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S-type biological systems (S-systems) are demonstrated to be universal approximations of continuous
biological systems. S-systems are easy to be generalized to large systems. The systems are identified
through data-driven identification techniques (cluster-based algorithms or computational methods).
However, S-systems’ identification is challenging because multiple attractors exist in such highly nonlin-
ear systems. Moreover, in some biological systems the interactive effect cannot be neglected even the
interaction order is small. Therefore, learning should be focused on increasing the gap between the true

Keywords: and redundant interaction. In addition, a wide searching space is necessary because no prior information
Inverse problem . . . . .
S-system is provided. The used technologies should have the ability to achieve convergence enhancement and

diversity preservation. Cockroaches live in nearly all habitats and survive for more than 300 million years.
In this paper, we mimic cockroaches’ competitive swarm behavior and integrated it with advanced evo-
lutionary operations. The proposed cockroach genetic algorithm (CGA) possesses strong snatching-food
ability to rush forward to a target and high migration ability to escape from local minimum. CGA was
tested with three small-scale systems, a twenty-state medium-scale system and a thirty-state large-scale
system. A wide search space ([0,100] for rate constants and [—-100,100] for kinetic orders) with random
or bad initial starts are used to show the high exploration performance.

Memetic algorithm
Cockroach swarm evolution
Structure identification
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1. Introduction

The inverse problem of identifying the topology of a biological
network from their time course response is a cornerstone chal-
lenge in systems biology [1]. Parameter estimation is the limiting
step for biological modeling. Hill and Michaelis-Menten [2] rate
modeling is a forward approach. These models use local kinetic
information. Chou and Voit [3] estimated the parameter and the
functional forms through dynamic flux. S-system [4,5] is another
popular nonlinear dynamic model to show direct state-interactive
information. The model is composed of highly nonlinear differen-
tial equations. Parameter estimation of both models becomes
increasingly challenge when the number of state variables in-
creases. Traditional gradient-based approaches have the possibility
to get trapped at local optima. Population-based approaches have
problems in finding the global optima in a limited time. Wang
et al. used a two-step approach to determine the ranges and the
mean values of the parameters [6]. Voit and collaborators proposed
algorithms to gradually increase the model complexity [7]. They
also introduced alternating regression [1]| and solved the conver-
gence issues [8]. Kutalik et al. used Newton-flow analysis [9]. Iba
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and collaborators used genetic programming (GP) [10,11]. Wang
and collaborators integrated migration and acceleration into differ-
ential evolutionary algorithms (hybrid differential evolution
(HDE)) [12-14]. Ho et al. proposed genetic algorithms with intelli-
gent crossover (IGA) [15]. Gonzalez et al. used simulated annealing
[16]. Chen et al. hybridized genetic algorithm and simulated
annealing [17]. Matsubara et al. introduced radial basis function
[18]. Some researchers introduced neural networks and particle
swarm optimization (PSO) [19,20]. Various penalty terms were
introduced to infer sparsely connected networks [21-26]. Chou
et al. [27] and Sun et al. [28] reviewed various approaches that
have been developed for the S-system identification. Some impor-
tant issues and possible research directions were proposed in these
two papers. Voit took a comprehensive review in the models and
identification technologies of biochemical systems [29].

Memetic algorithms (MAs) use various methodological hybrid-
ization methods to integrate efficient local-improvement opera-
tions into a population-based algorithm. MAs have advantages in
exploitation (local-search) and exploration (global-search). MAs
have successfully solved various optimization problems in other
fields. Harman et al. discussed local and global optimization
through theoretical and empirical studies [30]. Soh et al. identified
low-energy pure water isomers [31]. Ahn et al. proposed a GA-
based MA for electromagnetic systems [32]. Meuth et al. intro-
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duced meta-memes for high-order learning [33]. Kramer inte-
grated iterated local search with Powell gradient method [34].
Caponio et al. introduced Hooke-Jeeves and Nelder-Mead memes
to control the synchronous magnet drive [35]. Netri et al. intro-
duced adaptive multi-meme-MA for HIV therapies [36]. Wang
et al. introduced dual-mapping and random-immigrants MA [37].
Shen et al. proposed a hybrid algorithm of PSO and Tabu Search
[38]. Song et al. proposed a hybrid algorithm of PSO, SA (simulated
annealing) and the Simplex method [39]. Keedwell and Khu pro-
posed a heuristic MA for water distribution network [40]. Tsoulos
and Lagris hybridized these two in series through the continuous
repetition of a GA and a subsequent local search [41]. Yang and
Jat proposed a guided-search GA in which local-search methods
were used to improve each individual of a population in each gen-
eration [42]. Some researchers combined GA with other global-
search methods to achieve a balance between exploration and
exploitation; for example, the hybrid GA-SA algorithm [43], the
K-means-cluster-based GA [44], the hybrid GA-FNN (fuzzy neural
network) [45], and the hybrid GA-PSO [46-48].

The proposed CGA is a MA in nature. In this paper, we focus on
developing a competitive swarm operation with the ability to
intensify and diversify the search at the same time. Technological
contributions of this paper are described as follows. In Section 2,
we mimicked cockroaches’ competitive behavior for food during
shortages as multi-meme operations and simulated their migra-
tion. These two operations were organically integrated with ad-
vanced genetic operations. The new optimization algorithm CGA
largely improves the explorative (global-search) and exploitative
(local-search) of genetic algorithms. The proposed CGA is used to
estimate the parameters of S-system models of five biological sys-
tems in Section 3. Robustness, exploration and convergence perfor-
mances are examined in this section. Section 4 is the conclusion.

2. Cockroach genetic algorithm (CGA)

S-systems, which are rooted on biochemical system theory, ex-
press gene interaction, protein regulation and metabolic reactions
as power functions. At any time instant the net influx (;") and ef-
flux (z;) of the constitute (metabolite, protein or gene) x; are
approximated as power-law functions: For a system with n depen-
dent constitutes and m independent constitutes, the change of

gene expression level x; is

% =y —v; = ac,-l‘[j’.’:]mxf” — ﬁil‘[]'-‘:]mxj’.”j, i=1,2,...,n, (1)
where o; and f; are the rate constants, and g; and h;; are the kinetic
orders. Various evolutionary optimization technologies were used
to identify the S-system models of gene regulatory networks or pro-
tein metabolic systems. How to avoid getting stuck in local minima
is critical for inferring such a high dimensional and nonlinear sys-
tem by computational approaches. It is hard for a state-of-the-art
GA with simplex crossover (SPXGA) to obtain a satisfactory solution
in a limited computation time [15].

We adopt real-value coding for exploiting the gradualness of
continuous variables. The unknown parameters of an S-system
are encoded as a cockroach individual (a chromosome in evolution
operations):

Bi ‘ | B | gu ‘ o | &unrm) ‘ hiy ‘ ‘ B emy
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Cockroaches live in a wide range of environments around the world.
We randomly disperse cockroach individuals over the entire search
space. The initial population is composed of I;,i=1,...,Np:

[i = Imin + r(Imax - Imin)7 (2)

where r is a random number, Np is the total number of individuals
in the population, and I i, and I, are the lower and upper bounds
of individual I;. The parameter vector I; denotes the position of the
ith cockroach. For simplification, we call I; the ith cockroach individ-
ual. The strongest cockroach implies that the cockroach occupies
the place with the most food resources. (In the entire space the
place with most food resources denotes the global optimum.)
Parameter learning is to minimize the residual error J, (denoting
unfitness),
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where x¥, x

fexp ar€, respectively, the kth estimated and artificially
experimental data of the constitute x;, t, is a time-weighting factor,
and Q is the number of the sampled data. Normalization is to ensure
comparable competition in different-scales species. Parameters in
CGA are set to be random such that the algorithm will not move
back and forth between two local attractors.

Ant colony optimization (ACO) is inspired by the swarm intelli-
gence of real ants that are capable of finding the shortest path from
a food source to their nest. Each ant constructs a solution that is ex-
pressed in terms of the feasible paths on the graph, which is com-
posed of vertices and edges. While walking, ants deposit
pheromone on the edge and follow pheromone previously depos-
ited by other ants. At each construction step, an ant chooses the
edge to follow in probability associated with the amount of pher-
omone and the heuristic information. After all ants complete their
tour, the pheromone level is updated through pheromone evapora-
tion and according to the performance of a set of good solutions.
Particle swarm optimization (PSO) mimics the intelligence of fish
schooling and bird flocking for foraging efficiency and defensing
over against predators. Each particle (agent, individual) has a posi-
tion and keeps moving through the search space. A particle succes-
sively adjusts the velocity according to its personal experience
(local-best position) as well as the experience of the particles in
the neighborhood (global-best position). PSO lies in accelerating
each particle toward the local-best and the global-best locations.
The algorithm uses an inertia weighting factor to balance the glo-
bal and local search. Both swarm intelligence are all related to their
cooperative behavior. This becomes a reason that both algorithms
have a lack of diversity and are easily trapped in a local optimum.
Instead of considering cockroaches’ cooperative behavior [49,50],
we here focus on their competitive behaviors. Cockroaches prefer
dark, warm and humid environment. Their behavioral tactics for
coping with extreme conditions is migration. They like to share
information (food location) via secreting pheromone. However,
they always compete with each other for food during shortages.
We integrate the artificial-cockroach behaviors with biological
evolution to promote the exploration and exploitation of algo-
rithms. Cockroaches are able to jump away to numbers-of-meters
distance. Driving-out-induced jumping and harsh-environment-in-
duced escaping will significantly enhance the exploration ability.
Therefore, the algorithm is able to prevent premature convergence.

2.1. Leader generation (golden section)

Individuals in a population are arranged according to their fit-
ness values in descending order. To increase the diversity of search
we divide the ordered individuals into four teams by the golden
section method, as shown in Fig. 1. The best individual in each
team is chosen as the leader. Leaders will be responsible for exploi-
tation and others for exploration. The number of members in these
four teams are n;, i=1,...,4 and their leaders are If, i=1,...,4. For
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(1% team) n, =[z-m,] with leader I} =1,,
(2" team) n, =[7 - (73, —ny)] with leader I} =
(3" team) n = 71, —m, —n, with leader I} =1, ,, .,

(4" team) n, =[(1-7)-N,] with leader I}’ = I .,.

Fig. 1. Generation of leaders and teams by golden-section method.

more huge and complex biological systems more teams are
needed. We use 714 to denote the number of individuals in the first
three teams; i.e., the total number of individuals in the population
is Np =74 +ny. [e] is a Gauss mark and 7 is the golden-section
constant.

1st team)n; = [t -Ty] with leader I} =1,
2nd team)n, = [t - (iy — ny)]  with leader I} =1, 1

(4)

3rd team)ns =T, —ny —n, with leader I} = Iy, 1,1,

(
(
(
(4th team)ny = [(1 — 1) -N,] with leader [} =L ;.

2.2. Competition for food during shortages

2.2.1. Snatching food (leader-take-all exploitation)

Competition occurs during food shortages. Only the leader in a
team has the chance to snatch food: The strongest cockroach
rushes to food as soon as possible. Other leaders run at a lower
speed. In order to let snatching behavior more flexible we assume
the strongest cockroach run in a derivative-based (straight for-
ward) way, but other leaders crawl in a derivative-free (circuitous)
way. Hungry cockroaches search for food. At the sight of food the
strongest cockroach (the best individual) Ib(=Il‘) dashes forward
to food at the speed of the steepest descent,

I} =1, — iV, (5)

where 4 is the size of a step to determine the descent rate and V; is
the gradient of an objective function. Other leaders I', i = 2, 3, 4 rush
for food at the speed of the downhill Simplex: Replace I! with the
better point generated from the following reflection, expansion
and contraction operations. If this operation fails, shrink towards
the best vertex Ip,.

(reflection)x, = ¢ + a(c — I}),
(expansion)x, = ¢ + B(x, — ¢),
(

(

contraction)x is the better one of ¢+ 7(x, — ¢) and ¢ + (I} — ¢).

shrink)I is replaced by (I! +15)/2,
(6)

where o, f, y are reflection, expansion and contraction coefficients,
respectively, and c is the centroid of all vertices better than If (cen-
troid of the better side). Parameters o, j3, 7, 4 are set to be random
such that the algorithm is stochastic and is able to get out of local
minima. When the exploitation successes the leader goes to a better
position; otherwise the leader stays at the same place.

2.2.2. Driving out (weaker-migration exploration)

Hungry leaders are selfish in not only rushing to food but also
driving out the weaker. At this time the cockroach I} jumps away
from their leader I;:

. II( + T2 % (Imin - 1;) I < )~§7
I = , (7)

I+ % <Imax - I;), otherwise,

forj=2,...,n\,i=1,...,4 where if :H, and ry and r, are ran-
dom factors. After the driving-out operati’gnn the weaker individuals
are updated. If the dispelled cockroaches luck into food-rich places,
then the winner (best-so-far individual I,) exchange with those bet-
ter individuals one by one: If I3 (the third member in the first team)
and I,2 (the leader in the second team) are better than I, then I, ex-
change with I} first. A new winner [} is generated (I, = I3 and I} = I)).
Once I? is better than I then exchange again. In this way we can im-
prove the best-so-far individual and preserve the population diver-
sity at the same time.

2.2.3. Winner walkabout (neighbor exploitation)
To further improve the best-so-far individual we let the current
best cockroach I, take walkabout for neighbor search,

Ipm = Ip + 1+ rand(—1,1), (8)

where 1 denotes walkabout radius (=1 for our systems). Once
exploitation successful I, is updated again; otherwise I, stays at
the same place.

2.3. Advanced genetic operations (biological evolution)

2.3.1. Replacement

The weaker cockroach is one of the food sources (the stronger
eats the weaker). To fasten the evolution we mimic this behavior
as follows. The first-three strongest cockroaches are assumed to
be the invaders, and others to be the victims. The victim I, will
be replaced by the invader I. Let the new generated individual
I, is a normal random variable with expected value E[I},] =

m
and variance E[(I:n — E(I;n))z] = 0. Therefore, we express

Iy = NI, 00im). 9)

where Sy, = |Ix — Iy is a perturbed value to denote the power gap of
the couple (I, I;), and o is the standard deviation. The parameter
dkm Shows the variation of the degree of slaughter for different inva-
der-and-victim couples. We further introduce new immigrating
cockroach for population diversity. The ratio of occupation (replace-
ment) percentage is 1:2:3:4 for new immigrating cockroaches to
the victims of the third-strongest cockroach, to the victims of the
second-strongest cockroach and to the victims of the strongest
cockroach.

2.3.2. Mixed inbreeding and backcrossing

Fig. 2 describes the used mixed inbreeding and backcrossing
operation [26]. Two parents (A and B) are randomly chosen from
the population. The two-point crossover is used to generate chil-
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I swap I
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D| C(li| |C(ni /J’1j| |ﬁni gllj|g12j| |g1u/| g1ty | g1 | | & ngnim’ |h111|h12/| Ihlnj |h11n+l)/ i)’ | | B Grom]
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I l I
A B C
D C D
Offspring ‘ lcrossover \
E | (11i| | ani|/71i| |/1’nj|gui|glzj| |g1ni| g1 | gime) | | o L |h1zi| |h/,.j |hun+ni hime)’ | | B s |
T
| |
F | a Ii| |r1uj|/31i| |/fni|glli |glli| |g1uil gl/ml)j | gl/rnZ)j | | gn,(u-*m)i |’lllf|/llzi| |hlni hu,m)i hu:mz;f | | hll,(r|+m]i |
0 T
Fig. 2. Mixed inbreeding and backcrossing (the upper index i denotes parent A and j for parent B).
Table 1

(parameter estimation) Dataset and search range for a branch system (4-gene), a cascade system (3-gene), a small scale (5-gene), a medium scale (20-gene) and a large scale (30-

gene) genetic networks.

Systems 4 Genes (Fig. 3) 3 Genes (Fig. 4) 5 Genes (Fig. 5) 20 Genes (Fig. 6) 30 Genes (Fig. 7)
Data set 8 Sets 8 Sets 8 Sets 8 Sets 8 Sets

time Period (s) [0,8] [0,8] [0,0.5] [0,1.8] [0,10]

Sample time 0.02 0.02 0.0125 0.01 0.05

Search space

[0,100] for rate constants and [—100,100] for kinetic orders

dren C and D. We then choose two candidates from the parents and
the children for further crossover to generate offspring E and F.
Close inbreeding denotes that the candidates are two children (C
and D). Backcrossing denotes that the candidates are a parent and
a child (A and D or B and C). For the parents A and B with the
inbreeding coefficient F4 and Fg, the inbreeding coefficient f,, and
the backcrossing coefficient f;, are [51]

Jo =foo = ‘ll(fAA + 2f a5 + fo8)
:%<1 +%(FA + Fg) +2fAB>,

fa, =fap = %(fAA + fas)

= % (%(1 +Fy) +fAB>~

The average relative coefficient f;, with backcrossing probabil-
ity rp is defined as

(10)

faw=T1p- }l(fAD + fac + foc + foo) + (1 — 1) - feo. (11)

The selected candidates for further crossover are B and C in case
of 1, < fav,min, are A and D for fay min < 'y < fav.max and are C and D for
T > fav.max- The extreme case, fay = fav.max, is for parents coming from
the same group and the case f;, = fav.min is for no blood relationship
parents.

2.3.3. Competition-based screen-sifting mutation

In order to ensure global search and improve convergence we
here introduce the mutation-then-competition operation [26].
Each gene is assigned a random mutation probability. Those genes
with qualified mutation rate will mutate (screen-sifting). The mu-

tated individuals compete with their source individuals. Those
winners or losers with acceptable deviation (TA< 10) can pass
down. The ratio 10 denotes that the mutated individual is far from
the best individual. With this deviation threshold the mutated
population will distribute over a wide but not the entire space.

_|qut_Fb‘

TA =" (12)

where F,,,; and F;, are the residual errors of the mutated individual
and the best individual, respectively.

2.4. Habitat migration (periodic)

After one-epoch iterations environment becomes severe and
population emigration occurs. The emigration covers the entire
searching place. Except the strongest cockroach I, all other cock-
roaches are forced to move away from him,

- {Ib + 12 % (Imin — Ip),
! Ib + Iy * (Imax - Ib)y

</

13
otherwise, (13)

for i=2,...,Np, where J, = ,;ba;f;:_n. The strongest cockroach I, has
the right to determine if he will stay in his original place for leftover
food or takes several chemotaxis movements (tumble-then-run) to a

better place: (tumble)

= A(i .
b=Ih+r- _AG , I=

VA (DA

where r is a random value and A(i) denotes a vector in a random
direction. If this operation is successful (tumble to a rich-food
place), then I, runs in that direction or along a local-search way;
otherwise I, stay at the original place.

1,2,...,1, (14)



Table 2
(parameter estimation) Estimated parameters of the S-type large-scale network (30 genes) in Fig. 7. Column “true” lists the parameters of the true S-system. Column “simulation” lists the estimated parameters for a wide search space
([0,100] for rate constants and [-100,100] for kinetic orders).

o Bi 8 hyi
True Simulation True Simulation True Simulation True Simulation True Simulation True Simulation
X 1 1.0000126E+00 1 1.0000130E+00 814 -0.1 —9.9996528E—-02 hi1 1 9.9998254E-01
X2 1 9.9998940E-01 1 9.9998908E-01 hyo 1 1.0000019E+00
X3 1 9.9997693E-01 1 9.9997639E-01 h3s 1 1.0000159E+00
X4 1 9.9998236E-01 1 9.9998237E-01 hga 1 1.0000091E+00
Xs 1 9.9998221E-01 1 9.9998207E-01 851 1 1.0000047E+00 hss 1 1.0000075E+00
X6 1 9.9989652E-01 1 9.9989455E-01 861 1 1.0000668E+00 hee 1 1.0000816E+00
X7 1 1.0002472E+00 1 1.0002458E+00 £72 0.5 4.9992588E-01 £73 0.4 3.9988473E-01 h77 1 9.9977602E-01
X 1 1.0001088E+00 1 1.0001104E+00 8s.4 0.2 1.9997917E-01 8817 -0.2 —1.9998185E-01 hs g 1 9.9987040E-01
X9 1 1.0006263E+00 1 1.0006269E+00 8o5 1 9.9948913E-01 8o -0.1 —9.9960598E—-02 ho o 1 9.9945890E-01
X10 1 1.0001168E+00 1 1.0001171E+00 g107 0.3 2.9995245E-01 h10.10 1 9.9988003E-01
X11 1 1.0004151E+00 1 1.0004233E+00 8114 0.4 3.9973748E-01 11,7 -0.2 —1.9977102E-01 811,22 0.4 3.9987111E-01 hi111 1 9.9961584E-01
X12 1 1.0000422E+00 1 1.0000423E+00 81223 0.1 9.9991685E—-02 h12.12 1 9.9994338E-01
X13 1 9.9939412E-01 1 9.9937961E-01 8138 0.6 6.0031656E—-01 hiz13 1 1.0006332E+00
X14 1 9.9996771E-01 1 9.9996641E-01 8149 1 1.0000195E+00 h1414 1 1.0000244E+00
X15 1 1.0004812E+00 1 1.0004819E+00 815,10 0.2 1.9993068E-01 his.15 1 9.9962277E-01
X16 1 1.0007666E+00 1 1.0007740E+00 816,11 0.5 4.9964286E-01 816,12 -0.2 —1.9987503E-01 his16 1 9.9923183E-01
X17 1 9.9996402E-01 1 9.9996361E-01 £17.13 0.5 5.0001123E-01 hi7.17 1 1.0000267E+00
X18 1 9.9998647E—-01 1 9.9998605E-01 his1s 1 1.0000052E+00
X19 1 1.0003037E+00 1 1.0003069E+00 819,14 0.1 9.9975697E-02 h1910 1 9.9971925E-01
X20 1 1.0000949E+00 1 1.0000957E+00 82015 0.7 6.9992255E-01 £2026 0.3 2.9996594E-01 h20.20 1 9.9990257E-01
X21 1 1.0002323E+00 1 1.0002328E+00 821,16 0.6 5.9985588E—-01 h2121 1 9.9978813E-01
X22 1 1.0000823E+00 1 1.0000828E+00 822,16 0.5 4.9995417E-01 h2222 1 9.9990040E-01
X23 1 1.0003912E+00 1 1.0003945E+00 £23.17 0.2 1.9992442E-01 hy323 1 9.9966772E-01
X24 1 1.0012928E+00 1 1.0012845E+00 82415 -0.2 —1.9991302E-01 82418 -0.1 —9.9592950E-02  g4.19 03 2.9934183E-01 h2424 1 9.9885165E-01
X25 1 1.0000588E+00 1 1.0000581E+00 825,20 0.4 3.9996678E-01 hs 25 1 9.9994277E-01
X26 1 1.0002307E+00 1 1.0002322E+00 2621 -0.2 —1.9993470E-01 82628 0.1 9.9947068E—02 hae 26 1 9.9980655E—01
X27 1 1.0016699E+00 1 1.0016669E+00 827,24 0.6 5.9926628E-01 22725 0.3 2.9961896E-01 22730 -0.2 —1.9977462E-01 hy727 1 9.9872062E-01
X28 1 1.0000797E+00 1 1.0000796E+00 828,25 0.5 4.9994686E—-01 hasas 1 9.9992051E-01
X29 1 1.0001221E+00 1 1.0001229E+00 829,26 0.4 3.9994688E-01 h29.29 1 9.9989082E-01
X30 1 1.0003259E+00 1 1.0003253E+00 £3027 0.6 5.9981936E-01 h3030 1 9.9974045E-01

£1€-66Z (£10T) Spz s22ua1s01g [DIBDWAYIDAI/NM "L-D ‘TM [-'S
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X, —» X, 1o

\X,=>

Fig. 3. A branch system with two regulatory signals [16].

X,

Fig. 7. A large-scale network with 30 genes [21].

Table 3

The probability of achieving global optimum for 50 independent runs. Case 1 is a
general search range with a random initial start ([0,30] for rate constants and [—4,4]
for kinetic orders). Case 3 starts at a random point and Case 2 starts at a very bad
point (80 for all parameters). Both cases are searching for a wide search range
([0,100] for rate constants and [—100,100] for kinetic orders).

Algorithm Initial Search Variable Global optimal
parameter range probability
value

CGA (static Random General X 100%

population) (Case 1) Xo 100%
X3 100%
Wide X1 100%
(Case 3) Xo 100%
X3 100%

Bad Wide X1 98%

(Case 2) Xo 98%
X3 100%
CGA" (dynamic Bad Wide X1 100%
population) (Case 2) Xo 100%
X3 100%

3. Dry-lab experiments

We now test CGA with five biological systems: a four-gene
branch system [26], a three-gene cascade system [26], a five-gene
small-scale network [26,33], a twenty-gene medium-scale net-
work [34] and a thirty-gene large-scale network [21]. Table 1 lists
the used dataset and search range. Cubic splines were first used for
smoothing and to generate the artificial slope information for
structure identification. The estimated gene-expression-levels data
were generated through collocation methods. The modified
collocation method is cited from Tsai and Wang [12,13]. Through
collocation methods the state vector X(t), [x;(t),...,x,(t)]%, in an
S-system is approximated by a set of polynomial X, which is
further expressed as a linear combination of m bases functions,
Xin(t) = Y iLoXc();(t), where X, (j) is the expansion coefficients at
the jth collocation points, j=1,...,m and ¢;(t) is the bases
functions. Let Eq. (1) be satisfied by X,,(t) at the finite numbers
of collocation points. By using piecewise linear Lagrange polyno-
mial as bases functions, the dynamic behavior of the differential
equations in Eq. (1) are approximated by the algebraic equations
[12,13],

X)) =X (= 1) +0.5n{fXc(), 0] +fXc (= 1), 01}, j=1,....m, (15)

where the expansion-coefficient vector X.(j) equals to the solution
X(t) at the time instant t=¢;, f[Xc(j), 0] is the rate-function vector
of the S-system in Eq. (1), 0 is the parameters of the S system and
n, is a time interval.

System identification is to infer the structure (structure infer-
ence or structure identification) and to estimate the unknown
parameters (parameter estimation). This study develops a new
algorithm to perform grey-box system identification for estimating
the unknown parameters of user-defined S-system prototypes
which are constructed from the genetic networks. In addition,
black-box system identification for the system with four depen-
dent variables and one independent variable is done to further ex-
hibit the performance of the algorithm. (No prior interactive
information of the branched system is available.)

3.1. Parameter estimation (single-objective optimization)

We first do the parameter estimation of five biological systems.
Eight-set artificial data for gene expression levels were generated
from the true systems. The parameters of these true systems are
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Genetic network with 10% random noise

Concentration
N

-
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0.2
Time

0.3 0.4 0.5

Fig. 8. Robustness examination of CGA for the branch system and the small-scale genetic network. Dot points and square-, star-, circle-, cross- and plus-signs denote data
with 10% random-noise contaminate. Solid curves are the estimated profiles. A wide search space ([0,100] for rate constants and [—100,100] for kinetic orders) and a bad
initial start (80 for all parameters) are used. Initial conditions are 20% beyond the training range.

Table 4

(Structure identification) comparison of this study to current research in the pruning threshold, pruning ratio, assumption and search region. Pruning ratio (p) is the ratio of the

smallest preserved term to pruning threshold d;. *

-" Denotes no information was provided.

Algorithm System Data set Assumption Search space Pruning threshold (Js) Pruning ratio (p)
CGA 4-Gene 8 Sets no o, f€[0,30] g he[-4,4] 104 1.89 x 10"3
SPXGA (Kikuchi et al. [23]) 5-Gene 10 Sets - o, f€[0,15] g he[-3,3] - -
GA (Voit and Almeida [55]) 4-Gene - gi=0,h; >0 -g hel[-1,1] 0.1 1.4
HDE (Tsai and Wang [12]) 3-Gene 10 Sets gi=0,h; >0 o, f€[0,20] g, h e [-4,4] 0.01 2.7
5-Gene 10 Sets gi=0h; >0 o, f€[0,20] g, he[-4,4] 0.1 1.2
CCA (Kimura et al. [21]) 5-Gene 15 Sets - o, f€1[0,20] g, he[-3,3] 0.001 -
DE (Noman and Ib [22]) 5-Gene 10 Sets - o, f€[0,15] g he[-3,3] 0.05 -
SA (Gonzalez et al. [16]) 4-Gene - gi=0,h; >0 —g, hel[-2,2] 0.01 -
IGA (Ho et al. [15]) 5-Gene 15 Sets - o, f€[0,15] g he[-3,3] 0.03 -
HDE (Liu and Wang [25]) 5-Gene 8 Sets gi=0,h; >0 o, f€1[0,20] g he[-4,4] 0.01 6.9

Table 5
Pruning conditions in each step for the ten independent runs.

Variable No. of the true No. of the deleted connections
redundant connections Step 1 Step 2 Run
X1 7 6 (88%) 1 Runs 9 and 10
7 (100%) - Others
X2 8 8(100%) - All
X3 7 7 (100%) - All
X4 8 8(100%) - All

listed in Row “true” in Tables 7-9 and Column “true” in Tables 2
and 10-12. Tables 10 and 12 and Row “Case 1” in Tables 7-9 list
the learning results for the general search space ([0,30] for rate
constants and [—4,4] for kinetic orders) with random initial starts.
Tables 2 and 11 and Row “Case 2” in Tables 7-9 list the results for
the wide search space ([0,100] for rate constants and [-100,100]
for kinetic orders) with a bad initial start (the initial values of all
parameter are set to be 80). Simulation results show that estimated
parameters for these five systems are nearly the same as those of
the true S-systems.

3.1.1. A branch system (4 genes)

We first consider the branch system [16], as shown in Fig. 3
with parameters listed in Table 7. This is a four-dimension system.
X1, X2, X3 and x4 are the dependent constituents and xs is the source
input (the independent constituent). Based on the network, we
have the respective S-system model prototype:

. h
X1 = oqX5Pxs — Bixy,
Xz = OCzX%Z — ﬁthzz

3 = OC3X§3Z

(16)
_ ﬂngB XZ34’

= ogXS4 — Bxiee

The unknown parameters are encoded as a 17-gene cockroach
individual:

|a1|a2|a3|a4|ﬁ1|/)’_7|/)’3|/)’4|g13|g2,|g32|g4,|h,,|h_72|h33|h34|h44|

We generated eight sets of artificial experimental data from the
true S-system with parameters listed in Row “true” of Table 7. The
simulation time of an experiment is 8 s and the sample time is
0.02. Row “Case 1” in Table 7 lists the estimated parameters for
a general search space ([0,30] for rate constants and [—4,4] for ki-
netic orders) with a random initial start. Row “Case 2” in Table 7
lists the estimated parameters for a wide search space ([0,100]
for rate constants and [-100,100] for kinetic orders) with a bad ini-
tial start (the initial values of all parameter are set to be 80). Sim-
ulation results in both cases show that the inferred parameters are
nearly the same as those in the true S-system.

3.1.2. A cascade system (3 genes)
The second system is the cascade network in Fig. 4 [12]. This is a
three-step system with two feedback signals. x;,x, andxs; are the
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Table 6

(structure identification) Structure identification for a branch system in Fig. 3. Step 0 lists the parameters of the true S-system. Steps 1 to 2 show the estimated parameters and

inferred structures.
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Step Variable 0 gin 82 83 8ia 8is
0 X1 20 -038 1
X 8 0.5
X3 3 0.75
X4 2 0.5
1 X 1.9869487E+01 2.0350824E—15 —1.0121408E-16 —7.5888690E—01 —2.0782613E-17 9.2950239E—01
X 8.3421078E+00 4.4928402E-01 —1.2346232E-15 —5.2359489E-16 —5.5289283E-16 —5.5075463E—17
X3 3.1105792E+00 —1.8536181E—16 7.2585091E—01 —1.6276487E—16 —3.2226031E-16 3.5381885E—16
X4 2.2156428E+00 4,5628239E-01 8.1023598E—16 —7.8526363E—16 5.7838675E—16 1.1071731E-16
2 X 1.9989784E+01 —8.0017394E—01 1.0002165E+00
X 8.0134341E+00 4.9921193E-01
X3 3.0050430E+00 7.4929863E—01
X4 2.0001301E+00 4.9995519E—01
Step Variable Bi hiy hip hi3 hig hjs
0 X1 10 0.5
X 3 0.75
X3 5 0.5 0.2
X4 6 0.8
1 X 1.0311030E+01 4.6583387E-01 —3.7362789E-15 —1.4502508E—15 5.3440492E—16 —4.9975398E—17
X 3.5238444E+00 —1.5478921E-16 6.4537002E—01 —~1.6607947E-16 1.1598826E—15 4.2922820E-17
X3 5.0633937E+00 —3.7595700E—16 —2.7055843E-16 4.8018180E—01 1.8858591E—01 2.0750533E—17
X4 6.1116142E+00 3.9237470E-18 —9.4828264E—-16 —9.6898885E—16 7.3635861E—01 —1.9775796E-16
2 X1 9.9937089E+00 5.0014031E-01
X, 3.0098595E+00 7.4870596E—01
X3 5.0059692E+00 4.9949949E—01 1.9979963E—01
X4 5.9999738E+00 7.9994288E-01
Eigenvalues three dependent constituents and x4 is the independent constitu-
10° ! ! ! ! i ent. According to the network, we have the S-system prototype:
: : : ' —_—] Xy = 0px52 — Boxhe (17)
. : : : E ).(3 = OC3X§32 — ﬁ3x§33
10 F ; ] P E
: ; : ; 5 ] and the respective cockroach individual (13-gene):
3 |a,|a2|a3|/ﬁ’1|ﬁgll)’3|g13|g13|g21|g32|h,1|h22|h33|
2 : : i :
o 10F : : : : E
=) N : : : : ]
© r : : : : ] . - :
z [ : : : : ] The true parameters are shown in Row “true” of Table 8. Simu-
S T ; : ; ; 1 lation was from time t=0 to t=8 s with sample time 0.02. Rows
% | : : : : “Case 1” and “Case 2" in Table 8 show, respectively, the estimated
g 10k ' : : : | parameters for a general search space with a random initial start
S 3 and a wide search space with a bad initial start. Both simulation re-
2 s : : : : . sults are nearly the same as the true values.
- S A T R R
2 I : : : : 3.1.3. A small-scale network (5 genes)
0L ' ' ' ' | Our third case is a small-scale network with two regulatory sig-
; ] nals in Fig. 5 [52]. We write the respective S-system prototype for
i : ' : ' 1 the network as
I X1 = 0 x5PXE X — ﬁ1X’1"1,
: : : : . b
10°} 5 E E E J R = 06X X7 — X",
g i ; i E ] - 3
: | e e e lg  Rmexin o hax, (18)
L : : : : . v o h
I . : . : § Xg = OC4X§43X§45X5 _ ﬂ4X444,
i § § i § 7 X5 = 00X X7 — o5
. ; | | : . . .
10 where x;, i=1,...,5 are the dependent constitutes, and x;, i=6,7,8
4 genes 3 genes 5 genes 20 genes 30 genes

Fig. 9. Eigenvalues of the sensitivity-related Hessian matrix of the five S-systems.

are the constant sources (independent constituents). The unknown
parameters were encoded as a 23-gene cockroach individual:
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|a1|a2|a3|a4|a5|/)’1|[f_7|[f3|/f4 |ﬁ5 |g,3|g,5|g21|g32|g43|g45|g54|h11|h22|h32|h33|h44|h55|

N=4 N=20
: N=3 m 10’
10
TA\ — —_
cGa | ¢ 2 . 8
c & -5
and é é 10 é 10
ca” | 8 g g
N I e S
fitness evaluation
x0 fitness evaluation wic’
N=3 N=4 N=20
& — 1’ 10’
HDE | & & i
£ 1’ £ qg° i
and E g 10 g1
pE | & g H
10
10 s P 10 1
10 : —
012 3 45 10 ] 3 4 5 o1 2 3 4 5
fitness evaluation x10 fitness evaluation w10t fitness evaluation x10*

Fig. 10. Convergence comparison of CGA to HDE [12-14], improve GA (GA") [54] and DE. The wide search space ([0,100] for rate constants and [—100, 100] for kinetic orders)
starting at a bad point (80 for all parameters) is used. Solid curves denote CGA and HDE and dash curves denote GA* and DE. Curves are drawn for fitness evaluation from

1000 to 50,000. N denotes system dimension.
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Fig. 11. Convergence comparison of CGA to IGA and SPXGA for a small-scale (N = 5), a medium-scale (N = 20) and large-scale (N = 30) networks. Six-set time series data with
11 sample points are used as in [15]. The general search space ([0,15] for rate constants and [—3,3] for kinetic orders) starting at nearby midpoint (zero for kinetic order and

7.5 for rate constant) is used.

The true rate constants and kinetic orders are listed in Row
“true” of Table 9. The same cubic spline technology is
adopted for smoothing the eight-set data. Each experiment
was simulated from time t=0 to t=0.5s with a sample time
0.0125. Rows “Case 1” and “Case 2” in Table 9 show, respec-
tively, the estimated parameters for a general space with a

random initial start and a wide search space with a bad initial
start.

3.1.4. A medium-scale network (20 genes)
Our fourth system is the medium-scale network in Fig. 6 [53].
Twenty dependent constituents (x;, i=1,...,20) are considered.
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The respective S-system formulation with respect to twenty genes,
x;,i=1,...,20, is as follows.

Xl =07 — ﬁlqu'] 5(3 = OCng8 ﬁ thg,

Xy =0 — ﬂzxg“, Xo = 0gX i XE0S — h”,

X3 = 03X53° — pyx3, Xi0 = ocmxg]“xg“”“ — BroXiore,
Xa = 04— paxy" Ky = o0 — X

X5 = oasXs! — Boxis, 5(12 = 08 — B X,
0 N SR S

hig "

X = OC7X§7'2X§7'3X%]O _ [37X’;77

X14 = OC14X§{m — BraXyy

The unknown parameters include forty rate constants and forty
six kinetic orders. These unknown parameters are encoded as an
86-gene cockroach individual. The true rate constants and kinetic
orders are listed in Column “true” of Tables 10 and 11. Eight sets
of artificial experiment data were generated from the true S-type
system. Each experiment was simulated from time t=0 to t=1.8
with a sample time 0.01. The estimated parameters are listed in
Column “Simulation” of Tables 10 and 11 for a general search space
with a random initial start and for a wide search space with a bad
initial start, respectively. Simulation results in both tables demon-
strate that even system dimension is high and searching covers
such a wide range the proposed CGA still has good performance.

3.1.5. A large-scale network (30 genes)

We now discuss a large system with thirty dimensions, which is
shown in Fig. 7 [21]. This system has thirty dependent constituents
(x;,i=1,...,30). The respective S-system is described as

h
X16 = alsxﬂenxflzsu _ ﬁ X 1616

— By Xh1717

h
X] 70(1)(;!414 7[3 X 11

hy 2
X7 = 0(17X%3

Xy = 0y — frX,
X3 =03 — fi3X;
X4 = 04 — PaX,

X5 = 05X — Xt

h3 3 18.18

X1g = Ol1g — ﬁ18x1
Xig = 01gXag™ — BroXyb

h
Xa0 = O‘ZOX%OJS)ééMG _ ﬁ X 6020

hys h19.19

. h, . h.

X6 = O(G)(% ﬁ X 66 X1 = O(z]X%él 1 ﬂ21X22112]

. I h.

X7 = oc7xg”xg” - 177 X22 = 0(22)(%6 1 ﬁZZx 2222
h h;

Xg = O(ngHX%%” 88 X23 = 0(23?(?7 - ﬂ X53 223

Xg — ocg)<g95xg96 h99
h

X]O = 0(10)(5107 — [)) X10 w10 X25 = O‘ZSX%()SZO - ﬂZSX

. h h

X1 = allxi114xg117xgnzz _ 1X111H] x26 _ azsx‘gzlsnxgészs _ ﬁzsxzze“s

h : h
,BIZX 12,12 Xo7 = 0(27)(%27 24 ng 25 X«g?)mo _ ,327)(2277’27

Ko = a24xgz4lsxg24lsxgz419 _ '324)(“2424

25 25

g _ 1223
X12 = 0612X§3

h h
X3 = O(]ngBB _ ﬁ X5 13,13 Xog = a28X§5825 _ ﬁzgx 28,28

h h
Xi4 = 0614?(5 — Braxys™ Xo9 = 0(29?(%5 — PagXyg
. h . |
Xi5 = alsx%s ﬁ]sx 15,15 X30 = O(30X§370’ _ /330)(13030

(20)

The unknown parameters include sixty rate constants and sixty
eight kinetic orders. These unknown parameters are encoded as a
128-gene cockroach individual. The rate constants and kinetic or-
ders are listed in Column “true” of Tables 2 and 12. Eight sets of
training data were generated from the true S-system. Each dry-
lab experiment was simulated from time ¢t =0 to t = 10 with a sam-
ple time 0.05. The estimated parameters are shown in Column
“Simulation” of Table 12 for the general search space with random
initial start, and Table 2 for the wide search space with a bad initial

XlS -
X6 =
X17 =
XlS =
X19 =

XZO =

start. Simulation results in both tables demonstrate that CGA
achieves perfect results even the dimension of the system is as

o1sXg XA — .Blsxhlslsa
516"’17;36 ,
0617?(5137'13 ﬁnxh””-,
tisXi) M — ﬁlsxh18187

20,14 ,,820,17 hzo.zu
OaoXsg X = BagXag .

16,12
016 12

(19)

high as thirty and searching is in a wide range.
3.2. Further discussion

3.2.1. Exploration and convergence

We so far have demonstrated that CGA possesses the ability to
achieve perfect searching even in a wide search space with a bad
initial start; most variables achieve satisfied values after a few
evaluations calls. Exploration ability is shown in Table 2 (30 genes),
in Row “Case 2" of Tables 7-9 (3-, 4- and 5-gene), and in Column
“Simulation” of Table 11 (20 genes) for the case where rate range
is set to be [0,100], order range is [-100,100] and all parameters
are initialized as 80. We now further consider an extra case: a wide
search space with random initial start. In other words, three differ-
ent cases are considered: Case 1 is a general search space with ran-
dom initial start. Case 2 is a wide search space with a bad initial
start. Case 3 is a wide search space with random initial start. 50
independent runs were done to compare the effectiveness of
CGA. The probability of achieving global minimum is shown in Ta-
ble 3. Simulation results show that CGA has 100% probability to
find the global minimum when the learning starts from random
points no matter the searching space is general or wide (Cases 1
and 3). The performance falls down to 98% when the search space
is wide and learning starts at very bad values, as shown in Case 2 of
Table 3. To solve this problem we further introduced dynamic-pop-
ulation strategy. The results for the modified CGA (CGA") are shown
in the last row of Table 3. We observe that 100% searching ability is
guaranteed for CGA starting at a very bad point in a wide searching
space when the dynamic population is used.

Snatching food, winner walkout and stronger-eat-weaker
replacement are all for exploitation-ability enhancement. Figs. 10
and 11 show the convergence comparison of CGA to DE, HDE [12-
14], SPXGA [23], intelligent two-stage evolution algorithm (IGA,
intelligent GA) [15], and GA with migration and acceleration oper-
ations (GA*, improved GA) [54]. Fig. 10 shows the results of Low-
and medium-dimensional systems (N = 3, 4, 20 genes) in the wide
search space ([0,100] for rate constants and [—100, 100] for kinetic
orders) and a bad initial start (80 for all parameters). Low-, med-
ium- and large-dimensional systems (N=5, 20, 30 genes) with
the same search space and initial start as [15] are used in Fig. 11,
where the nearby-midpoint initial start (zero for kinetic order
and 7.5 for rate constant) is used and search range is [0,15] for rate
constants and [-3,3] for kinetic orders. Simulation results show
CGA converges faster than those algorithms.

3.2.2. Robustness

To examine the robustness of CGA we consider systems that are
contaminated with 10% random noise (10% random noise is added
to the true datum for training). Fig. 8 is the results for the initial



Table 7

S.-J]. Wu, C.-T. Wu/Mathematical Biosciences 245 (2013) 299-313

309

True and estimated parameters of the S-type branch system (4 genes) in Fig. 3. Row “true” lists the parameters of the true S-system. Row “Case 1" shows the estimated
parameters for a general search space ([0,30] for rate constants and [—4,4] for kinetic orders) with a random initial start. Row “Case 2" shows the estimated parameters for a wide
search range ([0,100] for rate constants and [-100,100] for kinetic orders) with a bad initial start (80 for all parameters).

Variable o; Bi 8il 8i2 8i3 hi hiz his hia
True x4 20 10 -0.8 0.5
X2 8 3 0.5 0.75
X3 3 5 0.75 0.5 0.2
Xq 2 6 0.5 0.8
X1 1.9996496E+01 9.9986163E+00 —7.9994627E-01 4.9999159E-01
Casel x, 8.0002030E+00 3.0001482E+00 4.9998922E-01 7.4997682E-01
X3 3.0048335E+00 5.0056201E+00 7.4932029E-01 4.9952091E-01 1.9980073E-01
X4 2.0000161E+00 5.9998200E+00 4.9996746E—-01 7.9996349E-01
X1 1.9998961E+01 1.0000011E+01 —7.9989604E—-01 4.9996658E—-01
Case2 x, 8.0039345E+00 3.0028797E+00 4.9977047E—01 7.4961995E-01
X3 3.0017547E+00 5.0025795E+00 7.4979131E-01 4.9981801E-01 1.9996480E—-01
X4 2.0032071E+00 6.0041227E+00 4.9962411E-01 7.9938683E-01
Table 8

True and estimated parameters of the S-type cascade system (3 genes) in Fig. 4. Row “true” is the parameters of the true S-system. Row “Case 1” shows the estimated parameters
for a general search space ([0,30] for rate constants and [—-4,4] for kinetic orders) with a random initial start. Row “Case 2" shows the estimated parameters for a wide search range
([0,100] for rate constants and [—100,100] for kinetic orders) with a bad initial start (80 for all parameters).

Variable o Bi 8il 82 8i3 hix hi his
X1 10 5 -0.1 —0.05 0.5
True Xo 2 1.44 0.5 0.5
X3 3 7.2 0.5 0.5
X1 9.9983000E+00 4.9991321E+00 —1.0001159E-01 —5.0009436E—-02 5.0000103E-01
Casel x; 2.0036028E+00 1.4436798E+00 4.9929160E-01 4.9901351E-01
X3 2.9993602E+00 7.1998806E+00 5.0011201E-01 5.0011092E-01
X1 9.9980369E+00 4.9984476E+00 —1.0007160E-01 —4.9959651E-02 5.0001419E-01
Case2 x; 2.0064165E+00 1.4466246E+00 4.9875874E-01 4,9821637E-01
X3 3.0019340E+00 7.2004725E+00 4.9966966E—01 4.9967402E-01
Table 9

True and estimated parameters of the S-typesmall-scale network (5 genes) in Fig. 5. Row “true” lists the parameters of the true S-system. Row “Case 1” shows the estimated
parameters for a general search space ([0,30] for rate constants and [—4,4] for kinetic orders) with a random initial start. Row “Case 2” shows the estimated parameters for a wide
search range ([0,100] for rate constants and [—100,100] for kinetic orders) with a bad initial start (80 for all parameters).

Variable o gt g g 8ia 8is
X1 5 1 -1
X 10 2
True X3 10 -1
X4 8 2 -1
X5 10 2
X1 5.0025244E+00 1.0004463E+00 —1.0005928E+00
X2 1.0000364E+01 2.0002799E+00
Casel X3 1.0008258E+01 —1.0003655E+00
X4 8.0002327E+00 2.0010040E+00 —1.0005881E+00
Xs 1.0000137E+01 2.0004907E+00
X1 5.0016401E+00 1.0004428E+00 —1.0007198E+00
Xo 9.9991671E+00 2.0001203E+00
Case2 X3 1.0018684E+01 —9.9862400E-01
X4 7.9989991E+00 2.0012278E+00 —1.0006360E+00
X5 9.9986509E+00 2.0003787E+00
Variable B hiyy hi» hiz hig his
X1 10 2
X2 10 2
True X3 10 -1 2
X4 10 2
X5 10 2
X1 1.0002901E+01 1.9990869E+00
Xa 9.9998865E+00 2.0001225E+00
Casel X3 1.0007753E+01 —1.0005392E+00 1.9998620E+00
X4 1.0000772E+01 1.9998910E+00
X5 9.9999571E+00 2.0002320E+00
X1 1.0001007E+01 1.9990220E+00
X2 9.9986681E+00 1.9999833E+00
Case2 X3 1.0018041E+01 —9.9883469E-01 1.9998284E+00
X4 9.9991415E+00 1.9998054E+00
X5 9.9984596E+00 2.0001887E+00




Table 10

True and estimated parameters of the S-type medium-scale network (20 genes) in Fig. 6. Column “true” lists the parameters of the true S-system. Column “simulation” lists the estimated parameters for a general search range ([0,30]

for rate constants and [—4,4] for kinetic orders). Parameters are initialized to be random.

% Bi 8ii hy
True Simulation True Simulation True Simulation True Simulation True Simulation True Simulation
X1 10 9.9999702E+00 10 9.9999711E+00 hi4 1 9.9999482E-01
X5 10 9.9994099E+00 10 9.9994048E+00 hyo 1 1.0000487E+00
X3 10 9.9887145E+00 10 9.9871483E+00  g315 -0.7 —6.9933524E-01 hs3 1 1.0019234E+00
X4 10 9.9997768E+00 10 9.9997738E+00 haa 1 1.0000132E+00
Xs5 10 9.9987314E+00 10 9.9987248E+00 g5 1 1.0000857E+00 hs s 1 1.0001086E+00
X6 10 9.9988066E+00 10 9.9987938E+00  gg1 2 2.0000382E+00 hes 1 1.0000612E+00
X7 10 1.0002369E+01 10 1.0002337E+01 872 1.2 1.1997564E+00 873 -0.8 —7.9969190E-01 £7.10 1.6 1.5996903E+00 h77 1 9.9980710E-01
Xg 10 1.0006045E+01 10 1.0006077E+01 233 -0.6 —5.9938707E-01 hgg 1 9.9913529E-01
Xo 10 1.0004408E+01 10 1.0004395E+01 o4 0.5 4.9976112E-01 895 0.7 6.9977223E-01 hg o 1 9.9961772E-01
X10 10 9.9927401E+00 10 9.9930444E+00  gi06 -0.3 —3.0014597E-01 £1014 0.9 9.0059441E-01 hio10 1 1.0008388E+00
X1 10 1.0001934E+01 10 1.0001944E+01 g117 0.5 4.9991849E-01 hi111 1 9.9982349E-01
X12 10 1.0001310E+01 10 1.0001306E+01 121 1 9.9985573E-01 hi212 1 9.9988233E-01
X13 10 1.0009689E+01 10 1.0009665E+01 &13,10 -0.4 —3.9892298E-01 81317 1.3 1.2978355E+00 hi313 1 9.9889870E-01
X14 10 9.9971482E+00 10 9.9971440E+00  gi411 -04 —4.0006827E—01 hi414 1 1.0002839E+00
X15 10 1.0012384E+01 10 1.0012618E+01 8158 0.5 4.9870465E-01 81511 -1 —9.9817511E-01 815,18 -0.9 —8.9834477E-01 his1s 1 9.9860871E-01
X16 10 9.9994897E+00 10 9.9995480E+00  gi612 2 1.9999732E+00 hi616 1 9.9997887E-01
X17 10 9.9948458E+00 10 9.9948611E+00  g17,13 -0.5 —5.0018209E-01 hi7.17 1 1.0006012E+00
X138 10 9.9992990E+00 10 9.9992924E+00  gi514 1.2 1.2000460E+00 his1s 1 1.0000609E+00
X19 10 9.9997656E+00 10 9.9997242E+00  gi912 1.4 1.4000532E+00 81917 0.6 5.9988064E-01 hi919 1 1.0000268E+00
X20 10 9.9939167E+00 10 9.9938882E+00  g3014 1 1.0004408E+00 82017 1.5 1.5008207E+00 ha020 1 1.0006102E+00
Table 11

True and estimated parameters of the S-type medium-scale network (20 genes) in Fig. 6. Column “true” lists the parameters of the true S-system. Column “simulation” lists the estimated parameters for a wide search space ([0,100] for
rate constants and [—100,100] for kinetic orders). Parameters are initialized to be 80.

% Bi i hy
True Simulation True Simulation True Simulation True Simulation True Simulation True Simulation
Xy 10 9.9999077E+00 10 9.9999075E+00 hia 1 1.0000001E+00
X2 10 9.9999329E+00 10 9.9999332E+00 hyo 1 9.9999757E-01
X3 10 9.9887189E+00 10 9.9871538E+00  g3:15 -0.7 —6.9933480E-01 h33 1 1.0019228E+00
X4 10 9.9981307E+00 10 9.9981060E+00 hya 1 1.0001721E+00
X5 10 9.9998440E+00 10 9.9998422E+00 g5, 1 9.9998184E-01 hs 5 1 1.0000035E+00
X6 10 9.9959505E+00 10 9.9958949E+00 g6, 2 2.0003236E+00 he e 1 1.0002390E+00
X7 10 1.0001018E+01 10 1.0001006E+01 iz2 1.2 1.1998864E+00 873 -0.8 —7.9978166E—-01 &7,10 1.6 1.5998481E+00 hs7 1 9.9991099E-01
Xg 10 1.0001452E+01 10 1.0001483E+01 833 -0.6 —5.9960246E—-01 hsg 1 9.9961698E-01
X9 10 1.0001662E+01 10 1.0001652E+01 8o4 0.5 4.9988616E—-01 895 0.7 6.9991284E-01 hoo 1 9.9984072E-01
X10 10 1.0005413E+01 10 1.0005729E+01 Zi06 -03 —2.9982576E-01 g1014 09 8.9974094E-01 h1o10 1 9.9981510E-01
X11 10 9.9993773E+00 10 9.9993848E+00  gi17 0.5 5.0002529E-01 hi111 1 1.0000310E+00
X12 10 9.9902724E+00 10 9.9902942E+00 g2 1 1.0008127E+00 hi212 1 1.0007973E+00
X13 10 1.0007261E+01 10 1.0007218E+01 &13,10 -04 —3.9900039E-01 813,17 13 1.2981217E+00 [ PERES 1 9.9915384E-01
X14 10 9.9987190E+00 10 9.9987245E+00  gi411 -0.4 —4.0001924E—-01 hi414 1 1.0001411E+00
X15 10 1.0012200E+01 10 1.0012434E+01 158 0.5 4.9871156E-01 81511 -1 —9.9818480E-01 g1518 -0.9 —8.9835616E-01 his1s 1 9.9862287E-01
X16 10 9.9928299E+00 10 9.9928554E+00  gi612 2 2.0007276E+00 his16 1 1.0004011E+00
X17 10 9.9252898E+00 10 9.9252332E+00  g17.13 -0.5 —5.0303316E-01 h17.17 1 1.0070983E+00
X1 10 9.9998227E+00 10 9.9998274E+00  gig.14 1.2 1.1999980E+00 higas 1 1.0000109E+00
X19 10 9.9983984E+00 10 9.9983659E+00  gi9,12 14 1.4001749E+00 819,17 0.6 5.9990701E-01 hig19 1 1.0001175E+00
X20 10 9.9936784E+00 10 9.9936483E+00  £50,14 1 1.0004558E+00 82017 1.5 1.5008471E+00 h20.20 1 1.0006296E+00
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Table 12
True and estimated parameters of the S-type large-scale network (30 genes) in Fig. 7. Column “true” lists the parameters of the true S-system. Column “simulation” lists the estimated parameters for a general search range ([0,30] for
rate constants and [—4,4] for kinetic orders). Parameters are initialized to be random.

% Bi 8ii hy
True Simulation True Simulation True Simulation True Simulation True Simulation True Simulation
X 1 9.9996143E-01 1 9.9996097E-01 814 -0.1 —1.0000476E-01 hi4 1 1.0000303E+00
X2 1 9.9998739E-01 1 9.9998702E-01 hyo 1 1.0000072E+00
X3 1 9.9998978E-01 1 9.9998956E—-01 h33 1 1.0000067E+00
X4 1 9.9998988E-01 1 9.9998998E-01 hag 1 1.0000053E+00
Xs 1 9.9998556E—01 1 9.9998542E-01 851 1 1.0000043E+00 hs s 1 1.0000072E+00
X6 1 9.9999396E-01 1 9.9999385E—-01 261 1 1.0000008E+00 hes 1 1.0000032E+00
X7 1 1.0000402E+00 1 1.0000399E+00 872 0.5 4.9994609E—-01 873 0.4 4.0001770E-01 hs7 1 9.9996973E-01
Xg 1 9.9999024E-01 1 9.9998991E-01 834 0.2 1.9999715E-01 g8.17 -0.2 —2.0000167E-01 hgg 1 1.0000026E+00
X9 1 1.0000656E+00 1 1.0000655E+00 85 1 9.9993786E-01 8o -0.1 —9.9990357E-02 hg o 1 9.9993853E-01
X10 1 1.0000155E+00 1 1.0000154E+00 8107 0.3 2.9999026E-01 h1010 1 9.9997191E-01
X11 1 1.0001693E+00 1 1.0001788E+00 8114 0.4 3.9984830E-01 8117 -0.2 —1.9982997E-01 81122 0.4 3.9995295E-01 hi111 1 9.9981619E-01
X12 1 9.9995657E-01 1 9.9995637E-01 812,23 0.1 1.0001119E-01 hi212 1 1.0000336E+00
X13 1 1.0000043E+00 1 1.0000042E+00 8138 0.6 5.9999029E-01 his13 1 9.9999063E-01
X14 1 9.9999249E-01 1 9.9999176E-01 8149 1 1.0000021E+00 hia14 1 1.0000042E+00
X15 1 1.0000179E+00 1 1.0000174E+00 815,10 0.2 1.9999232E-01 his1s 1 9.9998452E-01
X16 1 1.0006722E+00 1 1.0006788E+00 816,11 0.5 4.9968772E-01 816,12 -0.2 —1.9989018E-01 hi616 1 9.9932747E-01
X17 1 1.0000211E+00 1 1.0000215E+00 81713 0.5 4.9998547E-01 h1717 1 9.9997448E-01
X18 1 9.9998799E-01 1 9.9998761E-01 his1s 1 1.0000070E+00
X19 1 9.9999691E-01 1 9.9999679E—-01 819,14 0.1 1.0000139E-01 hi919 1 1.0000083E+00
X20 1 9.9990322E-01 1 9.9990243E-01 22015 0.7 7.0006999E-01 82026 0.3 3.0002558E-01 h20.20 1 1.0000867E+00
X21 1 9.9999388E-01 1 9.9999285E-01 22116 0.6 5.9999223E-01 ha121 1 1.0000026E+00
X22 1 9.9998611E-01 1 9.9998523E-01 822,16 0.5 4.9999168E-01 ha222 1 9.9999922E-01
X23 1 1.0000134E+00 1 1.0000139E+00 82317 0.2 1.9999672E-01 hy323 1 9.9998451E-01
X24 1 9.9992788E-01 1 9.9992826E-01 824,15 -0.2 —2.0003160E-01 824,18 -0.1 —9.9988814E-02  gy419 03 3.0000607E—01 ho424 1 1.0000445E+00
X25 1 1.0001049E+00 1 1.0001044E+00 825,20 0.4 3.9994772E-01 has25 1 9.9990513E-01
X26 1 9.9996435E-01 1 9.9996495E-01 82621 -0.2 —2.0001342E-01 82628 0.1 1.0001311E-01 ha6.26 1 1.0000247E+00
X27 1 9.9996723E-01 1 9.9996845E—01 22724 0.6 6.0003899E—-01 82725 0.3 2.9997533E-01 22730 -0.2 —2.0000408E—-01 hy727 1 1.0000142E+00
X28 1 9.9993430E-01 1 9.9993352E-01 82825 0.5 5.0001672E-01 hasos 1 1.0000448E+00
X29 1 9.9999578E-01 1 9.9999553E-01 829,26 0.4 3.9999878E-01 h2929 1 1.0000025E+00
X30 1 9.9998567E-01 1 9.9998559E-01 3027 0.6 6.0000487E-01 h3030 1 1.0000090E+00
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condition of testing at 20% beyond the training range. For instance,
in the branch system the range for training is [0.4,2.7] and
2.7(1 +20%) = 3.24. So the initial condition for testing is set at
3.25 (beyond 3.24). In the branch system, the average accuracy rate
for rate constants is 91.526105%, and that for kinetic orders is
95.192224%. In the small-scale genetic network, the average accu-
racy rate for rate constants is 97.919166%, and that for kinetic or-
ders is 96.455424%.

3.2.3. Multi-objective optimization (structure identification)

We further examine CGA by identifying the structure of the
branch system. Structure identification is a multi-objective optimi-
zation problem. To infer a sparsely connected network we have to
minimize the normalized error for gene expression levels, J,, and
the normalized kinetic order J,. The former is to examine the fit-
ness between the measured data and the estimated data. The latter
is to get a sparsely connected network. In our previous paper [26],
we further introduced the normalized slope-error penalty ], for
smooth evolution profiles. The objective of S-system modeling is
to push the gene-expression-levels error and the slope error to ap-
proach zero but to obtain a nonzero minimum value of the kinetic-
order penalty. In other words, our objective is to get minimum va-
lue of the kinetic-order penalty under allowable gene-expression-
levels error and slope error. Therefore, it is not suitable to summate
these three because their targets are different. In our previous pa-
per [26], we proposed a reconstruction performance index Jyec = -
max {1y J., wi Jq, Jo} where 1, = wy x i, u is an adaptive dynamic
factor and w;, wy are two weighting factors (w;=wy =1 for most
systems) [26].

Structure identification was based on the super structure of S-
systems. For a S-system with n independent variables and m inde-
pendent variables, there are 2n(n + m + 1) connections to be identi-
fied. For the branch system (n =4 and m = 1), the parameters to be
estimated were encoded as 48-gene cockroach individual:

1 K1 Terxk(o,6) — xk07, 1))
N(H)—ﬁ;;ﬂ/o [T “ o

where n is the number of constitutes, X;max iS the maximum of

xki=1,...,n, k=1,...,K and T is the time period of the kth con-

ditions (accounting periods). System sensitivity to parameter varia-

tion is estimated through the Hessian matrix,
N O*N

Him = dlog; - dlog O,y (22)

Fig. 9 shows the respective normalized eigenvalue spectra of
the Hessian matrixes for the five S-systems. We observe that nearly
all eigenvalues span less than one decade (except one eigenvalue of
the 20-gene S-system, which is around 0.05). Models are sloppy
when the respective eigenvalues span over more than six decades
(107%). Therefore, the sloppy phenomenon observed in Hill and
Michaelis-Menten models [56] does not exist in these five S-
systems.

4. Conclusion

Identifying a dynamic biological system from time-series data is
a central theme in systems biology. S-system model is good in
showing the net interactive effect. In this paper, we mimic cock-
roaches’ competition behavior which is then embedded into ad-
vanced genetic algorithms to increase exploration and
exploitation abilities. Simulation results show that the global-
search ability is ensured even in a wide search space with a bad ini-
tial start. CGA is demonstrated to learn with a rather fast speed as
compared to the state-of-the-art GA and DE (SPXGA [23], intelli-
gent GA [15], improved GA [35], DE, HDE [12-14]). We also exam-
ine the robustness of CGA with systems under noise contaminate.
Training data is generated from the true data with 10% random
noise. 20% deviation from the training range is used for testing.
Simulation results show that CGA is robust to system noise.

|0‘1|0‘2|0‘3|(14|ﬁ1|ﬁz|/))3|,84|g/1| |g15|g3,|

|gz5| |g45|h11| |h15|h21| |hz5| |h45|

Table 4 compares the threshold, pruning ratio, assumption and
search region in this study and the published research. We took ten
independent runs to show the repeatability of the proposed algo-
rithm. Table 5 is the pruning condition in each step for the ten
runs. Only two of the ten runs (Runs 9 and 10) need two pruning
steps to infer the correct structure. These two runs fail to truncate
the redundant connection of x,—x; (denoted by g,4) in the first step.
The interaction is successfully inferred after two pruning opera-
tions. Table 6 shows the results of the first run. Due to space lim-
itation, the results of other nine runs are shown in the
supplement file. The simulation results in Table 6 show that the va-
lue gap between the redundant (value below 107'4) and possible
connections is obvious, as shown in Step 1 of Table 6. The pruned
structure is relearned to get a modified structure. The inferred
structure shown in Step 2 is identical to the true structure shown
in Step 0, and the estimated parameters are all nearly the same as
those of the true system.

3.2.4. Parameter sloppiness

We now further discuss if S-systems possess the sloppy fea-
tures: a few stiff parameters, many sloppy parameters and the dis-
tribution of the eigenvalues of the sensitivity-related Hessian
matrix H, which is expressed in Eq. (22), over many decades. For
the parameter vector changing from 0 to 0%, we define the average
squared change of the constitute x; as X(0) [56],

Appendix A

See Figs. 10 and 11, Tables 7-12.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.mbs.2013.07.019.
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