective function or at a constraint
boundary (Rao 2009). Assuming that particles can rapidly move to the boundaries, solution opti-
mization is faster than that in a simple PSO. When a simple PSO algorithm is utilized, the particles
move slowly to a better solution in a manner dependent on their objective function. This process
is very time-consuming in the earlier stages of the search. In the truss optimization problem, the
goal is minimizing the weight of the truss. When no constraints are imposed, the lightest structure
has the smallest cross-sectional areas, which are equal to the lower limits, xl

n, of design variables.
However, constraints on stress and on displacement are usually applied when optimizing truss
structure design. The optimal solution to this problem is possible either at the boundary of one
constraint or at the intersection of the two constraints in some specific cases.

For any particle, the corresponding truss nodal displacement and member stress can be deter-
mined by structural analysis. In a truss structure analysis of size optimization problems, the
cross-sectional area of the truss members is the only variable in the stiffness matrix because the
topology and material properties of the truss are constant. Theoretically, an increase in all cross-
sectional areas of the structure with the same ratio results in a reduction in nodal displacements
and member stresses. Therefore, the cross-sectional area of the truss members can be adjusted
to maximize the nodal displacements or the member stresses. In each iteration, all constraint
functions for design variable Xi, e.g. e′

ij, must be solved and compared with the corresponding
predefined constraint thresholds, e.g. ej. The constraint functions may denote displacement or
stress constraint dependent on different j. Here, a boundary-related ratio is defined as the ratio of
the e′

ij to its corresponding ej. A constraint function for particle Xi that is equal to the correspond-
ing threshold indicates that the particle is located on the boundary of the constraint. Accordingly,
a particle that uses the ratio to update its position may be moved rapidly to a boundary when
optimizing the truss design.

Based on the above heuristic, the goal of boundary-shifting is to force particles to move towards
a boundary of a constraint function to reduce the overall search time. The strategy depends on a
boundary-shifting function BS(Xi), which is utilized to guide the motion of particles. The function
is defined as follows:

BS(Xi) = ⊕
√

J
min
j=1

(|Rij| − 1)2 i = 1, 2, . . . , S, j = 1, 2, . . . , J

⊕ =
{

+1 if |Rij| > 1

−1 if |Rij| ≤ 1

(3)

where | · | and min(·) denote the absolute and minimum functions, respectively. The aforemen-
tioned boundary-related ratio Rij for the ith particle to the jth constraint function, hj(Xi), is given
by Rij = e′

ij/ej. The operator ⊕ is a sign function dependent on the absolute value of the boundary-
related ratio, that is a specific element satisfied min(·) function. If |Rij| exceeds one, the operator
represents +1. Otherwise, the operator denotes −1. This study uses the boundary-related ratio
to resolve the distance between a corresponding boundary and a particle. If particle Xi is on the
boundary of the constraint function, nodal displacement or member stress may equal its predefined
constraint threshold, and the boundary-related ratio is unity. Accordingly, the value of BS(Xi) is
zero, and the position of the particle need not be adjusted. Otherwise, the new particle position is
located by applying the following adjustment formula:

X ′
i = Xi(1 + BS(Xi)) (4)
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1256 Y.C. Lu et al.

Figure 1. Simple particle search and boundary-shifting search.

A BS(Xi) that exceeds zero implies that the particle Xi violates one or more constraints and that
the cross-sectional area of new particle X ′

i should be appropriately enlarged. Therefore, the new
particle X ′

i is moved to the corresponding boundary.
Figure 1 graphically presents the boundary-shifting procedure. Particle Xk

i is moved using the
aforementioned procedure so that it approaches the constraint boundary within a few iterations. In
the early iterations, system efficiency is enhanced by increasing the convergence rate and reducing
the search time. Over several iterations, this strategy moves particles to positions near boundaries
so that they converge near the optimal solution. Doing so can diminish the functionality of this
strategy and waste processing time in later searches. Accordingly, a threshold value, e.g. Lt , must
be specified to limit boundary-shifting iterations, which avoids this problem. Meanwhile, forcing
all the particles towards the boundaries without any randomness will probably lead to ignoring
some other good solutions in the internal regions. Herein, a random parameter (ρbs) has been
adopted in the boundary-shifting strategy as a trigger threshold by a trial-and-error approach.

3.3. Particle-position-resetting strategy

An important characteristic of the simple PSO algorithm is its high convergence rate. However,
the diversity of particle solutions slowly declines during the rapid convergence process, and the
final solution may be a local optimum. The proposed particle-position-resetting method, which
is based on the concept of mutation in GA, randomly resets the positions of some, but not all,
particles far from the convergence centre. The strategy maintains particle diversity and enables
particles to find a possible optimal solution between the edges of the specified range and the
predefined limits of design variables. The proposed approach differs from that in related works
because it increases diversity by randomly resetting the particle position, although this approach
and other related works are all motivated by a random search of mutation in a GA.

The presented strategy comprises three steps. First, a specified range between two reference
distances must be determined. The two reference distances are affected by the current optimal
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Engineering Optimization 1257

particle PG in the swarm and the limits, xl
n and xu

n , of the problem search space in the nth dimension.
Second, if a particle falls within a specified range, a variable is randomly generated using a uniform
distribution function in the interval [0,1]. The random variable is compared with a predefined
trigger threshold to determine whether or not the particle position is reset. Finally, a reset position
is randomly generated to force the particle to move to a new position. The reset positions are
always in the problem search space and far from the specified range. The particle-position-resetting
approach has three main functions that are described as follows.

• Determining two base reference distances, dbu,n and dbl,n, in the nth dimension of the
search domain
The objective of particle-position-resetting is to prevent the convergence of particles to a
local optimum and to increase their diversity. The following two base reference distances
are defined in terms of the predefined upper and lower limits of each design variable:

Dbu,n = cb(x
u
n − PG,n), n = 1, 2, . . . , N (5)

Dbl,n = cb(PG,n − xl
n), n = 1, 2, . . . , N (6)

where dbu,n and dbl,n are the base reference distances and PG,n is the nth dimension component
of the current best particle PG. The terms xu

n and xl
n are the upper and lower limits, respectively,

in the nth dimension of the problem search space. cb is a working variable used to alter the
base reference distances and is a constant in the interval [0,1]. Therefore, the two edges of
the nth dimension of the specified range are given by the following equations:

Bu,n = PG,n + dbu,n, n = 1, 2, . . . , N (7)

Bl,n = PG,n + dbl,n, n = 1, 2, . . . , N (8)

A range can then be specified according to these edges, e.g. [Bl,n, Bu,n].
• Determining trigger threshold ρfa and position-resetting probability r3

The particle-position-resetting approach is not applied to all particles. A trigger threshold
ρfa is predefined as being within the interval [0,1]. Another essential condition for triggering
this scheme is that one particle falls into the specified range [Bl,n, Bu,n]. A position-resetting
probability r3 is then randomly generated and compared with trigger threshold ρfa. If r3 is
less than ρfa, the scheme is triggered. A resetting position is determined and this particle
may be reset to a new position.

• Determining a resetting position, x′
n, in the nth dimension of the search domain for a particle

that satisfied the previous conditions
To prevent the particle from crossing the limits of the problem search space, the upper and
lower limits must be employed for a resetting position. Meanwhile, the resetting position
cannot fall within the specified range. Based on the aforementioned two requirements,
the possible ranges of the resetting position can be represented as grey blocks for the nth
dimension in Figure 2. The possible ranges of the resetting position are represented by two
blocks that are located out of the specified range. The equation for the total length of the
possible range is (1 − cb) (xu

n − xl
n). The random resetting position in the nth dimension of

the search domain is given by:

x′
n =

{
xl

n + r4,n if r4,n ≤ (Bl,n − xl
n)

xl
n + cb(xu

n − xl
n) + r4,n if r4,n > (Bl,n − xl

n)
(9)

where r4,n is a random value between zero and (1 − cb)(xu
n − xl

n) in the nth dimension of
problem search space. Other parameters are as defined above.
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1258 Y.C. Lu et al.

Figure 2. Resetting position and specific range in nth dimension of problem space.

Figure 3. Particle-position-resetting approach in two-dimensional problem space.

Figure 3 graphically presents the particle-position-resetting mechanism in a two-dimensional
problem search space. The figure shows a particle P in the problem search space, and position
PG is simultaneously the best current position in the swarm and the centre of convergence. The
innermost bold–solid rectangle represents the specified range of base reference distances. The
outermost solid rectangle delineates concurrently the problem search space and the boundaries of
the resetting position. The solid arrow indicates the searching path, and the dotted arrow indicates
the path to the resetting position. When the particle-position-resetting conditions are met, the
particle position is reset to the possible ranges between the outermost solid rectangle and the
bold–solid rectangle.

3.4. Constraint handling method

Penalty functions are often employed to incorporate constraints into the fitness function in a
general constrained optimization problem. However, the major disadvantage of penalty functions
is that they require moderate tuning to balance the objective function. An approach for handling
constraints is the fly-back mechanism introduced by He et al. (2004a), which is used to maintain
a feasible population. Since the population is initialized in the feasible region, flying back to a
previous position confirms that the solution is feasible. However, since the proposed approach
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Engineering Optimization 1259

only restrains the initial particles in the problem search space, these particles may fall into an
infeasible region. The prerequisite for this mechanism is a better particle position falling into a
feasible region. The mechanism is then triggered when a particle violates the constraints. The
particle is set back to its previous better position and starts a new search in the next iteration.
Otherwise, the mechanism is ignored. This mechanism increases the likelihood of the particles
exploring the feasible search space near the boundaries.

Herein, the fly-back mechanism is performed in compliance with the boundary shifting strategy
after Lt iterations, since the particles may move towards the boundary from the space of feasible
solutions or the space of infeasible solutions for the boundary shifting strategy. The shift of moving
from an infeasible region to the boundary approximates the mechanism of particle fly-back.

The particles of the violated constraints oscillate in the optimization process. When a particle
moves back to a previous location, it can still be stirred into the space of infeasible solutions
owing to the normal mechanism of the PSO. However, the global optimum is recorded in each
iteration, and changes in the position of the global optimum will disrupt the oscillation. Accord-
ingly, although the particles of the violated constraints oscillate in the optimization process, their
oscillation does not influence the best solution, and the best solution can continuously improve.

3.5. AugPSO algorithm

The presented AugPSO algorithm integrating a simple PSO and a fly-back mechanism applies
two new strategies, boundary-shifting and particle-position-resetting, to increase its convergence
rate and to improve the final solution quality. Figure 4 presents the pseudo-code of the AugPSO
algorithm. The randomly generated initial positions and velocities for S particles are represented
as a swarm. To determine better positions of a particle and the swarm, the objective function
of the particle must be calculated. Simultaneously, the constraint functions for the particle are
evaluated. By applying a boundary-shifting strategy, the particle can rapidly find a local optimal
solution along the boundary of a constraint function, and its effect is significant in the early
iterations. Therefore, a threshold, Lt , is used to limit the number of times the strategy is executed
in order to avoid waste of computational resources. A random parameter (ρbs) has been adopted
as a probability of boundary-shifting to avoid ignoring some other good solutions in the internal
regions. The new and better solutions can be updated by this strategy. The current convergence
centre represents the best position of a swarm. The next instance of a particle falling into a specified
range may trigger the particle-position-resetting strategy under a probability ρfa. The particle is
randomly reset to the position that is always out of the specified range, and the new and better
solution is again updated. The diversity of particle solutions can be increased by the particle-
position-resetting strategy. A simple PSO is then started. The new velocity and position of the
particle are updated by Equations (1) and (2), respectively. Finally, the fly-back mechanism may
be executed depending on the better position of this particle and whether the particle violates a
constraint. At the next iteration, the particle is set back to its better position Pk

i . Applying these two
new schemes to the PSO improves convergence performance and solution accuracy. The fly-back
mechanism also helps the particle to explore the feasible search space near the boundaries.

4. Numerical study

To confirm the feasibility and performance of the proposed new strategies that were adopted in
the AugPSO algorithm to optimize the design of truss-type structures, four benchmarked truss
design problems were used as test cases. The numerical results achieved using PSO, PSOPC and
AugPSO are compared.
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1260 Y.C. Lu et al.

Figure 4. Pseudo-code for the AugPSO algorithm.

In each case of optimization of the design of truss structures under stress and displacement
constraints, the elasticity modulus and material density of the structures are specified with the
corresponding layout. For all cases a population of 50 particles was utilized. The maximum
number of iterations MaxIter, used in the proposed AugPSO, was fixed to 400. In four cases,
the inertial weight w is set as one and it remains constant over time; the parameters c1 and c2 of
simple PSO are typically set as two; the limiting iteration Lt and the random parameter ρbs of
the boundary-shifting scheme are set to 20 and 0.9, respectively, by trial and error; the trigger
threshold ρfa and the working variable cb of particle-position-resetting are set to 0.2 and 0.1,
respectively. Table 1 lists the numerical values of the working parameters for the three versions of
the PSO in this numerical study. The proposed algorithm was implemented using MATLAB� 7.4
on a PC with an Intel CoreTM 2 Quad Processor Q6600 (8 MB cache, 2.40 GHz, 1066 MHz FSB).

4.1. Ten-bar truss

The first case concerns a 10-bar truss, which has been considered by several researchers and used
as a well-known benchmark problem. Figure 5 presents the layout, structural parameters and loads.
The allowable displacement is limited to ±2 in. and the allowable stress is limited to ±25 ksi.
The allowable cross-sectional area of all members is between 0.1 in2 and 35 in2. To study the
contribution of the boundary-shifting and particle-position-resetting scheme to the optimization
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Engineering Optimization 1261

Table 1. The working parameters in the numerical study.

Algorithms

Parameters PSO PSOPC AugPSO

Inertial weight, w 1 1 1
Cognitive scaling parameters, c1 2 2 2
Social scaling parameters, c2 2 2 2
Passive congregation coefficient None 0.6 None
Limiting iteration, Lt None None 20
Trigger threshold, ρfa None None 0.2
Working variable, cb None None 0.1
Boundary shifting random parameter, ρbs None None 0.9

Figure 5. Ten-bar truss with material properties, constraint conditions and loads.

process, an experiment was performed in which one scheme was implemented and compared
with a simple PSO algorithm and an AugPSO algorithm. Figure 6 presents the convergence rates
of four algorithms: a simple PSO, a simple PSO with the boundary-shifting scheme, a simple
PSO with the particle-position-resetting scheme, and the AugPSO. The figure reveals that the
boundary-shifting scheme increases the convergence rate in the early stages, and the particle-
position-resetting scheme exhibits random progress with similar mutations to those of theGA.
As expected, the AugPSO algorithm outperforms the algorithm that was implemented with a
single scheme; therefore, follow-up experiments will be performed to compare the AugPSO
algorithm with the simple PSO algorithm, PSOPC. Table 2 presents the optimal solutions of the
three algorithms and others. The minimum weights of others are better than this work. However,
according to the results of Li et al. (2007), node 1 violated the displacement constraint. The same
result was obtained by Kaveh and Talatahari (2009b). Figure 7 compares the convergence rates of
the three algorithms. The AugPSO algorithm has a faster convergence than the PSOPC algorithm
in this example, and the solution found using the AugPSO algorithm is superior to that obtained
using other algorithms.
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Figure 6. Comparison of convergence rates of simple PSO, PSO with boundary-shifting, PSO with
particle-position-resetting and AugPSO algorithm for the 10-bar truss.

Table 2. Optimal solution of the 10-bar truss found using the three algorithms.

Kaveh and
Li et al. (2007) Talatahari (2009a) This workArea

(in2) PSO PSOPC HPSO HPSACO PSO PSOPC AugPSO

A1 33.469 30.569 30.704 30.307 20.149 25.923 30.457
A2 0.11 0.1 0.1 0.1 0.1 0.39 0.1
A3 23.177 22.974 23.167 23.434 32.233 23.247 23.584
A4 15.475 15.148 15.183 15.505 14.831 18.208 15.029
A5 3.649 0.1 0.1 0.1 0.1 0.108 0.1
A6 0.116 0.547 0.551 0.5241 0.116 0.1 0.564
A7 8.328 7.493 7.46 7.4365 8.349 9.007 7.42
A8 23.34 21.159 20.978 21.079 28.039 26.629 20.987
A9 23.014 21.556 21.508 21.229 22.909 18.736 21.524
A10 0.19 0.1 0.1 0.1 3.066 0.196 0.1
Weight (lb) 5529.50 5061.00 5060.92a 5056.56a 5606.04 5225.28 5061.21

Note: aViolates constraint.

Herein, the working parameters, Lt , ρbs, ρfa and cb are determined by a trial-and-error approach.
Sensitivities to the optimization process were evaluated using 30 runs for this case with the same
initials for different values of these parameters. The standard deviations and average weights
for each parameter with different values were computed. Analytical results indicate that working
parameter Lt equals 20, subsequently yielding the smallest standard deviation and average weight.
The random parameter ρbs equals 0.9, yielding the smallest standard deviation. Depending on the
standard deviation and average weight of every 30 runs, the value of trigger threshold ρfa is set to
0.2. Finally, 30 runs with the same initials for a different value of the Cb value in 400 iterations
with 50 particles in a swarm were executed. The number of particle position resetting was counted
in each run. In this study, the particle position resetting is a mutation-like operator. For Cb = 0.1,
the mean percentage of particles whose positions are reset is approximately 4.6%. This value
represents a slightly high mutation rate compared with a low mutation probability (inversely
proportional to the population size) proposed by De Jong’s study (Goldberg 1989). Namely, this
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Figure 7. Comparison of convergence rates of the three algorithms for the 10-bar truss.

Figure 8. A 25-bar truss with material properties and constraint conditions.

value causes a high probability of triggering particle-position-resetting to increase the diversity
of particles.

4.2. Twenty-five-bar truss

Figure 8 presents the geometry and design parameters of a 25-bar space truss, considered by
many researchers. The allowable displacement is limited to ±0.35 in. and the allowable stress
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1264 Y.C. Lu et al.

Table 3. Loads on the 25-bar truss.

Case I (kips) Case II (kips)

Node PX PY PZ PX PY PZ

1 0 20 −5 1 10 −5
2 0 −20 −5 0 10 −5
3 0 0 0 0.5 0 0
6 0 0 0 0.5 0 0

Table 4. Optimal solution of the 25-bar truss found using the three algorithms.

Kaveh and
Li et al. (2007) Talatahari (2009a) This workArea

(in2) PSO PSOPC HPSO HPSACO PSO PSOPC AugPSO

A1 9.863 0.01 0.01 0.01 0.024 0.013 0.01
A2 1.798 1.979 1.97 2.054 2.246 1.943 1.99
A3 3.654 3.011 3.016 3.008 2.405 3.04 2.989
A4 0.1 0.1 0.01 0.01 0.036 0.011 0.01
A5 0.1 0.1 0.01 0.01 0.01 0.011 0.01
A6 0.596 0.657 0.694 0.679 0.643 0.698 0.68
A7 1.659 1.678 1.681 1.611 1.832 1.695 1.677
A8 2.612 2.693 2.643 2.678 2.875 2.628 2.66
Weight (lb) 627.08 545.27 545.19 544.99a 553.627 545.34 545.17

Note: aViolates constraint.

is limited to ±40 ksi. Two load cases are given in Table 3, involving stress and displacement
constraints. The allowable cross-sectional area of all members is between 0.01 in2 and 3.4 in2.
The members of this truss are divided into eight groups. Table 4 presents the optimal solutions
of the three algorithms and others. The optimal weight that obtained by Kaveh and Talatahari
(2009a) was 544.99 lb, which is less than the value obtained in this paper. However, the numerical
result concerning the optimal design of Kaveh and Talatahari to operate structural analysis in the
SAP2000 reveals that the maximum displacement violates the constraint. For load case 1, the
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Figure 9. Comparison of convergence rates of the three algorithms for the 25-bar truss.
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Engineering Optimization 1265

Figure 10. A 72-bar truss with material properties and constraint conditions.

displacement of nodes 1 and 2 in the Y direction is 0.35003 and 0.35003 in., respectively. For
load case 2, the displacement of nodes 1 and 2 in the Y direction is 0.35004 and 0.35004 in.,
respectively. The results have slightly violated the displacement constraints. The optimal solution
of the study is better than Li et al. (2007). Figure 9 compares the convergence rates of PSO and
PSOPC, and its convergence trend is similar to the 10-bar truss. The convergence rate of AugPSO
is better than others and the final solution has the same tendency.

4.3. Seventy-two-bar truss

Figure 10 displays the geometry and design parameters of a 72-bar space truss. Li et al. (2007)
and Perez and Behdinan (2007) optimized the size of the truss using the PSO. The allowable
displacement is limited to ±0.25 in. and the allowable stress is limited to ±25 ksi. Two load
cases that are given in Table 5 are subjected to stress and displacement constraints. The allowable
cross-sectional area of all members is between 0.1 in2 and 4 in2. The members of this truss

Table 5. Loads for the 72-bar truss.

Case I (kips) Case II (kips)

Node PX PY PZ PX PY PZ

17 5 5 −5 0 0 −5
18 0 0 0 0 0 −5
19 0 0 0 0 0 −5
20 0 0 0 0 0 −5
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Figure 11. Comparison of convergence rates of the three algorithms for the 72-bar truss.

Table 6. Optimal solution of the 72-bar truss found using the three algorithms.

Perez and
Li et al. (2007) Behdinan (2007) This workArea

(in2) PSO PSOPC HPSO PSO PSO PSOPC AugPSO

A1 (1–4) 41.794 1.855 1.857 0.1615 1.609 1.239 1.843
A2 (5–12) 0.195 0.504 0.505 0.5092 0.515 0.513 0.5
A3 (13–16) 10.797 0.1 0.1 0.4967 0.888 0.100 0.104
A4 (17–18) 6.861 0.1 0.1 0.5619 1.513 0.426 0.1
A5 (19–22) 0.438 1.253 1.255 0.5142 1.003 1.302 1.221
A6 (23–30) 0.286 0.505 0.503 0.5464 0.382 0.740 0.549
A7 (31–34) 18.309 0.1 0.1 0.1 0.100 0.100 0.1
A8 (35–36) 1.22 0.1 0.1 0.1095 1.390 1.896 0.1
A9 (37–40) 5.933 0.497 0.496 1.3079 0.560 0.491 0.49
A10 (41–48) 19.545 0.508 0.506 0.5193 0.668 0.558 0.496
A11 (49–52) 0.159 0.1 0.1 0.1 0.220 0.100 0.103
A12 (53–54) 0.151 0.1 0.1 0.1 1.842 0.127 0.15
A13 (55–58) 10.127 0.1 0.1 1.7427 0.120 0.157 0.156
A14 (59–66) 7.32 0.525 0.524 0.5185 0.665 0.490 0.575
A15 (67–70) 3.812 0.394 0.4 0.1 0.527 0.404 0.433
A16 (71–72) 18.196 0.535 0.534 0.1 0.413 0.950 0.522
Weight (lb) 6818.67 369.65a 369.65a 381.91 576.694 472.586 381.62

Note: aViolates constraint.

are grouped into 16 categories. Figure 11 compares the convergence rates of PSO and PSOPC
and Table 6 presents the optimal solution. The optimal truss weight that is determined using
AugPSO is 381.62 lb. The weight is better than the result of Perez and Behdinan (2007). The
maximum values of displacements of node 17 in the X and Y directions are 0.25 in., satisfying
the constraint in load case 1. Under load case 2, the maximum displacement of 17–20 in the Z
direction satisfies the displacement constraint. The extreme values of stress in the two load cases
are −16.1115 and −24.6374 ksi, respectively. These values are close to the allowable stress and
do not exceed the limit value. The optimal weight obtained by Li et al. (2007) was 369.65 lb,
which is less than the value obtained in this study. However, the numerical result concerning the
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Engineering Optimization 1267

optimal design of Li et al. to operate structural analysis in the SAP2000 reveals that the maximum
displacement violates the constraint. The displacements of nodes 17–20 in the Z direction violate
the displacement constraint in load case 2, and the stresses of members 55–58 (the pillars on the
top floor) violate the stress constraint. The result of AugPSO satisfies the constraints and exhibits
powerful search ability.

4.4. Dome truss with 120 bars

Figure 12 shows the geometry and design parameters of a 120-bar dome truss with 49 nodes.
The limiting displacement is ±0.1969 in. along three perpendicular axes and the yield stress Fy

Figure 12. A 120-bar dome truss with material properties and constraint conditions.
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Figure 13. Comparison of convergence rates of the three algorithms for the 120-bar truss.

is 58 ksi. The allowable cross-sectional area of all members is between 0.775 in2 and 20 in2. The
members of this dome truss are divided into seven groups. In addition, the allowable tensile and
compressive stresses are used in a manner consistent with the AISC Allowable Stress Design for
Steel Structures Code in the following equation:{

σ+
i = 0.6Fy for σi ≥ 0

σ−
i for σi < 0

(10)

where allowable compressive stress σ−
i is calculated using the following equation:

σ−
i =

⎧⎨
⎩

[(
1 − λ2

i

2C2
C

)
Fy

]/ (
3
5 + 3λi

8Cc
− λ3

i
8C3

c

)
for λi < Cc

12π2E
23λ2

i
for λi ≥ Cc

(11)

where E is the modulus of elasticity; Fy denotes the yield stress of steel; Cc is
√

2π2E/Fy; λi is
the slenderness ratio (kLi/ri); and k, Li and ri represent the effective length factor, the member
length and the radius of gyration, respectively.

The dome truss is subjected to vertical loading at its unsupported joints in each layer ring. These
loads were taken to be −13.49 kips at node 1, −6.744 kips at nodes 2 through 14, and −2.248 kips
at other unsupported nodes. Figure 13 compares the convergence rates with those of PSO and
PSOPC and Table 7 presents the optimal solution. Notably, the optimal weight determined using
the AugPSO is 20,675.545 lb in this case, and the result is outstanding relative to other results
(Kelesoglu and Ulker 2005, Kaveh and Talatahari 2008, 2009a) in the literature. The results were
reanalysed using SAP2000 and the solutions were confirmed to be feasible.

4.5. Numerical comparison

In addition to comparing optimal solutions and convergence rates by numerical study, the standard
deviation and average weight of every 30 runs were summarized to compare the robustness of the
AugPSO with those of the simple PSO and PSOPC algorithms. The same initials and working
parameters were used in 30 runs of each algorithm. Table 8 lists the numerical results. The best,
worst and average weights of truss structure and standard deviation were evaluated in four cases.
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Engineering Optimization 1269

Table 7. Optimal solution of the 120-bar dome found using the three algorithms.

Kaveh and Talatahari (2009a) This workArea
(in2) PSO PSOPC HPSACO PSO PSOPC AugPSO

A1 12.802 3.04 3.095 3.331 3.325 3.287
A2 11.765 13.149 14.405 5.397 5.972 3.486
A3 5.654 5.646 5.02 4.513 4.505 4.256
A4 6.333 3.143 3.352 3.272 3.026 2.752
A5 6.963 8.759 8.631 1.674 0.914 1.353
A6 6.492 3.758 3.432 6.459 4.153 3.507
A7 4.988 2.502 2.499 3.548 2.415 2.411
Weight (lb) 51,986.2 33,481.2 33,248.9 26,729.0 22,654.3 20,675.5

Table 8. Performance comparison of PSO-based algorithms for all trusses in 30 runs.

Standard
Members Algorithm Best weight (lb) Worst weight (lb) Average weight (lb) deviation (lb)

10 PSO 5,606.036 7,008.815 6,256.895 370.071
PSOPC 5,225.282 5,854.163 5,425.074 175.764
AugPSO 5,061.209 5,179.516 5,103.484 31.755

25 PSO 553.627 662.835 597.925 23.970
PSOPC 545.388 594.448 556.812 13.357
AugPSO 545.173 576.190 551.864 7.677

72 PSO 576.694 789.080 662.093 60.454
PSOPC 472.586 643.165 545.376 47.225
AugPSO 381.616 436.914 414.044 12.282

120 PSO 26,728.980 53,777.510 31,401.182 5653.241
PSOPC 22,654.325 38,471.212 26,424.703 4103.610
AugPSO 20,675.545 21,678.621 21,175.514 259.105

For the 10-bar truss, the best weights obtained by AugPSO, PSOPC and PSO are 5061.209,
5225.282 and 5606.036 lb, and the standard deviations are 31.755, 175.764 and 370.071 lb,
respectively. In all cases, the AugPSO outperformed the PSO and PSOPC in terms of best and
average weights. The AugPSO also outperformed the PSO and PSOPC in terms of its standard
deviation. The results show that the AugPSO is highly stable in four cases and is more accurate
and robust than PSO and PSOPC.

5. Concluding remarks

This work proposed an augmented particle swarm optimization (AugPSO) algorithm that inte-
grates two new strategies, a heuristic-inspired boundary-shifting approach and a mutation-like
particle-position-resetting strategy, to accelerate convergence and to ensure that the solution does
not fall into a local optimum. Introducing the boundary-shifting strategy enables particles to be
located close to the constraint boundaries so that the optimal solution can be found quickly.
The required time to implement the strategy in the early stage of the optimization procedure
is also reduced. The particle-position-resetting strategy maintains particle diversity in the fast
convergence process and ensures that the final solution is not a local optimum.

Four numerical results of truss structure optimization were used to test the AugPSO algorithm.
The proposed algorithm yields higher quality solutions and higher convergence rates than PSO
and PSOPC. The efficiency of the AugPSO algorithm is evident in the need for fewer iterations to
achieve the goal. In each test case, the AugPSO algorithm converged to a better solution in fewer
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1270 Y.C. Lu et al.

than 50 iterations. The final solution quality achieved by the AugPSO is comparable to those
achieved by PSO and PSOPC. Notably, the optimal solution for the 120-bar dome truss is much
better than several other algorithms reported in the literature (Kelesoglu and Ulker 2005, Kaveh
and Talatahari 2008, 2009a). The AugPSO provided a superior optimal solution of 20,675.545 lb.

In addition to evaluating only the Student’s t-test of the average weight between algorithms,
this work compared the mean of the weights obtained in 30 runs for each algorithm. The results
reveal that the average weight of AugPSO is smaller than that of PSO and PSOPC. Meanwhile,
comparisons of best weights also show that the AugPSO is more robust than PSO and PSOPC in
all cases. Owing to the superior functionality achieved by the two new strategies introduced in
this study, the presented AugPSO algorithm appears more robust than other algorithms.
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