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EEG-Based Learning System for Online Motion
Sickness Level Estimation in a Dynamic

Vehicle Environment
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Abstract— Motion sickness is a common experience for many
people. Several previous researches indicated that motion sickness
has a negative effect on driving performance and sometimes leads
to serious traffic accidents because of a decline in a person’s
ability to maintain self-control. This safety issue has motivated
us to find a way to prevent vehicle accidents. Our target was
to determine a set of valid motion sickness indicators that
would predict the occurrence of a person’s motion sickness as
soon as possible. A successful method for the early detection of
motion sickness will help us to construct a cognitive monitoring
system. Such a monitoring system can alert people before they
become sick and prevent them from being distracted by various
motion sickness symptoms while driving or riding in a car. In
our past researches, we investigated the physiological changes
that occur during the transition of a passenger’s cognitive state
using electroencephalography (EEG) power spectrum analysis,
and we found that the EEG power responses in the left and
right motors, parietal, lateral occipital, and occipital midline
brain areas were more highly correlated to subjective sickness
levels than other brain areas. In this paper, we propose the use
of a self-organizing neural fuzzy inference network (SONFIN)
to estimate a driver’s/passenger’s sickness level based on EEG
features that have been extracted online from five motion
sickness-related brain areas, while either in real or virtual vehicle
environments. The results show that our proposed learning
system is capable of extracting a set of valid motion sickness
indicators that originated from EEG dynamics, and through
SONFIN, a neuro-fuzzy prediction model, we successfully trans-
lated the set of motion sickness indicators into motion sickness
levels. The overall performance of this proposed EEG-based
learning system can achieve an average prediction accuracy
of ∼82%.

Index Terms— Driving cognition, electroencephalography
(EEG), learning system, motion sickness, online estimation.
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I. INTRODUCTION

MOTION sickness is a common experience for many peo-
ple, and it has received an increasing amount of atten-

tion; many researches have been performed on the subject. The
symptoms of motion sickness are headache, sweating, disori-
entation, postural instability, dizziness, nausea, and vomiting.
Reason and Brand [1] proposed that among the theories on the
etiology of motion sickness, the most popular and accepted
theory is the traditional sensory conflict theory. This theory
states that when a pattern of inputs from the vestibular system,
other proprioceptors, and the visual senses are not in accor-
dance with stored patterns derived from recent transactions,
the conflict could induce motion sickness. In previous human
subject research, researchers attempted to identify those brain
areas that are involved in these multimodal sensory system
conflicts by means of clinical or anatomical methods. In pre-
vious clinical researches, the cortical activations during caloric
[3] and galvanic vestibular [4] stimulations were studied
using functional imaging technologies, such as positron emis-
sion tomography and functional magnetic resonance imag-
ing. Among the available imaging technologies, electroen-
cephalography (EEG) outperforms the other methods in terms
of temporal resolution and portability. EEG studies that are
related to motion sickness can be classified by the stimulus
type, including vestibular stimuli [2], [36] and visual stimuli.
Vestibular cues indicate that the body is stationary, whereas
visual cues indicate that the body is moving. Vestibular stimuli
have traditionally been provided using a rotating chair [5], [6],
a parallel swing [7] or cross-coupled angular stimulation [8],
to induce motion sickness in subjects. Previous researches
indicated that the theta powers of the frontal and central brain
areas are positively correlated with motion sickness that is
induced by a parallel swing [7] and a rotating drum [5], [6].
Chelen et al. [8] reported increased delta- and theta-band
power, but no significant change in the alpha-band power
was observed when cross-coupled angular stimulation was
employed to induce motion sickness. Visual stimuli can be pro-
voked using an optokinetic drum that rotates around the yaw
axis. Hu et al. [9] investigated motion sickness that is triggered
by viewing an optokinetic rotating drum and found a higher
net percentage increase in the EEG power in the 0.5–4-Hz
band at electrode sites C3 and C4 than in the baseline spectra.
From [10]–[13], the left/right motor, parietal, occipital, and
occipital midline brain areas are motion sickness-related brain
regions, and the correlation coefficients (CCs) in the alpha
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bands of these regions exceed the CCs in other frequency
bands. Furthermore, the EEG power responses in the occipital
midline are more highly correlated with subjective sickness
levels than the EEG power responses in other brain areas,
which suggest that activation of the occipital midline could be
useful for determining the stages of motion sickness. To collect
training and testing data for our proposed learning system,
we constructed a virtual reality (VR)-based dynamic driving
simulator that provided both visual and vestibular stimuli to
create motion sickness in a manner that is very similar to the
stimuli induced by riding in a car. We implemented an EEG-
based learning system to estimate people’s motion sickness
levels (MSLs) based on the real-time EEG power spectra
from the left and right motors, parietal, occipital, and occipital
midline brain regions, which are highly correlated with motion
sickness. With EEG brain dynamics and self-reported MSLs
from the driving simulators, the learning system obtains basic
knowledge about each subject, such as the time lag between
the EEG time series and the self-reported MSLs and the
optimum number of eigenvectors to be used for performing
principle component analysis (PCA). Then, the implemented
estimation mechanism becomes functional whenever the driver
or passenger’s EEG dynamics becomes available. The predic-
tion model used in our motion sickness estimation system is
the self-organizing neural fuzzy inference network (SONFIN)
[25]. There are several reasons to choose this neural-fuzzy
network, although other choices of neural networks or fuzzy
systems are also possible [32] ,[33], [35], [37]–[40]. First, the
SONFIN is a hybrid system of neural networks and
fuzzy logic. With a fuzzy-inference-type structured network,
SONFIN can achieve higher learning accuracy than typical
neural networks. Second, when compared with existing neural-
fuzzy networks, SONFIN can perform both structure and para-
meter learning simultaneously, which enables it to construct
itself dynamically online. Such an estimation system can be
applied to detect a person’s level of motion sickness early on,
to prevent unexpected accidents because of motion sickness
or to prevent motion sickness from occurring in people’s daily
lives.

The structure of this paper is outlined as follows.
In Section II, we present the experimental setup, including
the VR simulator, the experimental design, and the EEG
data acquisition. Section III presents the architecture of the
proposed MSL estimation system and the details of each
function block. Section IV introduces three prediction models
that are used in the estimation system. Section V discusses
the experimental results that are obtained from the proposed
system. Finally, Section VI contains some concluding remarks.

II. EXPERIMENTAL SETUP

A. VR-Based Dynamic Driving Simulator

Unlike previous researches, we provided both visual and
vestibular stimuli to the participants through a compelling VR
environment that comprised a 360° projection of a VR scene
and a motion platform with six degrees of freedom to induce
the motion sickness (Fig. 1). With this setup, we expected to
create motion sickness in a manner that was similar to the

(a) (b)

(c) (d)

Fig. 1. VR environment comprises a motion platform and 360° projection
of the VR scene. (a) Real car mounted on the motion platform. (b) Motion
platform with six degrees of freedom to induce motion sickness. (c) VR
scene that simulated driving through a tunnel with a straight road section.
(d) VR scene that simulated driving through a tunnel with a winding road
section.

RestMotion SicknessBaseline

10 min 40 min 15 min

Fig. 2. Three-section motion sickness experimental protocol comprising
a 10-min baseline section, to record the subject’s baseline state, a 40-min
winding road section, to induce motion sickness, and a 15-min rest section
for recovery.

motion sickness that is experienced in our daily lives. During
the experiment, the subjects were asked to sit inside an actual
vehicle that was mounted on a motion platform, with their
hands holding on to a joystick, which was able to continuously
report their sickness level. VR scenes that simulate driving in
a tunnel were programmed, to eliminate any possible visual
distractions and to shorten the depth of the visual field, so the
feeling of motion sickness could be easily induced. A three-
section experimental protocol (Fig. 2) was designed to induce
the motion sickness.

B. Experimental Design

A motion sickness experiment with a three-section protocol
(Fig. 2) was designed. The first section was the baseline
section, which comprised a 10-min straight road to record
the subjects’ baseline state. The second section was a 40-min
motion sickness section, which comprised a long winding
road and was presented to the subjects to induce motion
sickness. Finally, a 15-min rest section on a straight road
was displayed to allow the subjects to recover from their
sickness. The subjects continuously reported their level of
sickness using a joystick that had a continuous scale on its
side. The results showed that such an experimental setting
could successfully induce motion sickness in >80% of the
subjects who participated in the research.

C. Subjects, EEG Data Acquisition, and Recording

Seventeen healthy right-handed volunteers with no history
of gastrointestinal, cardiovascular or vestibular disorders or
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Fig. 3. Self-evaluated MSLs. From the four graphs, we observe that subject 2
felt motion sickness at ∼1500 s and that subject 4 felt motion sickness at
∼700 s. This information suggests that subject 4 could be more susceptible
to motion sickness than subject 2. Because the MSL is self-evaluated by each
subject, the variation in the MSL is meaningful, but the value of the MSL is,
however, meaningless unless the MSL can be standardized.

of drug or alcohol abuse, and who were taking no medica-
tion and had normal or corrected-to-normal vision partici-
pated in this experiment. A total of 33 sintered Ag/AgCl
electroencephalography/electrooculography (EEG/EOG) elec-
trodes with a unipolar reference at the right earlobe were
used in the EEG data acquisition process. The EEG/EOG
electrodes were placed according to a modified international
10–20 system and referenced to the right ear lobe. Before
the data acquisition and recording were initiated, the contact
impedance between the EEG electrodes and the cortex was
calibrated to be >5 k�. The EEG data were then recorded
with a 32-channel NuAmps (BioLink Ltd., Australia) and with
32-bit quantization at a sampling rate of 500 Hz. Simultane-
ously during the EEG recording, the level of motion sickness
was continuously reported by each subject using a joystick
with a scale that ranged from 0 to 65 535. The subjects were
asked to raise or lower the scale to a higher or lower level
whenever they felt more or less motion sickness, respectively,
compared with their previous condition. In contrast to the tra-
ditional motion sickness questionnaire (MSQ), our mechanism
allows the sickness level to be reported in real time without
interrupting the experiment.

To ensure that each subject had the same maximum and
minimum scales, we normalized each subject’s level of motion
sickness to a range from 0 to 5. The normalized self-reported
MSLs are presented as a time series and are shown in Fig. 3.

III. PROPOSED MSL ESTIMATION SYSTEM

Fig. 4 presents a flowchart of the proposed learning system
that was used to estimate the MSLs. The purpose of an MSL
estimation system is to detect motion sickness in its early
stages and to monitor the sickness level during an entire
operation. The challenge in developing this system is to define
a set of solid indicators, i.e., a feature set that, however,
accurately interprets the MSLs. According to our previous
researches, several brain regions are highly correlated with
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Fig. 4. Flowchart of the proposed learning system that estimates the MSL.
Red lines: training data path. Blue lines: testing data path.

motion sickness; therefore, we designed several approaches to
estimate the MSLs. One approach was to use a broadband
EEG signal (1–30 Hz) to obtain the training and testing data.
Another approach was to select specific frequency bands that
are highly correlated with motion sickness. The use of PCA
as a feature selector was an option for extracting the signals
that had the largest variances. We adopted three types of
prediction models: SONFIN as the primary prediction model,
and support vector regression (SVR) and linear regression
(LR) as the comparison models. The learning and estimation
system concept was composed of eight functional units: an
independent component analysis (ICA), component selection,
a time–frequency analysis, a frequency band time-shifted cor-
relation analysis, frequency band selection, feature extraction,
a prediction model, and a smoother (with which the output
curve of the estimated MSL was smoothed).

A. EEG Preprocessing

The raw EEG signals were first downsampled to 250 Hz and
then filtered with a high-pass and low-pass filters. A high-
pass filter with a cutoff frequency of 1 Hz and a transition
bandwidth of 0.2 Hz was used to remove baseline-drifting
artifacts, and a low-pass filter with a cutoff frequency of
50 Hz and a transition bandwidth of 7 Hz was used to remove
muscular artifacts and line noise. Following these procedures,
the preprocessed EEG signals were fed into the proposed
estimation system for further analysis.

B. Independent Component Analysis

The EEG provides noninvasive measurements of the brain’s
electrical activity, which is recorded as changes in the potential
differences between points on the human scalp. Because of the
volume conduction through the cerebrospinal fluid, skull, and
scalp, EEG data collected from any point on the scalp could
include activity from multiple processes that occur within a
large brain volume. This complexity has made it difficult to
relate EEG measurements to the underlying brain processes or



1692 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 24, NO. 10, OCTOBER 2013

Fig. 5. Scalp topographies of subject 5. Components 2 and 3 represent eye
blinks and eye rolling, respectively, whereas components 5, 7, 10, and 14 are
the scalp topographies that are associated with the midline occipital, parietal,
lateral occipital, and right motor brain regions, respectively.

to localize the sources of the EEG signals [14]. Furthermore,
EEG recordings are usually contaminated by various artifacts,
including eye blinks, muscle artifacts, and indoor power-line
noise. Thus, the blind source separation (BSS) problem [15],
[16] becomes an important issue in EEG-based researches.
One popular method to solve the BSS problem is the applica-
tion of ICA to identify the linear projections that maximize the
mutual independences of the estimated components. Makeig
et al. [17] also noted that ICA could be used to separate the
problem of EEG [or magnetoencephalography (MEG)] source
identification from the problem of source localization. This
paper applied ICA to separate the observed multivariate EEG
signals into independent components under the assumption
of mutual statistical independence of non-Gaussian source
signals.

The general representation of the ICA model can be simply
denoted as S = W−1X, where S = [S1, S2, . . . , Sn]T repre-
sents the n independent sources, W−1 is the back-projection
weighting matrix, and X = [X1, X2, . . . , Xn]T is a vector of
n observed signals. The purpose of the ICA algorithm is to
define the back-projection weighting matrix W−1 and to create
maximal statistical independency of the entire set of sepa-
rated components, called S. Then, the motion sickness-related
components [10] Scp, where Scp = [

Scp1
, Scp2

, . . . , Scpn

]T,
were selected by the weighting distribution of the scalp
topography, which was rendered by W−1 [18] as the region of
interest for the power spectrum analysis and feature extraction.
The scalp topographies shown in Fig. 5 are the components
from subject 5.

C. Component Selection

After completing the ICA process, component clustering
was analyzed using DIPFIT2 routines, a plug-in for EEGLAB,
to determine the 3-D location of an equivalent dipole or
dipoles based on a four-shell spherical head model. Among
the components from all of the subjects, those subjects
with similar scalp topographies, dipole locations, and power

Left
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Right 
Motor

Subject 4 Subject 5 Subject 6 Subject 7

Subject 8 Subject 9 Subject 10 Subject 11

Subject 12 Subject 16
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Subject 2 Subject 3 Subject 4 Subject 5
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Occipital 

Subject 1 Subject 3 Subject 4 Subject 7

Subject 9 Subject 11 Subject 13 Subject 14

Fig. 6. Individual scalp topographies for five brain regions from 17 subjects.
The left and right motor clusters are composed of 8 and 10 components,
respectively; the parietal cluster comprises eight components, and the lateral
and midline occipital clusters comprise 10 and 8 components, respectively.

spectra were clustered. Five MSL-correlated component clus-
ters that recruited 8–10 components from multiple subjects
with similar topographic maps were regarded as robust compo-
nent clusters. From the ICA results, we found that not all of the
subjects presented every motion sickness-related component
because the level of motion sickness induced by vestibular
and visual stimuli exhibited significant individual differences.
Based on the MSQ results and each subject’s self-reported
motion sickness, we were able to confirm which subjects did
indeed feel motion sickness during the entire experimental
session. Therefore, these extracted components were correlated
with motion sickness. Next, we fed the ICA signals into
the system and performed a time–frequency analysis. Based
on our previous researches, we attempted to implement an
EEG-based learning system to estimate the subjects’ MSLs
based on the EEG power spectra from the left and right motor,
parietal, occipital, and occipital midline brain regions. The
components of the five clusters are shown in Fig. 6.
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D. Power Spectrum Analysis

A time–frequency analysis was performed to investigate the
dynamics of the ICA power spectra. To provide a temporal
resolution of 10 s, the spectra of the ICA activations were
calculated using nonoverlapping windows of 10 s each. During
this process, each window was further divided into several
250-point subwindows with 125-point overlaps. Then, each
250-point subwindow was zero-padded to 256 points to allow
a fast Fourier transform with a frequency resolution of ∼1 Hz.
The linear power spectrum density was then converted into a
logarithmic scale (dB power). The resultant power spectrum
time series of a single ICA component for each 60-min session
comprised 50 frequency bins (from 1 to 50 Hz) with 10-s time
interval steps.

E. Frequency Band Time-Frequency Analysis

During the training session, we attempted to determine
the latency between the specific frequency band of the EEG
dynamics and MSL by changing the time lag between them
and then calculating the CCs. The time lag that was associated
with the maximum CCs was used to synchronize the specific
frequency bands of the EEG dynamics and the MSL (see
Fig. 7. for the example).

F. Frequency Band Selection

In this step, specific frequency bands of the EEG dynam-
ics were selected to perform feature extraction. These
bands included broadband signals (1–30 Hz), the delta band
(0.1–3 Hz), the theta band (4–7 Hz), the alpha band (8–12 Hz),
the beta band (13–20 Hz), and the gamma band (21–30 Hz).

G. Feature Extraction

PCA [19], [20] was then used as an optional feature selector
to summarize the variances and extract the first few principal
components (PCs) of the specific frequency band of the EEG
power spectrum time series for each selected motion sickness-
related component after ICA. In this paper, the number of
selected eigenvectors was determined during the PCA training
process. Subject validation was performed to evaluate the esti-
mation performance. Another approach to feature extraction
comprised simply omitting PCA and selecting several specific
frequency bands that were highly correlated with MSL in our
previous and current researches. We will analyze the resulting
performance later in this paper.

IV. MSL PREDICTION MODELS

In this paper, we propose the use of a SONFIN to estimate
a driver’s/passenger’s MSL, and the system performance of
SONFIN is compared with two benchmark systems, LR, and
SVR.

The following section briefly describes the structure of
each prediction model and introduces methods to estimate the
performance of each predictor.

Fig. 7. Results of the time-shifted correlation analysis for the occipital
midline brain area (OM) of subject 15. Considering the 12-Hz point of the
EEG time series, the maximum CC was obtained when the EEG time series
led the MSL by 50 s.

A. Linear Regression

Given a data set {yi, xi1, . . . , xip}n
i=1 of n statistical units, an

LR model assumes that the relationship between the dependent
variable yi, and the p-vector of regressors xi is linear. This
relationship is modeled through a disturbance term or an error
variable εi, which is an unobserved random variable that adds
noise to the linear relationship between the dependent vari-
ables and the regressors. Thus, the model takes the following
form:

yi = β1xi1 + · · · + βpxip + εi = xT
i β + εi (1)

where β is a parameter vector whose elements are the regres-
sion coefficients and T denotes the transpose such that xT

i β
is the inner product between vectors xi and β. Variable yi is
estimated through minimization of the error expectation in (1).

B. Support Vector Regression

The support vector machine (SVM) is a popular approach
for solving the problem of multidimensional function estima-
tion and has been applied in various fields, such as classifica-
tion and regression. When SVM is consistently employed for
solving the problems of function approximation and regression
estimation, it is denoted as SVR. SVR is a powerful technique
for predictive data analysis [21], [22], with many applications
in various areas of study. SVR is a complicated and heavily
computational implementation of a prediction algorithm that
is based on the use of structuring risk minimization principles
to obtain good generalization capability [23], [24]. SVR is
formulated as the estimation of a regression function f(xi, ω)
through the minimization of (2) as follows:

min
1

2
‖ω‖2 + C�n

i (ζi + ζ ∗
i )

subject to

⎧
⎨

⎩

yi − f(xi, ω) � ε + ζ ∗
i

f(xi, ω) − yi � ε + ζi
ζ ∗

i , ζi � 0, i = 1, . . . , n.
(2)

In this paper, a library of LIBSVM [24] was used for the SVR
model construction with the radial basis function applied as
its kernel function.
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C. Self-Organizing Neural Fuzzy Inference Network

SONFIN [25] is composed of nodes, each of which has
a finite fan-in of connections that are represented by weight
values from other nodes and a fan-out of connections to
other nodes. Associated with the fan-in of a node is an
integration function f , which combines information, activation
or evidence from other nodes. This function provides the net
input for this node and is denoted as

net_input = f
[
u(k)

1 , u(k)
2 , . . . , u(k)

p ; ω
(k)
1 , ω

(k)
2 , . . . , ω(k)

p

]
(3)

where u(k)
1 , u(k)

2 , . . . , u(k)
P are inputs to this node and

ω
(k)
1 , ω

(k)
2 , . . . , ω

(k)
P are the associated link weights. The super-

script (k) indicates the layer number. The output for each node
is an activation function value of its net input as follows:

output = o(k)
i = a(net_input) = a(f) (4)

where a(·) denotes the activation function. The functions of
the nodes in each of the five layers of the SONFIN structure
are briefly described as follows.

Layer 1: Transmit inputs to the next node directly, without
computation

f = u(1)
i , a(1) = f . (5)

Layer 2: Calculate the output of Layer 1 into a fuzzy set

f
[
u(2)

ij

]
= −

[
u(2)

ij − mij

]2

σ 2
ij

, a(2) = ef . (6)

Layer 3: Perform a fuzzy rule with an AND operation

f
[
u(3)

i

]
= 	u(3)

i = e−[Di(x−mi)]T[Di(x−mi)], a(3) = f . (7)

Layer 4: Normalize the firing strength calculated in Layer 3

f[u(4)
i ] = �iu

(4)
i , a(4)(f) = u(4)

i

f
. (8)

Layer 5: Integrate all of the actions in Layer 5 to defuzzify
the results. Each node in this layer corresponds to one output
variable

f[u(5)
i ] = �iωiu

(5)
i , a(5)(f) = f . (9)

D. Smoother

In our proposed system, the training and testing data sets
were randomly selected from the EEG power spectrum time
series and behavioral time series; therefore, there were time
discontinuities in the estimated results. To suppress the fluc-
tuation caused by the time discontinuity, a moving average
was applied for smoothing the estimated output curve from
SONFIN/LR/SVR.

For a given input vector X, where X = [X1, X2, . . . , Xn]T,
the elements of the output vector Y of the moving average are
given by

Yk = Xk, k = 1, n

Yk = (Xk−1 + Xk + Xk+1)

3
, k = 2, n − 1

Yk = (Xk−2+Xk−1+Xk+Xk+1+Xk+2)

5
, k =3, . . . , n − 2.

(10)

E. Performance Estimation

To estimate the performance of the different predictors, the
Pearson product-moment correlation coefficient (PPMCC) and
the root-mean-square error (RMSE) were applied.

In this paper, the PPMCC, denoted by CC, between the
estimated and recorded MSLs, was obtained using (11)

cc = �n
i=1(MSLi−MSL)(eMSLi−eMSL)

√
�n

i=1(MSLi−MSL)2
√

�n
i=1(eMSLi−eMSL)2

(11)

where n is the number of trials, and MSL and eMSL are
the means of the recorded MSL and the estimated MSL,
respectively. If the value of CC is high, then the two variables
have a strong linear relationship, i.e., the higher the CC, the
better the predictor [26].

The RMSE is another popular and useful index for assessing
the performance of the predictors [26] and was calculated
using the following equation:

RMSE =
√

�n
i=1(MSLi − eMSLi)2

n
. (12)

A smaller RMSE represents better prediction by the proposed
model.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Subject-Dependent Motion Sickness Prediction

In this paper, EEG data from 17 subjects were analyzed
and applied to model the proposed learning system for MSL
estimation. The CCs and the RMSEs were calculated to
evaluate the performance of the system. For each subject,
70% of his or her EEG data and the corresponding behavior
data (self-reported MSL) were used as a training data set,
whereas the remaining 30% of the EEG and behavior data
were collected as a testing data set. During each training
procedure, the training data were randomly selected, and
the same procedure was repeated 20 times to calculate the
average CCs and RMSEs between the actual (self-reported)
and estimated MSLs. Figs. 8–10 show the estimated MSLs of
subject 6, subject 12, and subject 13, respectively. The results
were estimated by EEG dynamics measured from different
brain areas. For subject 6, the MSL curve estimated by the
EEG dynamics measured from the left motor area has the
highest correlation with the actual MSL curve; for subject 12,
the MSL curve estimated by the EEG dynamics measured from
the occipital midline brain area has the higher correlation with
the actual MSL curve, whereas for subject 13, the MSL curve
estimated by the EEG dynamics measured from the occipital
midline brain area has the highest correlation with the actual
MSL curve.

In our learning system, we propose the use of SONFIN
as the prediction model for estimating a driver’s/passenger’s
MSL, and the system performance of SONFIN is compared
with two benchmark systems, including LR and SVR.

Table I compares the system performance of SONFIN, SVR,
and LR when they are applied to the same broadband EEG
power spectrum. The table lists the CCs between the actual
and estimated MSL curves. The associated broken line graph
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Fig. 8. Estimated MSL of subject 6. Black curve: estimated by the EEG
dynamics measured from the left motor brain area (LM). Sky blue curve:
estimated by the EEG dynamics measured from the parietal brain area (PA).
Green curve: estimated by the EEG dynamics measured from the right motor
brain area (RM).

Fig. 9. Estimated MSL of subject 12. Navy blue curve: estimated by the
EEG dynamics that were measured from the lateral occipital brain area (OC).
Pink curve: estimated by the EEG dynamics that were measured from the
occipital midline brain area (OM).

is shown in Fig. 11. From this graph, we see that SONFIN
and SVR outperform LR when PCA is omitted, and SONFIN
is slightly better than SVR in this situation.

Previous researches indicated that the delta, theta, and alpha
powers of certain brain areas are positively correlated with
motion sickness. In this paper, we apply our proposed learn-
ing system to various frequency bands of the EEG spectra,
including the delta band (0.1–3 Hz), theta band (4–7 Hz),
alpha band (8–12 Hz), beta band (13–20 Hz), and gamma band
(21–30 Hz). The resulting CCs between the actual and esti-
mated MSL curves are presented through a broken line graph
and are shown in Fig. 12. From Fig. 12, we observe two facts.
First, the gamma-band curve has a very similar trend as the
broadband curve. Second, among all of the frequency bands,
the alpha-band power has the highest CC in the occipital
midline brain area (see Table III for the details). These two

Fig. 10. Estimated MSL of subject 13. Black curve: estimated by the EEG
dynamics that were measured from the left motor brain area (LM). Sky blue
curve: estimated by the EEG dynamics that were measured from the parietal
brain area (PA). Navy blue curve: estimated by the EEG dynamics that were
measured from the lateral occipital brain area (OC). Pink curve: estimated
by the EEG dynamics that were measured from the occipital midline brain
area (OM).

TABLE I

FEATURE SELECTOR: NONE/FREQUENCY: BROADBAND

facts motivate us to combine frequency bands, such as the
alpha and gamma bands or the alpha and beta bands. The
results are very exciting. The orange curve in Fig. 13 shows
the CCs between the actual MSL and MSL estimated by
the combination of the alpha- and gamma-band EEG power
spectra. The performance of the combination power spectrum
is very close to the performance of the broadband power
spectrum. Readers may refer to Tables II and IV for details.

Finally, we compare the performance of each prediction
model when the input data are either the broadband or
combination of the alpha- and gamma-band power spectra.
Here, PCA is adopted as the feature selector, and the results
are shown in Fig. 15. This broken line shows that the
performance of SONFIN is better than that of SVR and LR.
Furthermore, when the EEG dynamics are measured from the
occipital midline brain area, each prediction model achieves
its best performance. The significance can be examined by
performing a multiple-comparison test. The inputs of the
multiple-comparison test are the CCs between the actual
and the estimated MSL curves that are estimated by each
prediction model, whereas the input data of each prediction
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Fig. 11. Comparison of the performance between three prediction models
when the input data are broadband EEG spectra (0.1–30 Hz). Vertical axis:
CCs between the actual and estimated MSL curves. Horizontal axis: brain
area from which the EEG dynamics were measured.
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Fig. 12. CCs between the actual and estimated MSL curves when the different
frequency bands of the EEG spectra are selected. In this scheme, SONFIN
was selected as the prediction model. Vertical axis: CCs between the actual
and the estimated MSL curves. Horizontal axis: brain area from which the
EEG dynamics were measured.
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Fig. 13. CCs between the actual and estimated MSL curves when different
frequency bands of the EEG spectra are selected. In this scheme, SONFIN was
selected as the prediction model, but PCA was not used as an additional feature
selector. Vertical axis: CCs between the actual and the estimated MSL curves.
Horizontal axis: brain area from which the EEG dynamics were measured.
Orange curve: performance of the combination of the alpha and gamma bands
of the EEG spectra is second best when compared with that of the broadband
EEG spectrum.

model are broadband EEG spectra that are measured from
the occipital midline brain area. Fig. 16 shows that when
PCA is omitted, the performance of SONFIN is better than

TABLE II

FEATURE SELECTOR: PCA/FREQUENCY: BROADBAND

TABLE III

FEATURE SELECTOR: PCA/FREQUENCY: ALPHA BAND

TABLE IV

FEATURE SELECTOR: PCA/FREQUENCY: ALPHA AND GAMMA BAND

the performances of LR and SVR, but SONFIN significantly
outperforms only LR. Furthermore, when PCA is present, only
PCA + SONFIN significantly outperforms the performance
from applying SONFIN alone. In other words, neither
PCA + SVR NOR PCA + LR significantly outperforms
SONFIN alone. That finding implies that SONFIN is more
suitable for our proposed learning system compared with LR
and SVR.

How does PCA improve the overall performance? Table VII
compares the overall performance when PCA is present or
absent when MSL is estimated by the broadband EEG spec-
trum. The results show that when PCA is present, the average
CC will increase by 6.27%, 3.91%, and 12.61% when the
prediction model is SONFIN, SVR, and LR, respectively.

B. Discussion

From Fig. 11, we see that SONFIN and SVR outperform
LR when PCA is omitted, and SONFIN is slightly better than
SVR in this situation. However, if PCA is adopted as the
feature selector, the performance of SONFIN is better than
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Fig. 14. CCs between the actual and estimated MSL curves when different
frequency bands of EEG spectra are selected. In this scheme, LR was selected
as the prediction model, but PCA was not used as the additional feature
selector. Vertical axis: CCs between the actual and estimated MSL curves.
Horizontal axis: brain area from which the EEG dynamics were measured.
Orange curve: performance of the combination of the alpha and gamma bands
of the EEG spectra is second best when compared with that of the broadband
EEG spectrum.
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Fig. 15. Performance comparison between three prediction models when
the input data are either the combination of the alpha and gamma bands of
the EEG spectra (A.G.) or broadband EEG spectra (B.B.). In this comparison
scheme, although the specific frequency band was selected, PCA was adopted
as the feature selector. Vertical axis: CCs between the actual and the estimated
MSL curves. Horizontal axis: brain area from which the EEG dynamics were
measured. The results show that applying the SONFIN to the broadband EEG
spectrum outperforms the performance of other combinations of the prediction
model and input data.

that of SVR and LR, and the performance of LR is better than
that of SVR. The results are shown in Fig. 15. Fig. 16 further
suggests that, in our proposed learning system SONFIN, a
neural-fuzzy network with online learning ability is a better
choice for the MSL prediction model, when benchmarked
against LR and SVR.

Figs. 11 and 15 also suggest that the broadband EEG power
responses in the occipital midline brain area are more highly
correlated with subjective sickness levels than the responses
in other brain areas, irrespective of the prediction model that
is used. Furthermore, the correlation analysis of all of the
frequency bands shows that the delta- and theta-band powers
are less correlated with subjective sickness levels than other
frequency bands. Details are given in Figs. 13 and 14.

Table V shows that, although the alpha-band data account
for only 16.7% of the broadband data, in the occipital midline
brain area, the alpha-band power achieves up to 89% of the
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Fig. 16. Results of a multiple-comparison test between three prediction
models, for which each model has PCA omitted or present. The inputs of the
multiple-comparison test were the CCs between the actual and estimated MSL
curves, whereas the input data of each prediction model were broadband EEG
spectra that were measured from the occipital midline brain area. Horizontal
axis: adopted prediction models. Vertical axis: values of the CCs. The results
show that, when PCA is omitted, SONFIN outperforms the LR and SVR
and significantly outperforms LR. Furthermore, when PCA is present, only
PCA + SONFIN significantly outperforms the performance from applying
SONFIN alone, whereas neither PCA + SVR NOR PCA + LR significantly
outperforms SONFIN. (∗∗ significant, α = 0.05).

TABLE V

FEATURE SELECTOR: PCA/FREQUENCY: BROADBAND, ALPHA BAND

TABLE VI

FEATURE SELECTOR: PCA/FREQUENCY: BROADBAND,

ALPHA AND GAMMA BAND

prediction performance of the broadband EEG spectrum if
SONFIN is used and up to 93% of the prediction performance
of the broadband EEG spectrum if SVR is used, based on
the CC analysis. The average prediction performance of the
alpha-band power in the five motion sickness-correlated brain
areas achieves 73.4% of the prediction performance of the
broadband EEG spectrum if SONFIN is used.

Table VI shows that, although the alpha- and gamma-
band data account for only 50% of the broadband data, in
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TABLE VII

FEATURE SELECTOR: PCA/FREQUENCY: BROADBAND

the occipital midline brain area, the alpha- and gamma-band
power achieves up to 96.34% of the prediction performance
of the broadband EEG spectrum if SONFIN is used. The
average prediction performance of the alpha- and gamma-band
power in the five highly motion sickness-correlated brain areas
achieves up to 92.79% of the prediction performance of the
broadband EEG spectrum.

Finally, we would like to examine the performance of
PCA alone in our proposed estimation system. Table VII
shows that when the feature extractor PCA is used, then the
CCs between the estimated and actual MSLs increase by an
average of 6.27%, 3.91%, and 12.61%, which correspond to
the prediction models SONFIN, SVR, and LR, respectively.
This finding means that an extra feature extractor is helpful
for enhancing the system performance.

Because of the lack of a method for standardizing and
quantifying each subject’s motion sickness, we did not eval-
uate the system performance in terms of the RMSE; we
evaluated the system by CCs because the trend of self-reported
motion sickness is more meaningful in this situation. However,
we still use RMSE to evaluate the performance of SON-
FIN in comparison with the other two benchmark prediction
models.

VI. CONCLUSION

As biosensing technologies continue to progress in the
upcoming decades, the ability to image brain activity will
move away from traditional brain-computer interface (BCI)
settings into everyday environments through novel augmented
BCIs, which are BCIs that can be used by individuals for
everyday use [27], [28]. With biosensing technologies and
mobile wireless EEG technologies [29]–[31], we can design a
cognitive monitoring system that can monitor people’s brain
activity and alert them before they feel sick. Such a monitoring
system could prevent people from being distracted by various
motion sickness symptoms while driving or riding in a car.

How the current MSL that a person perceives compares
with that the person felt 10 min ago is not an easy question
for a subject to answer. A subject can determine whether the
MSL he feels at the current stage is however, more or less
than the MSL he felt in the previous stage. Therefore, we
designed a learning system to predict the trend in the MSL
by first extracting the motion sickness indicators and then
using those indictors to predict the MSL through a neural

network. Our proposed learning system provides a useful and
efficient way to train the motion sickness estimation system
by collecting training data from a VR driving simulator. In
such an environment, the induced motion sickness was fairly
similar to the motion sickness that is induced by an actual car
ride.

Although the input signal EEG dynamics are usually noise
sensitive and easily influenced by artifacts because of the
microvolt scale of the amplitude, we solved the noise prob-
lem by performing an ICA to remove artifacts, such as eye
blinks, muscle, and power-line noise. After several iterations,
excluding EEG contaminations, the independent components
were separated, localized, and extracted. For online processing,
among all of the ICA components, we selected highly motion
sickness-related components for an additional time–frequency
analysis based on the knowledge obtained from our previous
researches. By doing so, it was considerably easier to extract
the valid motion sickness indicators from the dynamic EEG
activations.

Because of their nonstationary nature, EEG dynamics do not
exhibit unique characteristics in the frequency domain [34].
Therefore, a short-time Fourier transform was used to extract
time–frequency features. Furthermore, rapid fluctuations in
self-reported motion sickness usually increase the difficulty
in performing the estimation. To overcome the fluctuation
problem, the moving average method was applied to smooth
the MSL that was reported by each subject. Nonetheless,
another moving average was applied after the application
of the prediction model to suppress output fluctuations as
well.

Finally, through CC analysis, we suggest that the broadband
EEG power responses in the occipital midline brain area
are more highly correlated with subjective sickness levels
than the responses in other brain areas, irrespective of the
prediction model used. Among the frequency bands, the alpha
and gamma bands of the EEG power spectrum are the valid
indicators of motion sickness. Through a multiple-comparison
test, we can further suggest that SONFIN, a neuro-fuzzy
system with online self-constructing capability and online
learning ability, is a better scheme to predict MSL, compared
with LR and SVR. The results also show that, with an efficient
feature extractor, the system prediction accuracy can definitely
be improved.

With the help of biosensing and low-cost wireless EEG
technologies, designing an online estimation system with an
efficient learning mechanism through the application of a
neural network approach is promising. In this paper, the overall
performance of our proposed EEG-based learning system can
achieve an average prediction accuracy of ∼82%. Our future
work can focus on how to enhance the system’s performance
by finding a method for extracting perfect motion sickness
indicators from a neural network.
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