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Principal Component Analysis of Multi-Pigment
Scenario 1n Full-Color Electrophoretic Display

Yen-Hsing Lu and Chung-Hao Tien

Abstract—In this paper, we present a methodology to charac-
terize the colorimetric performance of a full-color electrophoretic
display (EPD) with multiple pigment formation. We use the prin-
cipal component analysis to formulate the composite hybrid color-
mixing system by using a single eigen-spectral component for each
sub-pixel channel. Proposed model was validated to predict the
chromatic features with high accuracy (AEavE_ciepE2000 <
0.2) for both micro-cup type and micro-encapsulated type EPD
samples. This study is effective to uncover the underlying physical
features from only colorant-mixture information in a novel color
system.

Index Terms—Full-color electrophoretic
principal component analysis, colorant-mixture.

display (EPD),

I. INTRODUCTION

ECHNOLOGIES in reflective display (or also known as

electronic-paper, e-Paper) have made a rapid progress
in the last decade. E-Paper is a direct view electronic display
that is either bi-stable or nearly bi-stable with the benefit
of extremely low power consumption. Generally, there are
several scenarios to implement the bi-stability (or nearly
bi-stability), including electrophoretic [1]-[7], electrofluidic
[8], [9], bi-stable liquid crystal display (LCD) [10], [11],
electrowetting [12], [13] and other emerging approaches [14].
Despite jeopardized by the great success of emissive displays
and their accompanying PC devices, e-Paper still has potential
to leverage its strongest advantages which emissive counter-
parts are hard to achieve, such as superior energy saving, fine
contrast under sunlight, continuous roll-to-roll manufacturing,
flexible format, or even paper-like reading comfort. One major
goal of such non-self-luminous media is to retain many of the
desirable characteristics of color printed paper, while keeping
ubiquitous communication via different electronic interfaces.
The unique feature containing both hard copy rendering and
soft copy operation has drawn enormous attention to the public,
thus drive many studies to pursue more suitable modes and
manufacturing methods.

Electrophoretic display (EPD) is one of the remarkable ap-
proaches among e-Paper family, due to its successful technolo-
gies such as micro-encapsulated type from E Ink, micro-cup
type from SiPix in monochromatic, independently movable col-
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Fig. 1. The colorimetric characterization performs the matrix-vector multipli-
cation of v = Qc. System transfer matrix (Q) is composed of n featuring spec-
tral channels determining the significantly spectral components in color system.

ored particles (IMCP) type from Fuji-Xerox [7], respectively.
Electrophoresis is the motion of particles dispersed in solution
or medium under the influence of an applied electric field in ei-
ther vertical or horizontal direction. In terms of display or elec-
tronic printing, the particles are embedded in thin-film layers.
The color and gray level of the display can be determined by
the reflective properties of the ink particles, or of a surface be-
hind the fluid or their combination. The ink particles can move
either in the plane of the panel or perpendicular to it in response
to the applied field. Taking electrophoretic system as a case,
if e-Paper can achieve adequate colored images, we are won-
dering what is the underlying physical feature from only col-
orant-mixture information? Since the amazing similarity with
conventional print technology, by which the multicolor images
are produced by placing small dots of ink with a specific spectral
reflectance side-by-side, we are asked if there exists a unifying
scheme to describe the nature of multi-pigment transposition in
e-Paper, and if so, whether we can characterize it in a systematic
way borrowed from well-established color print technology?
To help guide our investigation, a linear transformation be-
tween device-dependent and colorimetric representations is in-
troduced at first [15]. Fig. 1 illustrates the transformation mech-
anism that executes a matrix-vector multiplication. Without loss
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Fig. 2. Schematic diagram of (a) monochromatic micro-cup and (b) full-color
micro-encapsulated electrophoretic display. A net of electric fields are applied
across the cells to control the distributions of the charged multi-pigments. The
spectral absorptance of dielectric fluid or oil, which is subject to the position of
the multi-pigments, offers the sub-pixel the resulting lightness. Moreover, the
EPD achieves full-color approach with the pixel layout of simulated RGB in (a)
and practical RGBW in (b), respectively. Different amounts of absorbed light
from sub-pixels are introduced into our eyes and mixed additively on retina ac-
cordingly. Therefore, the color-mixing principle of the full-color EPD is a com-
plex system which cannot be easily characterized by simple additive or subtrac-
tive color mixing theorem.

of generality, the medium is assumed to be characterized by n
featuring spectral channels (e.g., for conventional emissive dis-
play, n» = 3, the matrix represents the spectral superposition
of red/green/blue channels) sampled by m wavelength points to
form an m X n linear transformation matrix (Q). The system
characteristic matrix determines which spectral components are
significant in a color system. The n -by-1 vector (c;) offers a
set of scalar ratios, subject to input digital counts, to determine
the intensity of individual channels. The resulted spectrum (v)
can be obtained via Q-c multiplication accordingly.

In terms of EPD, its colorimetric performance is mainly de-
termined by single (or multiple) pigment transposition. A pig-
ment is a colorant that is usually not soluble in the medium in
which it is applied and incorporated into the thin film in par-
ticle form. Pixel technology involves the combination of pig-
ment (single or multiple), dielectric fluid (monochrome or trans-
parent), filter, and electrode layout. Fig. 2(b) illustrates a ver-
tical colorant transposition with simplified micro-encapsulated
architecture, whose pixel arrangement is a two-colorant mixing
with RGBW filter. In this two particles system, the charged
black or white pigments move perpendicular to the plane of
panel, and the reflectance of each subpixel is determined by
whether the particles are at the front or back.

In addition to the gray modulation by colorant transposition,
color EPD shall equip red, green, and blue color filters to allow
full-color rendering. Based on micro-cup architecture, SiPix
also developed an alternative paradigm to create a full-color
system called dual mode switching. In this approach, white
colorant particles are embedded in red, green or blue colored
dyes and a black layer of light absorbing material is placed
behind each sub-pixel. The electric fields are arranged so that
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the particles can move sideways as well as forward and back.
According to Heikenfeld’s study, bi-primary mixing is very
suited for colorant-transposition technologies. This is an advan-
tage, because colorant transposition technologies exhibit some
of the highest reflectance and color fraction [16]. Except for
color filter and colored dyes approaches, Fuji-Xerox introduced
a novel color EPD using independently movable colored parti-
cles with different threshold fields [7]. The technique disperses
second primary colored particles in identical cell to enable
truly printing-like e-Paper. No matter what mixing scheme a
color system use, obviously it is not possible to model such
composite mixing scheme by a pure subtractive or additive
theory. Instead, numerical regression and interpolation are the
most practical approaches to characterize such complex color
mechanism, but at an expense of huge measured efforts [17].

Principal component analysis, abbreviated PCA, has been
widely used as a mathematical tool in color technology
[18]-[20]. One major function of PCA is to find the principal
directions that a set of data oriented. The major and minor
axes imply that many physical significance hidden by a large
amount of end-to-end measurement data. In this paper, we aim
to employ PCA to uncover the underlying physical principles
related to a complex color-mixing scheme. In case of EPD
with composite mixing via micro-cup and micro-encapsulated
structure, we expect to precisely reconstruct color model of
a full-color EPD while extracting primary spectral features
for multi-pigments transposition. The method is kind of
learning-based reconstruction, i.e., a preliminary measured data
set is used to build up the color model. In order to reduce the
superfluous information, the spectral reflectances of the EPD
samples are merely estimated from eigen-spectral components
by using PCA and projection matrix. Color difference between
sample spectra and their spectral estimation for a set of sam-
ples will be discussed. Finally, we will examine the proposed
PCA-based methodology by two case studies (micro-cup type
and micro-encapsulated type color EPD).

II. METHODOLOGY

PCA is well described by means of vector—matrix lan-
guage. All the scientific symbols and abbreviations utilized in
following section are listed in Table I where scalars are repre-
sented by italic characters. Vectors and matrices are denoted
by bold-faced lower-case and upper-case letters, respectively.
Here we merely make a quick review of the PCA in color
technology. The complete matrix algebra will not be reviewed
here, as detailed information can be found in many classical
publications [21]-[23].

First of all, we analyze a variance-covariance or correlation
structure of a spectral reflectance set in matrix form. As we
described in Fig. 1, the column vectors of matrix constitute
a vector space. For conventional liquid crystal displays, the
column vectors are mainly determined by the spectral trans-
mittance of the color filter. But those in EPD become more
complicated because the spectral vectors arise from composite
color mixing combination, including colorant-mixture, fluid,
filter, or microstructure. Hence we must use a skill to simplify
the matrix and uncover the spectral properties of each compo-
nent channel from a set of measured data.
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TABLE 1
NOMENCLATURE

Abbreviations

variance-covariance color matching function

A . M .
matrix matrix
orthonormal Lo .
Q eigenvector matrix R projection matrix
T tristimulus matrix A eigenvalue matrix
[ scalar ratio vector q eigenvector
t tristimuls vector t mean tristimulus vector
v sample vector v mean vector
c scalar n numbers of samples
numbers of , numbers of
m m ..
sampled wavelength principal components
q sample number A eigenvalue
XYz tristimulus value XYZ mean tristimulus value
Superscripts and subscripts
i it sample T transpose operator
PC principal component

Given a spectral reflectance set, V, an m X n matrix with
m sampled wavelengths and » number of colors (e.g., spec-
tral reflectance of color-ramp shown by EPD), denoted as a set
of column vectors of [vy va...v,]. As each sample color v;,
is measured within the visible spectrum between 400 nm and
700 nm at 10-nm intervals; v; is a vector of 31 components.
Similarly, as we have a set of 216 sample colors that EPD can
achieve, the dimension of this characteristic matrix becomes
(m x n) = (31 x 216).

A mean vector, V, is the average of the entire sample set. The
physical significance of the mean spectrum is the colorant neu-
tral (like the DC bias of a learning database) of an EPD sample.

v::—LZvi. 1)

=1

The difference between the spectral reflectance and mean spec-

trum (v; — v) presents the spectral variance. As we correlate the

variance among 7. spectral reflectance entry, a variance-covari-
ance matrix (A) can be obtained as following:

1 - AT

A= (vi = V)(vi— V) ()

n—1 4
=1

n

where T is the matrix-vector transpose operator. Notice that
wavelengths confine the sample set in an m -dimensional vector
space. Each entry of A, a;;, describes the data correlation be-
tween ¢th and jth spectral channel where ¢ and j < n. The
higher absolute value of the term in A is in response to the
higher correlation between two spectral features. It also implies
that when a;; is zero, the ith and jth spectral features are totally
uncorrelated. Since A is a symmetric matrix based on the for-
mation in (2), variance-covariance matrix can be factored into a
perfect form (orthogonal)(diagonal)(orthogonal)T by change
of basis [24]:

A =QAQ" 3

where Q is an m-by- m matrix constituted by a set of or-
thonormal eigenvectors (q1,q2,qs.. Qm) of matrix A. The
eigenvectors are linearly independent and indentify the prin-
cipal directions that a set of reflectance spectra oriented. A, a

diagonal matrix, is the eigenvalues of the corresponding eigen-
vectors. If we descend the diagonal terms (A1, A, ..., Ay, ) Of
A, the Ay reveals the most dominant variance along the new
spectral axis (i.e., eigenvector q1). The new axes (or bases)
represent the directions with maximum variance and effec-
tively reduce the scale of matrix. The total percentage variance
defined by the first 7/ eigenvectors is shown as

!
m

> A

Percent Variance = 100 x =1 . )

m

2 A
=1

Equation (4) can be utilized as an assessment to estimate the
dimensionality of the given sample set. For example, if the first
m/ eigenvectors represent 99% of total variance (m’ < m), then
the original matrix A can be well approximated as a downsize
form:

Al q1
Az d2
A=[q1 q Am’ ] .
)\m’ qm’
= QpcAchEc )

where the subscript, pc, stands for principal component.
Comparing (5) with (3), the dimensionality is reduced from m
column vectors to m’ primary eigenvectors if the given sample
set is re-distributed in a new eigenvector coordinate system.

To achieve the linear transformation, we introduce a projec-
tion matrix, R, which is an orthogonal projector, calculated
from principal eigenvector matrix, Qp.:

R = Qpe (QLQpe) QL = QpeQ.. (6)

Accordingly, the sample value, v, can be approximately recon-
structed by mean vector, v, and R-v multiplication as follows:

Vi =v+ RVi =V + Qpcci (7)

where c; is the scalar ratio vector whose entries indicate the
projection along eigenvector direction. Now, (7) is further ex-
pressed with matrix extension:

U1 g qi1 12 qim’ 1
U2 U g21  g22 qom’ €2
= . |+ .
Um d Um Gm1  Gm2 Gmm/! pc Cm/ 1

®)

Recall the linear transformation employed to describe the ren-
dering mechanism of a display system in Fig. 1, each column
vector in the principal component matrix (Qy,. ) from the reduc-
tion of the eigenvector matrix of the variance-covariance ma-
trix (A ) can be regarded as the characteristic vector analysis of
EPD. Until now, the physical features of the multi-pigment mix-
ture for an EPD have been revealed by the PCA-based method.
However, the spectral formation is not convenient for color re-
production due to the redundant dimension [25].

In the perspective of color communication among
multi-media, employing simplified quantification such as
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Fig. 3. The first six principal components (PCs) and the mean derived from the reflectance spectra of the micro-cup EPD sample set. The spectral tendencies of
the first three PCs are consistent with the spectral transmittance of the RGB color filters, respectively. It implies that the spectral characteristics of color filters

strongly dominant the significant directions in this case study.

tristimulus values or CIELAB values is more intuitive and
more feasible. Therefore, turning (7) into a low dimension form
containing three entries of each column vector is necessary for
practicality. An m-by-3 matrix, M, where the three columns
are color-matching functions is introduced to reduce dimension:
MTv; = MTv + MTQ,.c:. )
The m-dimensional column vectors from (7) are now projected
into three-dimensional human-visual-system subspace and
transformed to the corresponding projection:
t; = t+ Tpcci (10)
where t is the column vector of tristimulus values, and the
3-by-m’ matrix, Tp, uncovers the colorimetric features of the
system characteristic matrix. We can see that the systematic
description of the colorant-mixture for a multi-pigments EPD
is from m-dimensional spectral formation to three-dimensional
colorimetric formation while the scalar vectors are identical in
both equations. This colorimetric expression will benefit further
applications such as evaluating model accuracy and communi-
cating information across different electronic interfaces.

III. CASES STUDY

In order to validate the characterizing technique, we adopt
two full-color e-Papers, micro-cup EPD and micro-encapsu-
lated EPD, to be our case studies. In measurement setup, the
TOPCON® SR-ULIR spectroradiometer was used to measure
the colorimetric information shown on the EPD. It features the
working luminance range of 0.005-3000 cd/m? with the reliable

accuracy of £2% and £0.002 in luminance and chromaticity,
respectively. The 45° :0° setup, the SR-ULIR measured from
the normal side of the EPD and the light source illuminated
from the 45° position, was adopted. In addition, the spectra re-
flectance of each color sample was measured for 2° observer
under CIE illuminant F7. All the color data had been measured
five times and then averaged in terms of accuracy and stability.

A. Micro-Cup Type Color EPD

Since the dual mode switching sample involving RGB col-
ored dyes was not commercially available, a 9-inch monochro-
matic micro-cup (MC) EPD sample combined with simulated
RGB color filters was examined as the first case and shown in
Fig. 2(a). Apart from the essential structures such as polymer
micro-cup and transparent fluid, the EPD included white and
black pigments with opposite polarity to enhance the intrinsic
contrast ratio. Based on the simplest pixel layout, commercial
RGB color filters (CFs) were placed side-by-side over the top of
micro-cup. The well-known spectral transmittances of the CFs
were employed to calculate the performance. Each individual
RGB channel was capable of 16 substantial gray levels to ac-
complish 4096 colors in total. The fundamental measurement
of a set of 216 sampling grid colors created by 6 digit counts
of red, green, and blue was displayed over the MC EPD as the
learning database for principal component analysis.

The results of the principal directions changed from the set
of sample pointed plotted in Fig. 3. The mean spectrum typi-
cally represents spectral neutral of three RGB sub-pixels. Since
the sample set comes from a uniform grid design, the mean is
expected to be similar to a gray sample (e.g., the spectral re-
flectance of the white color illustrated in the seventh subplot).
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The eighth subplot highlights the relationship between the per-
centage variance and eigenvector. The plot indicates that the
first three principal directions have the spectral variance of 67%,
22%, and 10% that is able to contain 99% of sample data. Hence,
these three eigenvectors explain a significant amount of the total
variance and the new spectral axes uncover the color informa-
tion of the sample set. The first eigenvector enlightens the most
weighted direction along with samples distributed indicating an
overall red cast of the sample set or the reflectance peaks in
the long wavelength region. Similarly, the second and the third
eigenvectors reveal the variations of the colors in middle and
short wavelength regions pointing out the existence of greenish
and bluish samples, respectively. If we compare the spectral
transmittance of RGB color filters (CF curves show on the first
three subplots) with the first three principal directions, the spec-
tral tendencies between them are amazingly consistent while the
absolute values exist difference. We acknowledge that the simu-
lated full-color MC EPD is a special case, since its system char-
acteristic matrix is associated with the RGB color filters like a
counterpart, whereas the image of LCD is only achieved by the
combination of RGB color filters. Clearly, the PCA-based anal-
ysis is actually regarded as colorant estimation as Bern’s ex-
pectation [15], even the colorant-mixture in full-color MC EPD
is electrophoretic differentiated from traditional hard copy. As
a consequence, the proposed methodology aims to construct a
more complicated system such as dual mode switching MC EPD
whose inherent physical features are dominated by the interac-
tion of ink particles and colored dyes (RGB or CMY).

The randomly selected 2048 color samples were used to ex-
amine the predicting accuracy of the proposed model in MC
EPD. Two different sets of tristimulus values, one by sample
spectra and the other by the estimated spectra via (8), were ap-
plied to calculate the CIEDE2000 color differences for evalu-
ation. If the value is less than one, the difference attributed to
predicting error will be indistinguishable for human perception.
The color difference values of the whole tested samples were
calculated and plotted to build an occurrence chart in Fig. 4.
According to the statistic, over 99% predicting results have reli-
able accuracy (AE00Q < 1) and around 93% of predictions with
high fidelity (AE00 < 0.5). As a result of the verification, the
proposed model in Section II can precisely describe the colori-
metric performance of MC EPD composed of multi-pigments
and color filters.

B. Micro-Encapsulated Type Color EPD

Of all e-Paper products, micro-encapsulated (ME) EPD man-
ufactured by E Ink has the largest market share due to its excel-
lent and robust performance. In terms of the reliability, a com-
mercial 9-inch full-color ME EPD sample was adopted to con-
firm the viability of the proposed model. A schematic diagram
of the tested sample is illustrated in Fig. 2(b). Unlike the first
case whose pixel geometry was RGB side-by-side, full-color
ME EPD included four sub-pixels, RGBW (W as white), with
quadratic arrangement. Each RGB sub-pixel presented funda-
mental colorimetric information with 16 intensity levels. The
W channel benefited the enhancement of brightness but sacri-
ficed color fraction simultaneously. A specific algorithm was

800 | Full-color MC EPD
# of test colors: 2048
700 | Average AE,: 0.19
99.6% AEq,< 1
600 | 93.5% AEg,< 0.5
(]
o
(=
()]
S
-
Q
%]
(@)

0.0 0.2 0.4 0.6 0.8 1.0
CIEDE2000

Fig. 4. Occurrence of CIEDE2000 color difference for tested 2048-color sam-
ples of simulated full-color MC EPD.

involved to accomplish RGB-to-RGBW input signal-decompo-
sition [26]. Similar change of basis was demonstrated by re-
peating PCA-based analysis on the spectral reflectance of the
identical sample colors used in the first case.

The percentage variance plot, the spectra of the mean and the
first six eigenvectors are shown in Fig. 5. Comparing these plots
with Fig. 3, the first three principal directions accounted for 99%
of the total variance are no longer the spectral transmittance of
color filters. The first eigenvector including 97% of the repre-
sentation exhibits a neutral colorant in highly accordance with
the spectral reflectance of sample white. It implies that the inten-
sity of reflecting light is a dominant factor mainly resulted from
the boosting W channel in signal controlled algorithm. To have
a further discussion, the 1st principal component is regarded
as a weighted DC value attributing to the W channel plus the
mutual portion of the RGB sub-pixels (e.g., for an input signal
(R,G,B, W) =(0.3,0.4,0.5,0.6), the DC bias can be consid-
ered as 0.6 + 0.3). Except for the significant neutral representa-
tion, the variations of chromatic amounts are explained by two
complimentary primary spectra (colors) in the next three eigen-
vectors. For example, the second spectral axis uncovers colors
varying along the long wavelength regions (marked as R) and
the corresponding complementary spectral regions (marked as
C) describing the existence of reddish and cyan-ish samples in
the data set. Similarly, the last GB primaries are matched up
with their MY compliments in the third and forth eigenvectors,
respectively. We are aware of that these three principal compo-
nents are bipolar since the modulated eigen-spectra can either be
added to or subtracted from the DC bias. As a consequence, four
major axes reveal the momentous directions of the color render-
ings according to the spectral characteristics of the ME EPD.
The linear projections onto the rest of eigenvectors are negli-
gible due to the almost zero contribution of the eigenvalues.

In this case, two sets of sample colors were particularly se-
lected to evaluate the predicting performance of the PCA-based
model. One set was made up of a 5 x 5 x 5 grid sampling the
entire color-gamut with all the combinations of intensity levels
ranked in 3, 6, 9, 12, and 15 (full color-gamut data). The other
set included 27 dark colors from all the changes of the least
three intensity levels in each RGB channels (dark image data).
The measured spectra and tristimulus of both sample sets were
introduced to analyze the influence of the numbers of principal
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Fig. 5. The first six eigenvectors and the mean derived from the reflectance spectra of the micro-encapsuled EPD sample set. The first eigenvector including
97% total variance represents the neutral colorant spectrum due to the RGBW pixel layout and driving algorithm. The physical features of chromatic spectra are
explained in the second to the forth components by a pair of complimentary primary color.
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Fig. 6. Comparison of measured spectral reflectance (black line with diamond
symbol) with predicted ones from utilizing different numbers of the principal
components (from one to four marked with the symbol order of triangle, circle,
square and star). The spectral performances evaluated by RMS are listed in the
figure as well.

components whose optimal results depend on the spectral and
colorimetric accuracy. The spectral accuracy was quantified
by the root-mean-square (RMS) error between measurement
and estimation. Fig. 6 illustrates one of the measured reflecting
spectra and its corresponding estimated spectra with different
numbers of eigenvectors. Although one eigenvector is capable
of offering 97% of total variance, the performed spectral fit
(marked as triangle symbol, RMS = 0.012) is obviously worse
than those applied plural eigenvectors. In other words, the neu-
tral colorant spectrum cannot represent the full result without

TABLE 11
COMPARISON OF COLORIMETRIC PERFORMANCE (CIEDE2000 COLOR
DIFFERENCE) AMONG DIFFERENT NUMBERS OF PRINCIPAL COMPONENTS FOR
FuLL-COLOR MICRO-CAPSULE EPD PREDICTED BY PCA-BASED MODEL.
TwoO SETS OF TESTING COLORS WERE INVOLVED. ONE SET IS 125-COLORS
SPANNING IN FULL COLOR-GAMUT OF ME EPD, AND THE OTHER IS A SET OF
27 COLORS IN DARK IMAGE

Full color-gamut data Dark image data

Mean SDV Max Mean SDV Max
1PC 5.21 523 11.12 7.90 0.34 9.31
2 PCs 3.43 5.04 8.42 7.89 0.43 9.45
3 PCs 0.13 0.01 0.39 0.39 0.01 0.50
4 PCs 0.06 0 0.20 0.19 0 0.31

any chromatic information. The colorimetric performances
specified by CIEDE2000 color difference formula are listed in
Table II. The statistic results of predicting accuracies for the
full color-gamut data are superior to those of the dark image
data. The errors in the end are easily induced when estimating
the samples with low input levels due to intrinsically bad
reflectance of ME EPD. In addition, employing three or more
PCs have even higher colorimetric performance (AEqy < 0.4)
than two or less PCs (AEqgy > 3.4) despite excellent spectral
accuracy for a predicting model with two PCs (RMS = 0.002).
The fact also implies that three principal components are suffi-
cient in the ME EPD while the skipped forth eigenvector carries
the existence of bluish and yellowish data. As a consequence,
the proposed model has been proved to uncover the spectral
behavior for the complex full-color ME EPD.

IV. CONCLUSION

In this work we introduced the principal component analysis
to characterize the colorimetric performance by multiple pig-
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ments scenario of an EPD. By factorization of a spectral re-
flectance set into orthogonal eigenvector basis, we are able to
identify the principal directions that a set of reflectance spectra
oriented. The first few eigenvectors uncovers the reflectance and
scattering features of a set of colorants from their combination.
Taking a two-particle type micro-cup EPD with vertical elec-
tric field as a case study, the first three eigenvectors closely re-
semble the spectral transmittance of RGB color filter. In other
words, if the profiles of spectral transmittance of color filters can
be narrowed and sharpen, the EPD based on this structure will
achieve more saturated color. For a case of full-color micro-en-
capsulated EPD, the first four principal components reveal the
correspondingly physical features based on driving algorithm:
one neutral colorant spectrum and three chromatic spectra com-
posed of complimentary pairs. Obviously, the EPD utilizing
RGBW pixel layout exhibits the weakness of color saturation
unless minimizing either the boosting signals or the pixel area
of white channel. Subtracting from the mean causes the posi-
tive and negative values of the eigenvectors. The spectra mod-
ulation about the mean exhibits a ripple effect in higher order
eigenvectors.

The PCA-based analysis still leaves many opportunities open
and clearly more research must be carried out to explore its
potential in full. First of all, all the calculation mentioned here
is based on the spectral reflectance. The reason is due to that
most available e-Paper displays are monochrome integrated
with color filter on top at this moment. As each subpixel is filled
with dye fluid or with different color pigment, the discussion
of spectral absorptance shall be involved. According to the
prior study [27], spectral absorptance is more consistent with
linear space for the pigments transposition system. Second,
PCA makes a strong assumption that the new (i.e., eigenvector)
coordinates are mutually orthogonal. Opponent spectral com-
ponents are used to estimate the underlying features from the
colorant-mixture information. However, neither RGB nor CMY
colorant is absolutely orthogonal in spectral reflectance or ab-
sorptance. Independent component analysis (ICA) seems to be
more adequate in the spectral analysis in color characterization
of a composite mixing system.
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