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a b s t r a c t

This paper develops a two-stage Cournot production game that integrates strategic and operational
planning under the fuzzy random environment, which to our best knowledge has not appeared in the
literature. At the strategic level, two competing decision-makers determine the upper bound of a
production quantity under a high-production strategy and the lower bound of the production quantity
under a low-production strategy. Then at the operational level, the two competitors determine the
range-type production quantity that is assumed to be a triangular fuzzy number represented by the apex
and the entropies rather than a crisp value. The apex of a fuzzy equilibrium quantity can be obtained by
the conventional Cournot game as the membership value is equal to one. A fuzzy random decision can be
represented by entropies derived from the fuzzy random profit function of each firm in a specific
production strategy. A case study of two leading firms in the glass substrates industry demonstrates the
applicability of the proposed model. The finding that both firms would tend to adopt the common
strategy coincides with observed real-world behavior. We conclude that our proposed method can
provide decision-makers with a simple mathematical foundation for determining production quantity
under a production strategy in a fuzzy random environment.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Decision-making in complicated and competitive environ-
ments can be a difficult task because of uncertainty in the form
of ambiguity or randomness. After the notion of fuzzy sets theory
was introduced by Zadeh (1965) to manage ambiguity, the theory
underwent extensive development and today is routinely applied
to solve a variety of real-world problems, (Kunsch and Fortemps,
2002; Tanaka, 1987; Wong and Lai, 2011). Problems of randomness
can be properly modeled by probability theory; applications to
real problems appear in (Pastor et al., 1999; Valadares Tavares
et al., 1998; Zhang et al., 2004). However, decision-makers often
work in a hybrid (uncertain) environment where ambiguity and
randomness exist simultaneously. Given such environments, a
fuzzy random variable as introduced by Kwakernaak (1978) is a
useful tool for solving these two aspects of uncertainty. Other
studies (Colubi et al., 2001; Krätschmer, 2001) also extend several
ll rights reserved.

ent with the Department of
theories (Wang et al., 2007; Wang et al., 2008) to environments
with these two aspects of uncertainty.

The typical Cournot game (see Cournot, 1838) models a
duopoly in which two competing firms choose their production
quantity. In the equilibrium quantity, no firm can be better off by a
unilateral change in its solution. The exact values of parameters
are required information when the Cournot game is applied to
decision-making models, but exact values are often unobtainable
in a business environment. Yao and Wu (1999) probably initiated a
non-cooperative game involving fuzzy data by applying the rank-
ing method to defuzzify the fuzzy demand and fuzzy supply
functions into crisp values such that both consumer surplus and
producer surplus can be calculated in a conventional manner.
Their method of transforming fuzzy numbers to crisp values is also
utilized to construct the monopoly model in Chang and Yao
(2000). Liang et al. (2008) propose a duopoly model with fuzzy
costs to obtain the optimal quantity of each firm. Recently Dang
and Hong (2010) propose a fuzzy Cournot game with rigorous
definitions ensuring a positive equilibrium quantity and with a
flexible controlling mechanism that adjusts the parameters of
associated objective functions. As mentioned, the resulting crisp
values derived by previous studies are counter-intuitive outcomes
of the problem in the fuzzy sense. A crisp decision is too precise
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Fig. 1. A triangular fuzzy number ~A .
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to be believed in a business environment with a fuzzy sense.
To bridge this gap, we solve for a range-type solution rather than a
crisp-value one. In addition, decision-makers may prefer a decision
with more information in a range they themselves can adjust. In this
case study, we empirically demonstrate our proposed approach to
investigate the behaviors of the equilibrium quantity and production
strategy in the glass substrates industry, which is highly volatile and
ambiguous in the market demand and production costs.

In reality, the parameters of the Cournot game may behave
with the characteristic of randomness in nature. In a business
environment, decision-makers may predict demand behavior in a
market, i.e. a functional form describes the relationship between
price and quantity. The parameters of the functional form of
market demand typically can be estimated by the technique of
econometrics. Regression is one of the most popular statistical
approaches employed and leads to game-theoretical models with
random parameters. Hosomatsu (1969) indicates that the Cournot
solution to an oligopolistic market is based upon the implicit
assumptions given the estimated market demand function. Sato
and Nagatani (1967) propose a model to relax the Cournot
assumption and substitute firms' subjective evaluation of a market
with a more general form with randomness.

Unpredictable events may drive the price fluctuation over a
short period. It is appropriate to apply the fuzzy regression method
(Chen and Dang, 2008; González-Rodríguez et al., 2009) to manage
the data with ambiguity sense. The resulting estimators derived by
econometrics involve in ambiguity and randomness, which occur in
many fields (Guo and Lu, 2009; Xu and Zhao, 2010). In fact, Guo and
Lu (2009) state that the coexistence of ambiguity and randomness
becomes an intrinsic characteristic in the real world. Thus, there is a
strong motivation to develop the Cournot production game with
parameters of ambiguity and randomness described by fuzzy
random parameters. To our best knowledge, none of or very little
research involves in such a Cournot production game.

The Cournot production game proposed in this paper incorpo-
rates a production strategy which refers to the pattern of produc-
tion quantities chosen by a decision-maker. Facing uncertainty
with ambiguity and randomness, the choice of production strategy
has important consequences for the selection, deployment and
management of production resources. In general, there are two
major stages of decision sequence: strategic and operational levels
(see Ballou (1992)). Many studies focus only on the strategic level
or operational level and ignore the importance of the interaction
between them. In this paper, we propose a model considering both
strategic and operational levels. Our model is similar to other two-
stage games (see (Bae et al., 2011; Dhaene and Bouckaert, 2010))
where a player's decision in the first stage affects the action taken
in the second stage. We consider two specific types of production
strategies – high and low – by which the decision-maker's profit
function depends on the highest production quantity or the lowest
production quantity, respectively. In the long term, a high- or low-
production strategy may be employed because the decision-maker
desires to gain market share or to enhance the quality of products
(Stout, 1969; Walters, 1991). Furthermore, Yang and Wee (2010)
indicate that the production strategy is needed to respond to the
market demand because of the rapid technology change (see
(Droge et al., 2012; Kenne et al., 2012; Xu et al., 2012) for other
models adopting strategy perspectives). The aim of this paper is to
solve for the fuzzy equilibrium quantity of each decision-maker
and to provide an appropriate production strategy under the fuzzy
random business environment.

The remainder of this paper is organized as follows. Section 2
presents the preliminary knowledge of the fuzzy sets theory,
entropy, and fuzzy random variable. Section 3 addresses the
Cournot game in the fuzzy random environment and solves for
the fuzzy equilibrium quantity of each firm. Section 4 investigates
the insights of the proposed method including the extension and
discussion. Section 5 illustrates the applicability of the proposed
model in the real-world situation. Section 6 discusses our conclu-
sions and gives suggestions for future research.
2. Definitions and concepts

This section introduces the fuzzy sets theory, entropy and
expected operator which are integral to this paper.

2.1. Fuzzy sets theory

The fuzzy sets theory initiated by Zadeh (1965) attempts to
analyze and solve problems with a source of ambiguity called
fuzziness. In the following, we introduce the definitions and
notations of triangular fuzzy numbers, α-level cut and the exten-
sion principle.

2.1.1. Triangular fuzzy number
For practical purposes, one of the most commonly used fuzzy

numbers is the triangular type because it is easy to handle
arithmetically and has an intuitive interpretation (Dağdeviren
and Yüksel, 2008; Şen et al., 2010). Giannoccaro et al. (2003) and
Petrovic et al. (1999) show that triangular fuzzy numbers are the
most suitable for modeling market demand in the fuzzy sense (see
(Ayağ and Özdemir, 2012; Vijay et al., 2005) for other applications
of triangular fuzzy numbers). The membership function μ ~A ðxÞ of a
triangular fuzzy number ~A can be defined by

μ ~A ðxÞ ¼

x−mAþlA
lA

; mA−lA ≤x≤mA

mAþrA−x
rA

; mA ≤x≤mA þ rA
0; otherwise;

8>><
>>:

ð1Þ

where ~A is represented as a triplet ðmA−lA;mA;mA þ rAÞ and mA, lA
and rA are the apex, left and right spreads of the fuzzy number ~A,
respectively. Furthermore, a triangular fuzzy number ~A can be
shown in Fig. 1.

2.1.2. α-Level cut
One of the most important concepts of fuzzy sets is the α�level

cut given by

~Bα : ¼ fx∈ℝj ~BðxÞ≥αg
where α∈½0;1�, which means for a fuzzy number ~B, those elements
whose membership values are greater than or equal to α.

2.1.3. Extension principle
Let “⊙” be any binary operation ⊕ and ⊗ between two fuzzy

numbers ~A and ~B. Based on the extension principle, the member-
ship function of ~A⊙ ~B is defined by

μ ~A⊙ ~B ðzÞ ¼ sup
x∘y

minfμ ~A ðxÞ; μ ~B ðyÞg
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Fig. 2. Decision timeline of the Cournot production game under the fuzzy random
environment.
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where “⊙¼⊕ or ⊗” corresponds to the operation “∘¼+ or �”. This
result helps us to derive the membership function of a fuzzy
number.

2.2. Entropy

The fuzziness of a fuzzy number can be described by a
membership function applied in many aspects (Petrovic et al.,
1999; Shu and Wu, 2010). However, Kao and Lin (2005) mention a
preference for using a simple index to show the fuzziness rather
than using a membership function. They apply entropy, a simple
index method, to interpret the fuzziness as a crisp value and
consider the randomness of the fuzzy number.

Denote hðμ ~A ðxÞÞ, h : ½0;1�-½0;1�, as the entropy function that is
monotonically increasing in ½0;1=2� and monotonically decreasing
in ½1=2;1�. The most well-known entropy function is the Shannon
function (Zimmermann, 1996) as described in (2).

hðuÞ ¼−uln u−ð1−uÞlnð1−uÞ ð2Þ
where u is the membership function of the fuzzy number.
Integrating the entropy over all elements x∈X leads to a global
entropy measure Hð ~AÞ:

Hð ~AÞ ¼
Z
x∈X

hðμ ~A ðxÞÞpðxÞdx ð3Þ

where p(x) denotes the probability density function of the avail-
able data set defined over X. It is common to assume a uniform
distribution p(x)¼k following Kao and Lin (2005)) and Pedrycz
(1994). According to (3), the entropy of the triangular fuzzy
number ~A is calculated by decomposing it into HLð ~AÞ and HRð ~AÞ:

Hð ~AÞ ¼HLð ~AÞ þ HRð ~AÞ ¼
Z mA

mA−lA
hðμ ~A ðxÞÞpðxÞdx

þ
Z mAþrA

mA

hðμ ~A ðxÞÞpðxÞdx ð4Þ

The three resulting entropies are the left entropy
HLð ~AÞ ¼ k� lA=ln 4, the right entropy HRð ~AÞ ¼ k� rA=ln 4, and the
entropy Hð ~AÞ ¼ k� ðlA þ rAÞ=ln 4 (Kao and Lin, 2005). Furthermore,
Kao and Lin (2005) show that by ignoring the constant k a
triangular fuzzy number can be determined by the unique apex,
left and right entropies without complicated membership func-
tions. In other words, the left (right) entropy can be regarded as
the left (right) spread of a triangular fuzzy number. The concept of
entropy can be extended to other types of fuzzy numbers such as
trapezoid, exponential, etc (Kao and Lin, 2005).

2.3. Expected value of the fuzzy random variable

The mathematical notations of fuzzy random variables are
given in this section. Let ðΩ;Σ; PÞ be a probability space where Σ
is a s− field and P is a probability measure.

Definition 1. (Liu and Liu, 2003) Let ðΩ;Σ; PÞ be a probability
space. A fuzzy random variable is mapping ξ : Ω-FvðℜÞ such that
for any closed C of ℜ, and the function

ξnðCÞðωÞ ¼ sup
x∈C

μξðωÞðxÞ

is a measurable function of ω, where μξðωÞ is the possibility
distribution function of a fuzzy variable ξðωÞ and FvðℜÞ is a
collection of fuzzy variables defined on a possibility space.

A triangular fuzzy random variable can be described by a triplet
composed of the apex and the two crisp values of the left and right
spreads. A detailed representation of a triangular fuzzy random
variable ξ is defined as

ξ¼ ðX−l;X;X þ rÞ
where X is the apex distributed with the normal distribution,
Nðμ; s2Þ, having mean μ and variance s2.

Definition 2. (Liu and Liu, 2003) Let ξ be a triangular fuzzy
random variable. The expected value EðξÞ of ξ is calculated as:

EðξÞ ¼ μþ 1
4
ðr−lÞ

Next, we introduce the linearity of the expected operator of
fuzzy random variables.

Theorem 1. (Liu and Liu, 2003) Assume that ξ and η are fuzzy
random variables, then for any real numbers a and b, we have
Eðaξþ bηÞ ¼ aEðξÞ þ bEðηÞ ð5Þ
3. Model and methodology

The Cournot game is a situation where each firm independently
chooses its production quantity in order to maximize the respec-
tive profit function. In the real world, ambiguity and randomness
may appear simultaneously. If the parameters are fuzzy random
variables, the profit function with these parameters is possibly a
fuzzy random variable (Liu and Liu, 2003). This section proposes
the theoretical model as a coherent, rigorous and novel philosophy
position that not only substantiates the case study of glass
substrates industries, but also provides helpful implications for
both theoretical development and real-world applications.
Furthermore, the proposed method solves for the closed-form
equilibrium quantity with entropy spreads under a given produc-
tion strategy of each firm.

3.1. The Cournot production game under the fuzzy random
environment

At the strategic level of the game, it is essential to consider a
high- or low-production strategy in response to the market
because of the rapid change resulting in increasing or decreasing
market demand. Under a high-production, firm i, i¼1, 2, supplies a
highest quantity (the highest in the range-type solution) to the
market, but a lowest quantity (the lowest in the range-type
solution) under a low-production strategy. The high- or low-
production strategy assists us to derive a range-type production
quantity of each firm. Furthermore, this leads to four (2�2)
strategic scenarios in a duopoly where each firm adopts a high-
or low-production strategy, respectively, in the strategic level.
At the operational level, each firm determines its production
quantity so as to maximize its Fuzzy Random Profit Function (FRPF).
Fig. 2 represents the decision sequence of our model. Assuming it
behaves rationally, firms anticipate their best response in the
operational level to the chosen production strategy in the strategic
level. This allows us to solve this two-stage sequential game by
moving from the operational level to the strategic level based on
the chosen production strategy.

We assume the production quantity of each firm to be a
triangular fuzzy number represented by the apex and the entro-
pies. We develop the Cournot production game including the
parameters with triangular fuzzy random variables, a linear
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inverse demand and cost functions as shown below. Consider the
fuzzy random inverse demand function as

pðξÞ ¼ ξa−ξb ~Q ð6Þ
where ξ¼ ðξa; ξbÞ is a fuzzy random vector representing the
parameters of market demand. The total market quantity is that
~Q ¼ ~q1 þ ~q2; ξa and ξb are triangular fuzzy random variables
defined as

ξa ¼ ðXa−la;Xa;Xa þ raÞ;
ξb ¼ ðXb−lb;Xb;Xb þ rbÞ: ð7Þ

In (7), ξa is with left spread la, right spread ra and apex Xa where
Xa follows the normal distribution with mean μa and variance s2a .
Parameter ξb can be explained in a similar manner. In addition, the
total cost function of firm iwith fuzzy random parameters denoted
by TCiðξÞ is
TCiðξÞ ¼ ξdi ~qi ð8Þ
where ξdi is a triangular fuzzy random variable defined by

ξdi ¼ ðXdi−ldi ;Xdi ;Xdi þ rdi Þ ð9Þ
In (9), the fuzzy random variable cost of firm i, ξdi , is with left

spread ldi , right spread rdi and apex Xdi where Xdi follows the
normal distribution with mean μdi and variance s2di . Thus, the FRPF
of firm i is

πi ¼ ðξa−ξb ~Q Þ ~qi−ξdi ~qi ð10Þ
In (10), we can recognize that the problem involves in the

ambiguous uncertainty according to Liu and Liu (2003). For
simplicity, we take the expected value of (10) as:

EðπiÞ ¼ E½ðξa−ξb ~Q Þ ~qi�−E½ξdi ~qi� ð11Þ
Similar approaches in different applications with fuzzy random

parameters appear in (Dutta et al., 2005; Kwakernaak, 1978).
Because the production quantity of each firm is assumed to be a
triangular fuzzy number, this allows us to characterize the pro-
duction quantity by the apex and the entropies. When the
membership value, α, is equal to 1, the values of the production
quantity and the fuzzy random parameters are apexes based on
the extension principle (see Zadeh, 1965). Thus, the case involving
an ambiguous uncertainty can be treated in a crisp manner.

Furthermore, the right and left entropies are decision variables
to characterize the highest and lowest production levels. It follows
that the expected FRPF of firm i is with the highest entropies
under a high-production strategy, and vice versa. Therefore, we
can decompose the original problem into (i) the center problem
that solves for the apex of the fuzzy equilibrium quantity by the
conventional Cournot game given that each parameter has a
membership value equal to 1, and (ii) the spreads problem that
maximizes each firm's expected FRPF over its entropies under a
production strategy. The solutions of these two problems give a
triangular fuzzy equilibrium quantity, which provides decision-
makers with a range-type solution instead of a crisp-value solu-
tion. In the following section, we first solve for the apex of the
fuzzy equilibrium quantity of firm i followed by the spreads
problem.

3.2. The operational-level decision: The center problem

As mentioned, when the membership value is equal to 1, the
expected FRPF of firm i can be represented by the apex of each
parameter as follows:

EðπiÞ ¼ E½ðξa−ξbQ Þqi�−Eðξdi Þqi ð12Þ
We derive the apex of the fuzzy equilibrium quantity qi

according to the conventional Cournot game (see Rasmusen,
2001). The best response function is obtained by maximizing firm
i's expected FRPF over the apex of the production quantity, qi. This
generates the first-order condition returning firm i's best response
function to firm j's production quantity, qj, as:

qi ¼
μa−qj−μdi

2
ð13Þ

Similarly, we derive firm j's best response function to firm i's
production quantity as

qj ¼
μa−qi−μdj

2
ð14Þ

The apex of the fuzzy equilibrium quantity of firm i, shown in
(15), is obtained by simultaneously solving (13) and (14).

qi ¼
μa þ μdj−2μdi

3μb
ð15Þ

Similarly,

qj ¼
μa þ μdi−2μdj

3μb
ð16Þ

It is clear that qi is the solution of the center problem given that
the membership value is 1. Utilizing the resulting outcome we can
now solve the spreads problem.

3.3. The operational-level decision: The spreads problem

We note that the upper bound of the total production quantity
can be achieved since the lower bound of the market price occurs
because of the law of demand. Substituting the highest production
quantity of each firm into the market demand, we define the
expected FRPF of firm i under a high-production strategy as:

EðπHi Þ ¼ Eðξa−ξbQHÞqHi −Eðξdi ÞqHi ð17Þ
where

QH ¼ qi þ eRi þ qj þ eRj

In (17), we note that the upper bound of market demand, QH, is
the production quantity determined by each firm plus the right
entropy. The right entropy of the fuzzy equilibrium quantity can be
interpreted as the increasing quantity of one firm.

Similarly, the expected FRPF of firm i under a low-production
strategy is

EðπLi Þ ¼ Eðξa−ξbQLÞqLi−Eðξdi ÞqLi ð18Þ
where

QL ¼ qi−e
L
i þ qj−e

L
j

The lower bound of the market demand, QL, is the production
quantity determined by each firm minus the left entropy of each
firm. In the real word, firms may adjust their capacities to produce
products in peak and off-peak seasons so that the relation
between the designed capacities in peak and off-peak seasons
practically behaves in a fixed ratio manner. This allows us to
assume that the ratio of the right entropy of firm i to its left
entropy is a given parameter, λi; that is, eRi ¼ λieLi where λi40. This
assumption assists in obtaining the qualitative managerial insights
with less analytical complexity. Substituting eRi ¼ λieLi into (17), the
expected FRPF under a high-production strategy is concave in eLi
since ð∂2EðπHi Þ=∂ðeLi Þ2Þ ¼ −2λ2i EðξbÞo0. Similarly, in (18), the expec-
ted FRPF under a low-production strategy is concave in eLi . In the
following, we derive the resulting entropies of each firm for our
four strategic scenarios where each firm maximizes its expected
FRPF. Furthermore, we adopt the concept of the production
strategy to construct the fuzzy equilibrium quantity of each firm
in this paper.
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Strategic Scenario 1. Both firms i and j adopt the high-production
strategy.

Firm i maximizes its expected FRPF over eLi . The first-order
condition returns firm i's best response function to firm j's decision
variable, eLj ; that is

−λiEðξbÞðqi þ λie
L
i Þ

þ λi½EðξaÞ−EðξbÞðqi þ λie
L
i þ qj þ λje

L
j Þ�−λiEðξdi Þ ¼ 0 ð19Þ

Similarly, the first-order condition returning firm j's best
response function to firm i's decision variable, eLi , is

−λjEðξbÞðqj þ λjeLj Þ
þ λj½EðξaÞ−EðξbÞðqi þ λieLi þ qj þ λjeLj Þ�−λjEðξdj Þ ¼ 0: ð20Þ

Let eLi1 be the left equilibrium entropy of firm i in Strategic
Scenario 1 derived by simultaneously solving (19) and (20).

eLi1 ¼
EðξaÞ−3EðξbÞqi−2Eðξdi Þ þ Eðξdj Þ

3λiEðξbÞ
; i; j¼ 1;2; i≠j: ð21Þ

To ensure a non-negative left equilibrium entropy of firm i, we
impose the condition such that eLi1≥0, i¼1, 2. Assumption 1 follows
from the condition, where qi is derived in (15).

Assumption 1. EðξaÞ−3EðξbÞqi−2Eðξdi Þ þ Eðξdj Þ≥0.
Combining (15) and (21), the fuzzy equilibrium quantity of firm

i in Strategic Scenario 1 becomes

ðqi−eLi1; qi; qi þ λie
L
i1Þ; i¼ 1;2

Strategic Scenario 2. Firm i adopts the low-production strategy
and firm j adopts the high-production strategy.

Under a low-production strategy, firm i solves the spreads
problem by maximizing its expected FRPF over eLi . Eq. (18) is
maximized when the first-order condition holds. Using the first-
order condition to derive firm i's best response function to firm j's
decision variable, eLj , gives

EðξbÞðqi−eLi Þ−½EðξaÞ−EðξbÞðqi−eLi þ qj−e
L
j Þ� þ Eðξdi Þ ¼ 0 ð22Þ

Firm j maximizes its expected FRPF, as shown in (17), under a
high-production strategy. As mentioned, EðπHj Þ is concave in eLj so
the first-order condition of (17) gives

−λjEðξbÞðqj þ λjeLj Þ
þ λj½EðξaÞ−EðξbÞðqi þ λie

L
i þ qj þ λje

L
j Þ�−λjEðξdj Þ ¼ 0 ð23Þ

Let eLi2 be the left equilibrium entropy of firm i in Strategic
Scenario 2 derived by solving (22) and (23). The final results of eLi2
and eLj2 are

eLi2 ¼
−EðξaÞð1þ 2λjÞ þ EðξbÞðqið1þ 4λjÞ þ 2qjð1þ λjÞÞ þ 2λjEðξdi Þ þ Eðξdj Þ

EðξbÞð4λj−λiÞ
ð24Þ

and

eLj2 ¼
EðξaÞð2þ λiÞ−EðξbÞ2qið1þ λiÞ−EðξbÞqjð4þ λiÞ−λiEðξdi Þ−2Eðξdj Þ

EðξbÞð4λj−λiÞ
:

ð25Þ
To ensure non-negative left equilibrium entropies of firms i and j,

we impose the condition such that eLi2≥0 and eLj2≥0. Assumption 2
follows the condition, where qi and qj are derived in (15) and (16).

Assumption 2.

ð4λj−λiÞ½−EðξaÞð1þ 2λjÞ þ EðξbÞðqið1þ 4λjÞ þ 2qjð1þ λjÞÞ þ 2λjEðξdi Þ
þ Eðξdj Þ�≥0
and

ð4λj−λiÞ½EðξaÞð2þ λiÞ−EðξbÞ2qið1þ λiÞ−EðξbÞqjð4
þ λiÞ−λiEðξdi Þ−2Eðξdj Þ�≥0:

The fuzzy equilibrium quantity of firm i can be constructed by
(15) and (24) as:

ðqi−eLi2; qi; qi þ λieLi2Þ; i¼ 1;2

Strategic Scenario 3. Firm i adopts the high-production strategy
and firm j adopts the low-production strategy.

Here, the solution procedure to derive the entropies of each
firm is similar to Strategic Scenario 2. Let eLi3 be the left equilibrium
entropy of firm i in Strategic Scenario 3. The resulting outcomes of
eLi3 and eLj3 can be obtained as

eLi3 ¼
EðξaÞð2þ λjÞ−EðξbÞqið4þ λjÞ−EðξbÞ2qjð1þ λjÞ−2Eðξdi Þ−λjEðξdj Þ

EðξbÞð4λi−λjÞ
ð26Þ

and

eLj3 ¼
−EðξaÞð1þ 2λiÞ þ EðξbÞð2qið1þ λiÞ þ qjð1þ 4λiÞÞ þ Eðξdi Þ þ 2λiEðξdj Þ

EðξbÞð4λi−λjÞ
ð27Þ

Similarly, to ensure non-negative left equilibrium entropies of
firms i and j, we impose Assumption 3, where qi and qj are derived
in (15) and (16).

Assumption 3.

ð4λi−λjÞ½EðξaÞð2þ λjÞ−EðξbÞqið4þ λjÞ−EðξbÞ2qjð1þ λjÞ−2Eðξdi Þ−λjEðξdj Þ�≥0

and

ð4λi−λjÞ½−EðξaÞð1þ 2λiÞ þ EðξbÞð2qið1þ λiÞ þ qjð1þ 4λiÞÞ þ Eðξdi Þ
þ 2λiEðξdj Þ�≥0:

The fuzzy equilibrium quantity of firm i can be constructed by
(15) and (26) as

ðqi−eLi3; qi; qi þ λieLi3Þ; i¼ 1;2

Strategic Scenario 4. Both firms i and j adopt the low-production
strategy.

As mentioned, the expected FRPF under a low-production
strategy is concave in eLi , so (18) is maximized when the first-
order condition holds. From the first-order condition, we have

EðξbÞðqi−eLi Þ−½EðξaÞ−EðξbÞðqi−eLi þ qj−e
L
j Þ� þ Eðξdi Þ ¼ 0 ð28Þ

Similarly, we can obtain the first-order condition of firm j as

EðξbÞðqj−eLj Þ−½EðξaÞ−EðξbÞðqi−eLi þ qj−e
L
j Þ� þ Eðξdj Þ ¼ 0 ð29Þ

Let eLi4 be the left equilibrium entropy of firm i in Strategic
Scenario 4 derived by solving (28) and (29):

eLi4 ¼
−EðξaÞ þ 3EðξbÞqi þ 2Eðξdi Þ−Eðξdj Þ

3EðξbÞ
; i; j¼ 1;2; i≠j: ð30Þ

To ensure a non-negative left equilibrium entropy of firm i, we
impose the condition such that eLi4≥0, i¼1, 2. Assumption 4 follows
from this condition, where qi is derived in (15).

Assumption 4. −EðξaÞ þ 3EðξbÞqi þ 2Eðξdi Þ−Eðξdj Þ≥0.
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Due to (15) and (30), the fuzzy equilibrium quantity of firm i in
Strategic Scenario 4 is

ðqi−eLi4; qi; qi þ λieLi4Þ; i¼ 1;2

4. Analysis at the strategic level

In this section, we derive the conditions such that one of the
four strategy combinations is the Nash equilibrium outcome in the
strategic level. The Nash equilibrium, where no player has an
incentive to deviate from its strategy given that the other players
do not change their strategies, allows us to analyze the relation-
ship between each firm's production strategies.

Proposition 1. The expected FRPF of firm i, i¼1, 2 under a high-
production strategy is equal to the FRPF of firm i, i¼1, 2 under a
low-production strategy if both firms adopt the common strategy;
that is, EðπHi1Þ ¼ EðπLi4Þ, where EðπHi1Þ and EðπLi4Þ are the expected FRPF
of firm i under a high-production strategy in Strategic Scenario 1
and a low-production strategy in Strategic Scenario 4, respectively.

Proof. Substituting eLi1 in (21) into (17), we have

EðπHi1Þ ¼ ð
EðξaÞ−2Eðξdi Þ þ Eðξdj Þ

3
Þð
EðξaÞ−2Eðξdi Þ þ Eðξdj Þ

3EðξbÞ
Þ

Similarly EðπLi4Þ can be obtained

EðπLi4Þ ¼ ð
EðξaÞ−2Eðξdi Þ þ Eðξdj Þ

3
Þð
EðξaÞ−2Eðξdi Þ þ Eðξdj Þ

3EðξbÞ
Þ

It is clear that EðπHi1Þ is equal to EðπLi4Þ and this completes
the proof.

We can calculate the expected FRPF of each firm under a high-
or low-production strategy by substituting the resulting entropies
derived in Section 3.3. As mentioned, four strategic scenarios are
considered in our model. We let the first and second attributes of
(⋅; ⋅) denote the production strategy adopted by firm i and firm j,
respectively. Each firm chooses the optimal strategy for the long
Table 1
The expected FRPF under a high- or low-production strategy in four strategic
scenarios.

Firm j's production strategy

High-
production

Low-
production

Firm i's production
strategy

High-
production

ðEðπHi1Þ; EðπHj1ÞÞ ðEðπHi3Þ; EðπLj3ÞÞ

Low-
production

ðEðπLi2Þ; EðπHj2ÞÞ ðEðπLi4Þ; EðπLj4ÞÞ

Table 2
Conditions for the four possible Nash equilibrium outcomes.

Firm i's production strategy High-production

Low-production qi≥eLi2 þ λieLi1
qj ≤eLj4 þ λjeLj2
term to maximize its expected FRPF in the short term. Table 1
represents the expected FRPF of firms i and j under a specific
combination of production strategies chosen by the two firms.
Next, we utilize the results in Table 1 to derive the conditions such
that a production strategy combination is the Nash equilibrium
outcome.

Proposition 2. The conditions for the four possible Nash equili-
brium outcomes are given in Table 2.

Proof. (i) Based on the definition of the Nash equilibrium, if the
strategy combination (high-production, high-production) is the
Nash equilibrium outcome, it means that EðπHi1Þ≥EðπLi2Þ and
EðπHj1Þ≥EðπLj3Þ. First, we have

EðπHi1Þ−EðπLi2Þ ¼ ½EðξaÞ−EðξbÞðqi þ λieLi1 þ qj þ λjeLj1Þ−Eðξdi Þ�ðqi þ λieLi1Þ−

½EðξaÞ−EðξbÞðqi−eLi2 þ qj−e
L
j2Þ−Eðξdi Þ�ðqi−eLi2Þ≥0: ð31Þ

For notational simplicity, let Δ1 ¼ EðξaÞ−EðξbÞðqi þ λieLi1 þ qj þ
λjeLj1Þ−Eðξdi Þ and Δ2 ¼ EðξaÞ−EðξbÞðqi−eLi2 þ qj−eLj2Þ−Eðξdi Þ. Note that
Δ1 and Δ2 are firm i's expected unit profits, which are reasonably
assumed non-negative. Substituting Δ1 and Δ2 into (31), we have

EðπHi1Þ−EðπLi2Þ ¼ ðΔ1−Δ2Þqi þ Δ1λie
L
i1 þ Δ2eLi2≥0 ð32Þ

Let Δn ¼minfΔ1;Δ2−Δ1g. Since Δ24Δ2−Δ1, Δ1, the terms of Δ2

and Δ2−Δ1 in (32) can be replaced by the smaller term Δn
, we have

qi ≤e
L
i2 þ λieLi1: ð33Þ

Next, to satisfy the Nash equilibrium requirement, we have

EðπHj1Þ−EðπLj3Þ ¼ ½EðξaÞ−EðξbÞðqi þ λie
L
i1 þ qj þ λje

L
j1Þ−Eðξdj Þ�ðqj þ λje

L
j1Þ−

½EðξaÞ−EðξbÞðqi−eLi3 þ qj−e
L
j3Þ−Eðξdj Þ�ðqj−eLj3Þ≥0: ð34Þ

Similarly, let Δ3 ¼ EðξaÞ−EðξbÞðqi þ λieLi1 þ qj þ λjeLj1Þ−Eðξdj Þ and Δ4 ¼
EðξaÞ−EðξbÞðqi−eLi3 þ qj−eLj3Þ−Eðξdj Þ. Because of non-negative expected
unit profits, Δ3≥0 and Δ4≥0. Now (34) can be rewritten as

EðπHj1Þ−EðπLj3Þ ¼ ðΔ3−Δ4Þqj þ Δ3λje
L
j1 þ Δ4eLj3≥0 ð35Þ

Let Δnn ¼minfΔ3;Δ4−Δ3g. Since Δ4≥Δ4−Δ3, the terms of Δ3, Δ4

and Δ4−Δ3 in (35) can be replaced by the smaller term Δnn, we
have

qj ≤e
L
j3 þ λje

L
j1 ð36Þ

Combining (33) with (36) results in the strategy combination
(high-production, high-production) being the Nash equilibrium
outcome.
Firm j's production strategy

High-production Low-production

qi ≤eLi2 þ λieLi1
qj ≤eLj3 þ λjeLj1

qi ≤eLi4 þ λieLi3
qj≥eLj3 þ λjeLj1

qi≥eLi4 þ λieLi3
qj≥eLj4 þ λjeLj2



Table 3
Market price of the glass substrates corresponding to the size type.

Size type

1 2 3 4 5 6

Price (USD) High 57 55 61 63 76 81
Apex 56 53 60 60 73 78
Low 54 50 58 59 71 76

Table 4
Market demand of the glass substrates in each period of the case study (Shao and
Lin, 2009).

Size type

1 2 3 4 5 6

Period 1 1800 5000 20,000 7000 20,000 19,000
2 1800 3000 12,600 8600 16,000 14,000
3 1500 3000 16,000 5500 20,000 16,000
4 1680 4700 17,000 6000 22,000 16,000
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(ii) The strategy combination (low-production, low-production)
satisfying the condition EðπLi4Þ≥EðπHi3Þ and EðπLj4Þ≥EðπHj2Þ is the Nash
equilibrium outcome. We first discuss

EðπLi4Þ−EðπHi3Þ ¼Δ5ðqi−eLi4Þ−Δ6ðqi þ λie
L
i3Þ≥0 ð37Þ

where

Δ5 ¼ EðξaÞ−EðξbÞðqi−eLi4 þ qj−e
L
j4Þ−Eðξdi Þ

and

Δ6 ¼ EðξaÞ−EðξbÞðqi þ λieLi3 þ qj þ λjeLj3Þ−Eðξdi Þ

The terms, Δ5 and Δ6, are greater than 0 due to non-negative
expected unit profits. Based on the solution procedure of (i), we have

qi≥e
L
i4 þ λieLi3 ð38Þ

Similarly,

qj≥e
L
j4 þ λjeLj2 ð39Þ

(iii) The strategy combination (low-production, high-produc-
tion) is the Nash equilibrium outcome if EðπLi2Þ≥EðπHi1Þ and
EðπHj2Þ≥EðπLj4Þ. By changing “≤” to “≥” in (33) and “≥” to “≤” in (39),
we have EðπLi2Þ≥EðπHi1Þ and EðπHj2Þ≥EðπLj4Þ. Therefore, the strategy
combination (low-production, high-production) is the Nash equi-
librium outcome if qi≥eLi2 þ λieLi1 and qj ≤eLj4 þ λjeLj2.
(iv) The strategy combination (high-production, low-produc-

tion) is the Nash equilibrium outcome if EðπHi3Þ≥EðπLi4Þ and
EðπLj3Þ≥EðπHj1Þ. By changing “≥” to “≤” in (38) and changing “≤” to
“≥” in (36), we have EðπHi3Þ≥EðπLi4Þ and EðπLj3Þ≥EðπHj1Þ. Therefore, the
strategy combination (high-production, low-production) is the
Nash equilibrium outcome if qi ≤eLi4 þ λieLi3 and qj≥eLj3 þ λjeLj1. This
completes the proof. ■

Proposition 2. shows that the strategy combination becoming the
Nash equilibrium outcome is based on both the apex and the
entropies. In other words, our model provides decision-makers
with both the fuzzy equilibrium quantity in the short term as well
as the equilibrium production strategy in the long term.

5. Case study

In this section, we utilize the model presented in Section 3 as a
planning tool to demonstrate how the two competing firms
determine the equilibrium quantity against ambiguity in the glass
substrates industry.

5.1. Industry background

During the last decade, aggressive marketing strategies coupled
with low-cost thin-film transistor liquid crystal display (TFT–LCD)
production have induced increasing numbers of consumers to
favor flat screens over conventional cathode ray tube (CRT)
products. The physical sizes of glass substrates required for various
TFT–LCD products play a key role in the growing demand. As
mentioned earlier, there are two prohibitive barriers to entry into
the glass substrates industry: capital outlay and the materials.
Since the market share of the two major firms in our case study
totals approximately 90% in Taiwan (Hwang and Lin, 2008), we
consider the glass substrates industry a duopoly market.

A recent report by DisplaySearch1 indicates that the production
of TFT–LCD glass substrates reached a peak of 14.2 million square
1 http://www.newso.org/ITNews/Trade/DisplaySearch-LCD-substrate-in
to-the-third-quarter-will-be-reduced/dc242f45-3d93-48b1-b410-0c2b114a0da1
meters in second quarter 2010 and then dropped to 12.2 million
square meters in the third quarter, a reduction of 14% from last
season. Thus, despite apparent consumer demand, global flat
screen manufacturers still need to adjust their production strate-
gies. It implies that because of the TFT–LCD panel prices and weak
demand, the manufactures have to adjust their production strat-
egy to meet the market demand. This results in twofold produc-
tion strategies: high- and low-production strategy.

Research on the Cournot game applied in the real world
includes the world oil, electricity and petroleum products markets
(see (Ruiz et al., 2008; Slade, 1986; Salant, 1976)). The previous
studies have proposed to assist decision makers to determine the
equilibrium quantity or analyze the market efficiency. Acknowl-
edging the need for improved decision-making, the model pro-
posed in Section 3 depicts the behavior of two competing glass
substrates manufacturers in a hybrid uncertain environment, and
constructs each firm's fuzzy equilibrium quantity. After determin-
ing their production strategies, we obtain the apex of the fuzzy
equilibrium quantity by the center problem. We then define each
firm's profit function considering the production strategy by
utilizing the resulting apexes. Due to the special characteristics
of the glass substrates industry, we apply the model to demon-
strate how to obtain the fuzzy equilibrium quantity and the
production strategy of each firm.
5.2. Insights from the Cournot production game case study

5.2.1. Case study overview and input data
Our case study is based upon timely representative data for the

glass substrates industry. We note that the data will differ for other
industry sectors, geographic regions, and/or time epochs.

As mentioned earlier, the demand function of the market is
given by pðξÞ ¼ ξa−ξb ~Q . The intercept, ξa, represents the amount of
glass substrates sold by the glass substrates manufacturers where
the price, p, is zero and the slope, ξb, is the price sensitivity to the
increase in the amount of glass substrates per unit of the price
added. Based on the information published by DisplaySearch2, we
arrange the unit price of the glass substrates as shown in Table 3.
2 http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/resource
s_pricewise.asp

http://www.newso.org/ITNews/Trade/DisplaySearch-LCD-substrate-into-the-third-quarter-will-be-reduced/dc242f45-3d93-48b1-b410-0c2b114a0da1
http://www.newso.org/ITNews/Trade/DisplaySearch-LCD-substrate-into-the-third-quarter-will-be-reduced/dc242f45-3d93-48b1-b410-0c2b114a0da1
http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/resources_pricewise.asp
http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/resources_pricewise.asp


Fig. 3. Impacts of μa and μb on two firms' strategic scenarios. (a): The impacts of μa and μb on the strategic scenarios when μd1 oμd2 . (b): The impacts of μa and μb on the
strategic scenarios when μd1 ¼ μd2 .
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Table 3 shows the six types of glass substrates (denoted by 1 to 6),
and the three prices in USD (high, apex and low) for each size type.
Table 4 shows the sold quantity in the market for each size type after
Shao and Lin (2009). From these tables, we can derive the para-
meters ξa and ξb by the fuzzy regression method Chen and Dang
(2008). In the case study, ξa and ξb can be estimated as ξa ¼ ðXa−
3:2300;Xa;Xa þ 2:8040Þ with Xa �Nð52:7089;4:9773Þ and ξb ¼ ðXb

−0:000248;Xb;Xb þ 0:000303Þ with ξb ¼ ð0:000987 ;3⋅10−8Þ. In
Table 4, we observe that the peak-season is period 1 and the off-
season is period 2 because the total sold quantity in period 1, 89,000,
is the highest, and in period 2, 56,000, is the lowest. Therefore, we
estimate the ratio of production quantity in the peak-season to the
off-season as 1.59 (89,000/56,000), which can be viewed as is λ in
our model. We approximately estimate each firm's variable cost
based on firm 1's consolidated financial report3 which indicates a net
income of around 22.6%, i.e. firm 1's total cost is about 77.4%
(100%−22:6%¼ 77:4%). We know that the unit net income can be
simply derived by market price minus the variable cost. Our Table 3
shows an average market price of 63.33 USD. Therefore, the ballpark
estimate of the variable cost of firm 1 is 63:33⋅77:4%¼ 49:02 and
similarly the variable cost of firm 2 is 50.03 (63:33⋅79%), as a result
of firm 2's 21%4 net income.
5.2.2. Case study results and sensitivity analysis
According to the proposed method in Section 3, we can derive

the apex of the fuzzy equilibrium of firm 1 by substituting the
parameters estimated in the case study into (18). Then we have
q1¼1,587. Similarly, the apex of the fuzzy equilibrium quantity of
firm 2 is q2¼570. It is obvious that the apex of the fuzzy
equilibrium quantity of firm 1 is higher than of firm 2 due to firm
1's low variable cost. Next, to solve for the entropy of each firm, we
consider four strategic scenarios in the spread problem with
assumptions. With the available data, we find that the resulting
solutions only satisfy Assumption 4, in other words, the entropy of
each firm can be obtained in Strategic Scenario 4 where both firms
adopt low-production strategies. As a result, the left entropy is 57
for firm 1 and 43 for firm 2. Then we have the fuzzy equilibrium
quantity of firm 1 ~q1¼(1,530, 1,587, 1,677) and the fuzzy equili-
brium quantity of firm 2 ~q2¼(527, 570, 638). In addition, we know
that the production quantity ranges from 1530 to 1677 for firm
1 and 527 to 638 for firm 2. The report by DisplaySearch5 indicates
that the glass substrates industry tends to decrease production
quantities, which coincides with the behaviors predicted in
our model.
3 http://www.agc.com/english/news/2012/0208e_1.pdf
4 http://www.corning.com/tw/tc/news_center/news_releases/2012/

2012012501.aspx
5 http://www.honghaiglass.com/en/nshow.aspx?id=31
Next, we investigate the impacts of market demand, μa and μb,
on each firm's choice of strategic scenarios. Obviously, two zones
exist where both firms adopt the high- or low-production strate-
gies shown in Fig. 3. Knowing that μa can be interpreted as the
potential demand in the market and given a specific value of μb,
we find that each firm adopts the low-production strategy
(Strategic Scenario 4) as an increase in μa as shown in Fig. 3(a).
Therefore, if the potential demand is high enough, both firms will
determine the lower production quantities in order to maximize
their profits and vice versa. Similarly, given a specific value of μa,
an increase in μb results in a scenario whereby both firms employ
the low-production strategies (Strategic Scenario 4). In other
words, both firms adopt the low-production strategy once market
demand becomes sensitive.

Fig. 3(b) shows how market demand affects the choice of
strategic scenarios, given the variable cost of firm 1 being equal
to firm 2 and all other parameters remaining the same. We
observe that Fig. 3(a) is similar to Fig. 3(b), i.e. market demand
heavily impacts each firm's production strategy rather than each
firm's cost structure. Thus, in our case study both firms tend to
simultaneously adopt low- or high-production strategies.
6. Conclusions

Decision-making in a complicated and competitive environ-
ment is often made more difficult due to uncertainty, e.g. customer
demand, production fluctuations, etc. Furthermore, real-world
problems frequently involve ambiguity and randomness. This
paper has described a new version of a two-stage Cournot
production game, which embeds an operational-level decision in
the short termwithin a strategic-level decision in the long term. In
our model, two firms determined a high or low production
strategy at the strategic level, followed by determining their
production quantities at the operational level under the specific
production strategy. The concept of the production strategy was
utilized to construct each firm's the range-type production quan-
tity. At the operational level, the production quantity of each firm
was assumed to be a triangular fuzzy number, which allowed the
production quantity to be represented by an apex and entropies.

At the operational level, the gamewas divided into the center and
spreads problems and the fuzzy equilibrium quantity of each firm
constructed from the outcomes of the two problems. Unlike previous
studies, the equilibrium fuzzy production quantity gave each firm a
production interval when obtaining accurate parameters is impos-
sible. At the strategic level, the Nash equilibrium concept was applied
to derive the conditions such that a strategy combination became the
Nash equilibrium outcome. Applying the proposed model to the case
study derived the fuzzy equilibrium quantity of each firm in the glass
substrates industry. The results showed that both firms tended to

http://www.agc.com/english/news/2012/0208e_1.pdf
http://www.corning.com/tw/tc/news_center/news_releases/2012/2012012501.aspx
http://www.corning.com/tw/tc/news_center/news_releases/2012/2012012501.aspx
http://www.honghaiglass.com/en/nshow.aspx?id=31
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adopt the common strategy, a finding which coincides with the real-
world situation. In addition, sensitivity analysis revealed that the
potential market demand, μa, plays a key role in determining a firm's
production strategy. We suggest that further research should explore
the issue of spreads with probability distributions by refining our
proposed model. Another interesting extension is to investigate
combinations of production strategies, where the market demand
depends on the considered combination of strategies. Detailed
technical explanations can be found in (Dang, 2012).
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