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The evaluation of the Fisher information matrix for the probability density of trajectories generated
by the over-damped Langevin dynamics at equilibrium is presented. The framework we developed
is general and applicable to any arbitrary potential of mean force where the parameter set is now
the full space dependent function. Leveraging an innovative Hermitian form of the corresponding
Fokker-Planck equation allows for an eigenbasis decomposition of the time propagation probability
density. This formulation motivates the use of the square root of the equilibrium probability den-
sity as the basis for evaluating the Fisher information of trajectories with the essential advantage
that the Fisher information matrix in the specified parameter space is constant. This outcome greatly
eases the calculation of information content in the parameter space via a line integral. In the con-
tinuum limit, a simple analytical form can be derived to explicitly reveal the physical origin of the
information content in equilibrium trajectories. This methodology also allows deduction of least in-
formative dynamics models from known or available observables that are either dynamical or static
in nature. The minimum information optimization of dynamics is performed for a set of different
constraints to illustrate the generality of the proposed methodology. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4820491]

I. INTRODUCTION

Complex molecular systems are often studied by track-
ing the temporal evolution of important coordinates to reveal
the hidden metastable states and to characterize the transi-
tions between them. A central objective of many experimental
and theoretical endeavors is thus to resolve the system dy-
namics from the measured data.1–3 In this regard, the infor-
mation content for the parameters of interest in a particular
measurement is of prime interest and is the central focus of
the present work. For biomolecular conformational changes,
the over-damped Langevin equation is often employed as the
model for a mechanistic understanding.4–6 On top of the deter-
ministic potential of mean force (PMF), the Langevin model
incorporates the solvent-induced stochastic fluctuations via
the diffusion coefficient7 to describe system dynamics along
a set of chosen coordinates or order parameters.8–10 Unless
specified otherwise, this work addresses the quantification of
information content for Langevin dynamics.

A major difficulty of understanding biomolecular dynam-
ics is that the commonly used characterization methods are
often limited to processes with distinct temporal and spatial
scales. For example, the computer simulation of molecular
dynamics can be used to record the coordinates and velocities
of the atoms of biomolecules as well as the surrounding sol-
vent molecules but has limited ability to access structural tran-
sitions on longer time scales (>μs).11–13 Different techniques

a)Authors to whom correspondence should be addressed. Electronic
addresses: hawyang@princeton.edu and jwchu@nctu.edu.tw

of nuclear magnetic resonance (NMR) can be used to acquire
the transition rates of the different aspects of biomolecule
conformational changes on different time scales (usually with
the necessary assumption of a two-state model)14–16 but the
ensemble averaging nature washes away the rich mechanis-
tic details in molecular individualities. Single-molecule meth-
ods such as those via the Förster resonance energy transfer
(FRET)17–19 do away with the issues of ensemble averaging
but face the challenge of the low signal-to-noise ratio convo-
luted with photon-counting statistics.20, 21 As a result, not only
the data analysis in each category of these measurements is
complicated, but also the systematic combination of informa-
tion across different techniques is a challenging issue.

We reason that the foundation for quantitatively integrat-
ing the knowledge from different data types could be based
on an information measure of dynamics parameters from the
recorded time trajectories. In this regard, the Fisher informa-
tion provides a framework with a clear statistical picture and
straightforward linkage to thermodynamics;22–24 therefore,
it is employed here to quantify the information underlying
the Langevin dynamics model. With this information met-
ric, the determination of the parameters of time propagation
can serve as a common objective over different data types for
cross validation and knowledge integration between fields.25

In order to extract maximum information of dynamics
from time-dependent data, we aim to quantify the Fisher in-
formation of trajectories (FIT).26, 27 This approach of evaluat-
ing information content in the path space is different from
the typical methods of tracking the statistics of dynamic

0021-9606/2013/139(12)/121931/15/$30.00 © 2013 AIP Publishing LLC139, 121931-1
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variables,28, 29 including the rate of changes of Fisher informa-
tion matrices in the space of a single or a few time slices.30, 31

In this work, we devise numerical and analytical methods to
determine the Fisher information of the PMF and diffusion
coefficient in the trajectories of Langevin dynamics directly
without the need of performing Monte Carlo simulations.27

As a result, an explicit connection between parameters in the
equation of motion and FIT is established, which demon-
strates how dynamics information is encoded through time
propagation.

Since FIT quantifies the disorder inscribed in the prob-
ability function of the data, or the likelihood function of the
model parameters, it can be applied to deduce the properties
of the equation of motion such as the PMF and diffusion co-
efficient in Langevin dynamics under the constraints given by
the selected statistics of observables.32–34 Therefore, minimiz-
ing FIT with such constraints would give the least informative
dynamics (LID) model. For retrieving parameters relating to
time propagation, this constrained optimization approach has
been addressed for Markov states systems.35, 36 For continu-
ous stochastic dynamics, however, acquiring an explicit func-
tional form of the information content in trajectories faces
the challenges of infinite dimensionality, non-differentiability
with respect to time of the Winer process, and path integral.
This work provides numerical and analytical solutions for de-
termining the FIT of Langevin dynamics at equilibrium.

The rest of the paper is organized as the following. The
application of Fisher information to continuous but not dif-
ferentiable trajectories at equilibrium is established in Sec. II
with our rationale of selecting the basis of representation dis-
cussed in Sec. III. Section IV outlines the numerical proce-
dure we developed to calculate FIT for continuous stochastic
dynamics and Sec. V derives the analytical form of FIT in the
continuum limit. Section VI applies the analytic form of FIT
for measuring information content in trajectories and the re-
sult of which is used in Sec. VII to derive the least informative
dynamics under various constraints of based on the Langevin
equation followed by our conclusion.

II. THE FISHER INFORMATION MATRIX
FOR LANGEVIN DYNAMICS

The Fisher information defines a size measure (Rieman-
nian manifold) for the volume element of information content
for a corresponding set of model parameters. The line integral
of a parameter change with the Fisher information matrix is
formally the dissipation function for moving in the space of
model parameters.23, 37, 38 This metric translates between the
parameter space of system dynamics and the information con-
tent of the resulting probability distribution of system trajec-
tories. Therefore, Fisher information can be used to assess the
manner by which changing the properties of time propagation
may vary the information content in system dynamics.26

Using a general coordinate x to describe the dynam-
ics of a system, the concern of our analysis is the infor-
mation content for the mean force profile F(x) and dif-
fusion coefficient D(x) contained in the Langevin trajecto-
ries X(t) with ẋ = βD(x)F (x) + √

2D(x)dWt ; t is time and
β is one over the Boltzmann constant kB multiplying the

system temperature T. The Wiener process specifying the
stochastic force in this equation of motion satisfies 〈dWtdWt ′ 〉
= δ(t − t ′)dt . The profile of the deterministic mean force is
related to the PMF, V (x), as F (x) = −dV (x)/dx. The equi-
librium distribution of system states in the continuous space
of x is related to the PMF as peq(x) ∝ exp(−V (x)/kBT ).
A trajectory, X(t); t ∈ [0, tobs], in this case is a continuous
but non-differentiable function of time. In a measurement,
this stochastic trajectory is generally recorded at specific in-
stances separated by a time resolution �t to create a vector
�Xt = [X(0), X(�t), X(2�t), . . . , X(tobs)]. This vector exists
in a trajectory space of dimensionality N = tobs/�t with tobs

the duration of observation and the coordinates denoted as the
set {xτ |τ = 0, 1, 2, . . . , N}. Based on this setup, we aim to
find the Fisher information of the deterministic and stochastic
components in the Langevin equation in a multidimensional
vector space. Then, lim�t → 0 will be performed on the final
results to recover the complete information content in trajec-
tories in the continuum limit.

The collection of function parameters of the Langevin
equation is now combined into �θ = {θi} for the convenience
of derivation. Here, i may go to infinity for describing the
parameters associated with the dense set of points for a con-
tinuous function. The Fisher information metric is defined as
the expectation value for the product of the derivatives of the
log probability density of the trajectory with respect to the
components in �θ

Ii,j (�θ ) = E �Xt

[
∂ ln P ( �Xt )

∂θi

∂ ln P ( �Xt )

∂θj

∣∣∣∣∣ �θ
]

. (1)

The E �Xt
[·] in the above equation denotes the expectation eval-

uated by the path integration over �Xt ,
∫

D �XtP ( �Xt )[·]. The
Fisher information is thus a matrix for the (i, j) pairs of pa-
rameters evaluated at the current values of �θ .

In calculating this path integral, the Markovian nature of
the Langevin equation can lead to tremendous simplification.
In particular, the probability density of �Xt can be factored via
the probability densities of time propagation that connect two
consecutive time slices,

P ( �Xt ) = p(x0)
N−1∏
τ=0

p(xτ+1|xτ ). (2)

In this equation, p(x0) is the static distribution of system states
at time zero. For equilibrium trajectories, p(x0) → peq(x0) is
employed for specifying the probability densities of the initial
states. Therefore, each component in the Fisher information
matrix becomes

Iij =
tobs/�t∑

τ,τ ′=−1

∫
D �Xt

[
∂ ln p(xτ ′+1|xτ ′)

∂θi

∂ ln p(xτ+1|xτ )

∂θj

]
P ( �Xt ).

(3)

The contribution from peq(x0) is included by setting p(x0|x−1)
= peq(x0). For the path integral in Eq. (3), the time indices that
do not appear in the derivatives are marginalized out so that
P ( �Xt ) → p(τ, τ + 1, τ ′, τ ′ + 1). Furthermore, unless τ = τ ′,
the other terms in the double sum of Eq. (3) contribute zero
to Iij due to the ability to isolate a normalization condition of
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the conditional probability densities p(xτ + 1|xτ ), τ = 0. . . N:∫
dx

∂ ln p(x)

∂θ
p(x) = ∂

∫
dxp(x)

∂θ
= 0. (4)

The only contributing terms to Iij thus come from the
Fisher information matrix of the equilibrium distribution, Ieq,
and that of the conditional probability of time propagation,
I�t:

Ieq =
∫

dx0
∂ ln peq(x0)

∂ �θ
∂ ln peq(x0)

∂ �θ peq(x0), (5)

I�t =
∫

dxtdx0
∂ ln p(xt |x0)

∂ �θ
∂ ln p(xt |x0)

∂ �θ p(xt , x0). (6)

Here, the notation of coordinates was simplified by implying
that t = �t and noting that there are tobs/�t equivalent terms
of I�t. As a result, the Fisher information of P ( �Xt ) is

I = Ieq + tobs

�t
I�t . (7)

The connection of Eqs. (5)–(7) between an entire path in-
tegral and an integral over two closely spaced time points is
a general result of Markovian dynamics. Therefore, if the FIT
for a handful of parameters is of interest, the values can be cal-
culated via a short-time expansion of the time propagator with
Monte Carlo simulations for computing the expectation.27 For
cases that the parameterization of dynamics is in the space of
continuous functions of infinite dimensionality, though, such
as for quantifying the information of PMF in the Langevin
equation, the approach of brute-force sampling becomes im-
practical. However, this difficulty could be resolved if an
analytical expression of FIT was available. One of the main
results of this work is Eq. (48) for the FIT of Langevin dy-
namics. This expression then allows a line integral to be per-
formed in the parameter space for quantifying the dissipation
measure of information (Eqs. (54) and (55)).

The calculation of FIT via Eq. (7) relies on evaluating the
derivatives and integrals defined for the static distribution in
Eq. (5) and the dynamic propagator in Eq. (6). An essential
key toward achieving this goal is the selection of the parame-
ter set. The strategy we followed is trying to eliminate the de-
pendence of the matrix elements on other parameters because
a constant Fisher information matrix is convenient for eval-
uating the information content via a line integral.23, 37, 38 We
found that the most natural basis for the deterministic com-
ponents of the Langevin equation is the square root of the
equilibrium probability density39 (vide infra):

ρeq(x) = √peq(x) ∝
√

exp

(∫ x

F (x)/kBT

)
. (8)

Therefore, we now define Fisher information with respect to
a composite quantity of the functions for density and diffu-
sion, i.e., �θ → {ρeq(x),D(x)}. The Fisher information thus
becomes functional derivatives and is a scalar field over the
arguments (x, y) of the parameterizing functions rather than a
matrix.

We start the evaluation of FIT from the equilibrium term

Ieq(x, y) =
∫

dx0
δ ln peq(x0)

δρeq(x)

δ ln peq(x0)

δρeq(y)
peq(x0). (9)

Since peq(x) = ρ2
eq(x), the functional derivatives in Eq. (9) are

δ ln ρ2
eq(x0)

δρeq(x)
= 2

δ(x0 − x)

ρeq(x0)
. (10)

Therefore, the equilibrium Fisher information is just the inte-
gral of delta functions:

Ieq = 4
∫

dx0δ(x0 − x)δ(x0 − y) = 4δ(y − x). (11)

Using ρeq(x) to define the parameter space of the Fisher infor-
mation, Ieq is thus constant in the sense that it is not a func-
tional of ρeq(x).

As will be shown later, the property of ρeq(x) in mak-
ing Ieq constant also facilitates the evaluation of I�t defined in
Eq. (6). The remaining task of calculating FIT with respect to
the deterministic components of the Langevin equation is then
evaluating the Fisher information of the conditional probabil-
ity density with respect to ρeq(x):

I�t (x, y) =
∫

dxtdx0
δ ln p(xt |x0)

δρeq(x)

δ ln p(xt |x0)

δρeq(y)
p(xt , x0).

(12)

This Fisher information matrix is a rank 2 tensor field over the
space coordinate.

For evaluating the functional derivatives of p(xt|x0), we
rely on the Fokker-Planck equation (FPE) that governs the
temporal evolution of p(xt|x0):

∂p(xt |x0)

∂t
= −∇ · J (xt ) (13)

and

J (xt ) = −
(

D(xt )∇p(xt |x0) − D(xt )F (xt )

kBT
p(xt |x0)

)
.

(14)

In this formula, x can in general be a multidimensional vec-
tor and the gradients in the FPE apply to the xt coordinate.
The initial condition of this partial differential equation is
p(xt|x0)|t = 0 = δ(xt − x0) and the boundary conditions are zero
flux (J (Boundary) = 0) for conserving the total probability.

The FPE can be equivalently expressed in terms of peq(x):

∂p(xt |x0)

∂t
= ∇ ·

(
D(xt )peq(xt )∇ p(xt |x0)

peq(xt )

)
. (15)

Next, the unique features of expressing the FPE via the equi-
librium density ρeq(x) in Eq. (8) are discussed in preparing for
the evaluation of I�t(x, y).

III. THE HERMITIAN OPERATOR OF THE FPE
OF LANGEVIN DYNAMICS

With ρeq(x) being the square root of peq(x), the prob-
ability density of time propagation can be symmetrized

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Wed, 30 Apr 2014 06:05:40



121931-4 Haas, Yang, and Chu J. Chem. Phys. 139, 121931 (2013)

in time:

ρ(xt , x0) = p(xt |x0)

√
peq(x0)

peq(xt )
, (16)

such that the probability density of a trajectory also has the
temporal symmetry

P ( �Xt ) = ρeq(x0)
N−1∏
τ=0

ρ(xτ+1, xτ )ρeq(xN ). (17)

Expressing Eq. (12) via the symmetric time propagator37

gives the factors of I�t(x, y):

I�t =

I
ρ
�t︷ ︸︸ ︷∫

dxtdx0
δ ln ρ(xt , x0)

δρeq(x)

δ ln ρ(xt , x0)

δρeq(y)
p(xt , x0)

+ 2δ(x − y) − 2ρ(x, y). (18)

The details of deriving Eq. (18) are in Appendix A.
In the continuum limit of �t → 0+, the fact that ρ(xt,

x0) approaches δ(xt − x0) leads to cancellation of the last two
terms in Eq. (18). We will thus focus on the I

ρ
�t term, an in-

tegration in the two-dimensional space. After expanding the
functional logarithms therein, we will evaluate FIT according
to

I
ρ
�t (x, y) =

∫
dxtdx0

δρ(xt , x0)

δρeq(x)

δρ(xt , x0)

δρeq(y)

ρeq(xt )ρeq(x0)

ρ(xt , x0)
.

(19)

The FPE of the symmetric propagator ρ(xt, x0) can be
found by substituting the expression in Eq. (16) into Eq. (15):

∂ρ(xt , x0)

∂t
= −Hρ(xt , x0),

H = − 1

ρeq(x)
∇ ·
(

D(x)ρ2
eq(x)∇ 1

ρeq(x)

)
. (20)

The boldface font is used to denote operators in this work.
The proof detailed in Appendix B shows that H in the

FPE of Eq. (20) is Hermitian. As a result, ρ(x�t, x0) can
be expressed via the matrix elements of H with the Dirac
notation

ρ(x�t , x0) = 〈x�t |e−H�t |x0〉. (21)

In Sec. IV, a procedure for calculating I
ρ
�t based on the Her-

mitian version of the FPE of the Langevin equation is devel-
oped. This scheme is then employed to evaluate I

ρ
�t at differ-

ent values of �t. Since the presented formulation is general
and does not rely on assuming extreme values of �t, it can be
used to capture the dynamic behaviors in different temporal
resolutions as illustrated by the results presented in Sec. IV.

IV. CALCULATIONS OF FIT VIA AN EIGENBASIS
EXPANSION

The Hermitian nature of H allows a complete set of or-
thogonal eigenvectors ψ i’s to be found with real eigenvalues
λi’s such that for each eigenbasis 〈ψi |H|ψj 〉 = λiδij . Based
on this property, we performed an eigen-decomposition of
the symmetric operator of the FPE (sFPE) of Eq. (20). In
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FIG. 1. The reference potential of mean force and the corresponding equi-
librium probability density for illustrating the calculations of the Fisher in-
formation of trajectories. The model has 3 local minima with approximately
5 kBT barriers separating these metastable states.

particular, we assume a form for the eigenvectors of ψ i(x)
= ρeq(x)φi(x) with the modifying function φi(x) determined
from the input of ρeq and diffusion coefficient by using spec-
tral elements40 to solve the generalized eigenvalue problem
〈φiρeq|H|ρeqφj 〉 = λiδij 〈φiρeq|ρeqφj 〉. By inserting the com-
pleteness property of

∑
i |ψi〉〈ψi | = 1 that resolves the iden-

tity operator, and noting the orthogonality of the eigenbasis,
ρ(x�t, x0) can now be decomposed as

ρ(x�t , x0) =
∑
i,j

〈x�t |ψi〉〈ψi |e−H�t |ψj 〉〈ψj |x0〉

=
∑

i

ψi(x�t )e
−λi�tψi(x0). (22)

The eigenvectors and eigenvalues themselves are found via a
spectral finite element method40 (sFEM) although the results
of FIT calculations are invariant to the particular choice of the
numerical method as long as the eigenvectors and eigenvalues
are determined accurately.

To illustrate the resulting values of ρ(x�t, x0) for a
non-trivial model system that contains three wells separated
by 5 kBT barriers in the PMF shown in Fig. 1, the two-
dimensional density field ρ(x�t, x0) calculated from the eigen-
decomposition method discussed above is plotted as log-
contours in Fig. 2 at an intermediate time resolution of �t
= 0.025 s which is also on the same order of the relaxation
time (�t = 0.036 s) out of the middle intermediate state.

For calculating the FIT according to Eq. (19), the func-
tional derivative of the density field with respect to ρeq needs
to be determined. By employing an arbitrary test function f(x),
the functional derivative is defined as

∫
dx

δρ(x�t , x0)

δρeq(x)
f (x) = d

dε
〈xt |e−�t H[ρeq+εf ]|x0〉

∣∣∣∣
ε=0

.

(23)
Since the reference Hamiltonian does not necessarily

commute with the operator perturbed by f(x), i.e., [H0, H ′]
�= 0, the exponential in Eq. (23) is not necessarily factoriz-
able for taking the derivative. To overcome this difficulty, we
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FIG. 2. The contours of ln ρ(x�t, x0) at �t = 0.025 s for the reference PMF
shown in Fig. 1 at D = 1 in the corresponding unit. The high-density regions
along the diagonal axis around the three local minima are clear. However,
off-diagonal densities representing transitions between states within the time
window are also clear.

employ the approximate Trotter splitting formalism41

e−�t(H0+εH ′) = e−�t H0/2e−ε�t H ′
e−�t H0/2 + O(�t3), (24)

wherein the errors due to approximation decrease as �t goes
toward the continuum limit. The effect of the perturbation is
thus evaluated effectively at the time midpoint between xt and
x0. Performing the derivative with respect to ε as prescribed
by Eq. (23) to the approximate form in Eq. (24) leads to∫

dx
δρ(x�t , x0)

δθ (x)
f (x)

≈ −�t〈x�t |e−�t H0/2 H ′e−�t H0/2|x0〉
= −�t

∑
i,j

ψi(x�t )e
−λi�t/2〈ψi |H ′|ψj 〉e−λj �t/2ψj (x0).

(25)

After inserting the completeness property of the eigenbasis of∑
i |ψi〉〈ψi | = 1 in between all of the operators in the first

line of Eq. (25) and applying orthogonality relationship be-
tween eigenvectors of 〈ψk|H0|ψi〉 = λiδik , the second line of
Eq. (25) can be obtained.

The Hamiltonian of the first order perturbation with re-
spect to ρeq, H ′, in Eq. (25) can be found by tracking ε in the
total Hamiltonian

H[ρeq + εf ]

= −1

(ρeq+εf )(x)
∇ ·
(

D(x)(ρeq + εf )2(x)∇ 1

(ρeq + εf )(x)

)
.

(26)

The coefficient of the first order Taylor expansion of H can
then be evaluated to obtain H ′:

H ′ = d

dε
H[ρeq + εf ]

∣∣∣∣
ε=0

, (27)

H ′ = − 2

ρeq(x)
∇ ·
(

D(x)f (x)ρeq(x)∇ 1

ρeq(x)

)

+ f (x)

ρ2
eq(x)

∇ ·
(

D(x)ρ2
eq(x)∇ 1

ρeq(x)

)

+ 1

ρeq(x)
∇ ·
(

D(x)ρ2
eq(x)∇ f (x)

ρ2
eq(x)

)
. (28)

With the knowledge of H ′, the error in Eq. (25) is purely due
to the Trotter splitting approximation.

The only remaining factors for calculating FIT are the
〈ψi |H ′|ψj 〉 terms in the second line of Eq. (25). For the first
and third line of Eq. (28), integration by parts can be per-
formed to isolate the test function f(x) in the integral. Utiliz-
ing the relation of φi(x) = ψ i(x)/ρeq(x) and recognizing the
existence of terms of the form −φi(x)Hψj (x), one obtains

〈ψi |H ′|ψj 〉 =
∫

dxf (x)[2∇φj (x) · (D(x)ρeq(x)∇φi(x))

−φj (x)λiψi(x) − φi(x)λjψj (x)]. (29)

Therefore,

δ〈ψi |H|ψj 〉
δρeq(x)

= 2∇φi(x) · (D(x)ρeq(x)∇φj (x))

− ρeq(x)(λi + λj )φi(x)φj (x). (30)

Along the same token, one can find the functional derivative
of H with respect to the diffusion coefficient

δ〈ψi |H|ψj 〉
δD(x)

= ∇φi(x) · ρ2
eq(x)∇φj (x). (31)

In the case that the diffusion coefficient is not a function of x,
i.e., a constant, the functional derivative reduces to

d〈ψj |H|ψi〉
dD

= λi

D
δij . (32)

Combining the information in Eqs. (25) and (30), the
functional derivative of ρ(xt, x0) with respect to ρeq(x) can
be calculated as

δρ(xt , x0)

δρeq(x)

≈ −�t
∑
i,j

ψi(xt )e
−λi�t/2 δ〈ψi |H|ψj 〉

δρeq(x)
e−λj �t/2ψj (x0).

(33)

Armed with the knowledge of the functional derivatives
from the eigenbasis construction, the key terms of Fisher in-
formation in Eq. (19) can be expressed:

I
ρ
�t (x, y)

(�t)2
=
∑
i,j

∑
k,l

δ〈ψi |H|ψj 〉
δρeq(x)

δ〈ψk|H|ψl〉
δρeq(y)


ik
jl(�t).

(34)

For all of the functional dependence on (xt, x0) that are inte-
grated away in Eq. (34) is captured in the “overlap” integral
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ALGORITHM I. FIT calculation using the eigenbasis resolved via apply-
ing a spectral finite element method (sFEM) to solve the Hermitian FPE of
Eq. (20).

procedure FISHER(ρeq(x), D; �t)
Obtain λi and φi via sFEM
Perform the 2D integral in 
ik

jl (�t)

Calculate functional derivatives
Go through the 4-loop summation for I

ρ
�t

end procedure

over two consecutive time slices:


ik
jl(�t) ≡

∫
dx�tdx0 e−(λi+λk)�t/2ψi(x�t )ψk(x�t )

×
(∑

n

φn(x�t )e
−λn�tφn(x0)

)−1

× e−(λj +λl )�t/2ψj (x0)ψl(x0). (35)

According to Eqs. (34) and (35), Algorithm I below is
used to calculate the Fisher information matrix of trajecto-
ries for the Langevin equation parametrized by the equilib-
rium density ρeq and constant diffusion coefficient D.

For the reference model shown in Fig. 1, the general ap-
proach of eigenbasis expansion presented above is employed
to calculate the Fisher information metric of Langevin tra-
jectories at various time resolutions with Algorithm I. Fig. 3
shows a contour plot of I

ρ
�t (x, y)/�t as well as the cross

derivatives with respect to the spatial coordinates of ρeq(x)
and the diffusion coefficient. The matrix element of D alone
is also shown as the actual numerical value in the figure. The
behaviors of FIT at different time resolutions are discussed
in the following to motivate the development of an analytical
expression in the continuum limit.

At a low time resolution of �t ≈ 0.15 s that is on the
order of the slowest timescale of system relaxation, the major
component affecting the FIT is the low probability transition
state of ρeq(x) that is caused by the barrier located at x = 1.1
in the PMF. Therefore, reducing this free energy barrier would
lead to a faster system relaxation and hence a less prescriptive
or informative dynamics model.

At an intermediate time resolution of �t ≈ 0.02 s, the de-
pendence of FIT on the existence of the low density states at
x = 0.9 and 1.1 is still significant as that in the previous case,
but the off-diagonal negative couplings in the matrix start to
emerge. Such pattern indicates that a flatter potential barrier
would also result in a less informative time propagator. This
result highlights the dependence of FIT on the time resolu-
tion used for investigation and the general applicability of our
eigenbasis expansion approach as the framework of analysis.

At a high time resolution of �t ≈ 0.002 s, the impor-
tance and details of the underlying equilibrium probability of
states vanishes, leading to a nearly tri-banded matrix with pos-
itives values along the diagonal terms and negative numbers
for the off-diagonal elements. The reason is that FIT begins to
capture the diffusion processes within individual wells at this
timescale and the specific features of ρeq(x) are not as promi-
nent as in the previous cases. The origin of this tri-banded
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FIG. 3. The contour of the Fisher information matrix of I
ρ
�t (x, y)/�t for �t

= 0.15, 0.02, and 0.002 s. The upper band in contour is the Fisher information
metric with respect to D and ρ, I(D, y). Corner value is the Fisher element
for diffusion I(D, D′).
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nature of FIT becomes explicit in the continuum limit of
�t → 0+.

V. FISHER INFORMATION OF TRAJECTORIES
IN THE CONTINUUM LIMIT

In this derivation, it is convenient to employ the following
equivalent expression of the Fisher information of p(x�t|x0):39

I�t (x, y) =
∫

dx�tdx0
δ2 ln p(x�t |x0)

δρeq(x)δρeq(y)
p(x�t , x0). (36)

In the continuum limit of �t → 0+, p(x�t|x0) approaches the
delta function δ(xt − x0) which has no dependence on ρeq(x);
therefore, the functional derivatives vanish and I�t reaches
zero in the continuum limit. On the other hand, the denom-
inator of the FIT term of I�t in Eq. (7) also goes to zero as �t
→ 0+. After applying the L’Hopital rule, utilizing again �t
= t to simplify the notation, and letting t = 0, Eq. (36)
becomes

lim
�t→0

I�t

�t
=
∫

dxtdx0
δ2 (∂ ln p(xt |x0)/∂t)|t=0

δρeq(x)δρeq(y)
p(xt , x0)

+
∫

dxtdx0
δ2 ln p(xt |x0)

δρeq(x)δρeq(y)

∂p(xt , x0)

∂t

∣∣∣∣
t=0

.

(37)

When p(xt|x0)|t=0 → δ(xt − x0) in the continuum limit, the
lack of ρeq(x) dependence makes the second term zero. Af-
ter applying the functional derivatives to the logarithm and
canceling out the factor δ(xt − x0) from p(xt, x0)|t=0 → δ(xt

− x0)peq(x0) , Eq. (37) is simplified to

lim
�t→0

I�t

�t
=
∫

dxtdx0
δ2(∂p(xt |x0)/∂t)|t=0

δρeq(x)δρeq(y)
peq(x0). (38)

The functional dependence of the time derivative of the
conditional probability is then given by the FPE:

∂p(xt |x0)

∂t

∣∣∣∣
t=0

= ∇xt
·
(

D(xt )ρ
2
eq(xt )∇xt

δ(xt − x0)

ρ2
eq(xt )

)
, (39)

where the specific coordinate upon which the gradient opera-
tor acts is indicated by the subscript on the gradient operator.
Applying the product rule on the inner gradient, the FPE be-
comes

∂p(xt |x0)

∂t

∣∣∣∣
t=0

= −2∇xt
·
(

D(xt )δ(xt − x0)
∇xt

ρeq(xt )

ρeq(xt )

)
+∇xt

· (D(xt )∇xt
δ(xt − x0)

)
. (40)

The second term of Eq. (40) does not depend on ρeq(x).
The only contribution to the Fisher information thus comes
from the first term in Eq. (40). With this understanding,
Eq. (38) becomes

lim
�t→0

I�t

�t
= −2

∫
dxtdx0

× δ2[∇xt
· (D(xt )δ(xt − x0)∇xt

ln ρeq(xt ))]

δρeq(x)δρeq(y)
ρ2

eq(x0).

(41)

With the exchange of linear operators of space and functional
derivatives, the functional derivatives of the logarithm of the
equilibrium density described below can be used to evaluate
Eq. (41):

δ2 ln ρeq(xt )

δρeq(x)δρeq(y)
= −δ(xt − x)δ(xt − y)

ρ2
eq(xt )

. (42)

After applying this result, Eq. (41) becomes

lim
�t→0

I�t

�t
= 2

∫
dxtdx0∇xt

·
(

D(xt )δ(xt − x0)∇xt

× δ(xt − x)ρ2
eq(x0)δ(xt − y)

ρ2
eq(xt )

)
. (43)

The factor ρ2
eq(x0) is now moved inside the spatial derivatives

of xt. Integration of Eq. (43) over x0 sets x0 = xt, and this
equation can thus be reduced to

lim
�t→0

I�t

�t
= 2

∫
dxt∇xt

· (D(xt )∇xt
δ(xt − x)δ(xt − y)).

(44)

In order to obtain an explicit expression for the Fisher in-
formation metric from the integral form of Eq. (44), we eval-
uate the effect on a twice-differentiable test function G(x, y)
that vanishes at domain boundaries. The integral of informa-
tion evaluation with G(x, y) is∫

dxdyG(x, y)

[
lim

�t→0

I�t

�t

]

= 2
∫

dxtdxdyG(x, y)∇xt
· (D(xt )∇xt

δ(xt − x)δ(xt − y)).

(45)

After performing integrating by parts twice on xt, the integra-
tion over x yields x = xt from the δ(xt − x) term, and a change
of variable of xt to x transforms Eq. (45) into∫

dxdyG(x, y)

[
lim

�t→0

I�t

�t

]

= 2
∫

dxdyδ(x − y)∇x · (D(x)∇xG(x, y)). (46)

Now reversing operations and performing integration by parts
with respect to x twice to bring G(x, y) outside of the gradient
operators, we obtain∫

dxdyG(x, y)

[
lim

�t→0

I�t

�t

]

= 2
∫

dxdyG(x, y)[∇x · (D(x)∇xδ(x − y))]. (47)

For an arbitrary G(x, y) that satisfies the regularity con-
ditions, the equality of Eq. (47) implies the equivalence be-
tween the bracketed items inside the integral. Therefore, one
of the main results of this work, the analytical expression for
the Fisher information metric of ρeq, is read off from Eq. (48)
and applied to the total FIT of Eq. (7) as

I(x, y)[ρeq] = 4δ(x − y) + 2tobs∇x · (D(x)∇xδ(x − y)).
(48)
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In the case that the diffusion coefficient is a constant,
Eq. (48) indicates that lim�t→0I�t/�t is formally the Lapla-
cian kernel42 as indeed seen in the numerical example shown
in Fig. 3 with the increase of time resolution (decrease of �t).
Thus, our Fisher information metric is truly a Fisher informa-
tion operator whose net effect can only be realized once the
operators are applied in Sec. VI. With the Fisher information
metric presented in Eq. (48), the procedure of evaluating FIT
is discussed in Sec. VI.

VI. FISHER INFORMATION AS A MEASURE
OF CHANGE IN INFORMATION

If a ξ ∈ [0, 1] variable is employed to specify the state
of model parameters and interpolate between two different
sets of parameters, the Fisher information metric can be used
to quantify the information change in varying the parameter
set23, 43

J =
∫ 1

0
dξ
∑
i,j

∂θi

∂ξ
Ii,j (�θ )

∂θj

∂ξ
. (49)

The arc length along the ξ curve in the information space can
also be calculated via the Fisher information

S =
∫ 1

0
dξ

√√√√∑
i,j

∂θi

∂ξ
Ii,j (�θ )

∂θj

∂ξ
. (50)

The triangle inequality states that J ≥ S2; here, the equality
is true if the integrand is constant along the curve. For FIT via
the basis of ρeq, constant Fisher information matrix is satisfied
in the continuum limit, Eq. (48).

To perform the line integral of FIT, we define a linear
path interpolating an essentially flat reference model with
ρref

eq (x) = limL→∞
√

1/2L and the desired profile that is only
denoted as ρ∗

eq(x) for now (with the boundary condition that
ρeq(x)|−L, L = 0). Similarly, a linear path can also be defined
for the diffusion coefficient coordinate that goes from a refer-
ence value Dref to the optimized D∗. Therefore,

ρeq(ξ ) = ξρ∗
eq(x) + (1 − ξ )ρref

eq (x), (51)

D(ξ ) = ξD∗(x) + (1 − ξ )Dref(x), (52)

where ξ ∈ [0, 1]. In this work, we concern specifically with
the case that the diffusion constant is not varying due to the
divergence in the information content in the continuum limit
for cases in which D*(x) �= Dref(x).44 (See Appendix D for
a specific example of this divergence between two Gaussian
processes.) Thus, we only require the Fisher information as
a function of the equilibrium probability density given by
Eq. (48).

To calculate the information change, the Fisher informa-
tion matrix in the continuum limit given by Eq. (48) is applied
to Eq. (49) where the sum is replaced by the corresponding
integral in the space of equilibrium density functions

∑
i, j →∫

dxdy. Performing the line integral over dξ with integration
by parts twice on the x coordinate gives the analytical form of

the information dissipation measure

J =
∫

dxdy ρeq(y)δ(x − y)∇x · (D(x)∇xρeq(x)). (53)

Taking the integral over y eliminates the delta function to give
the 1D integral of

J =
∫

dx ρeq(x)∇ · (D(x)∇ρeq(x)). (54)

Equation (54) is a primary result of this work. Based on
the analytical expression we derived for the Fisher informa-
tion metric in the chosen space for parametrizing the equation
of motion, we illustrate how the information content of the dy-
namic parameters in equilibrium trajectories can be evaluated.
This result is analytical and does not require numerical diago-
nalization of the time propagation operator. Furthermore, ex-
pressing ρeq(x) in terms of the mean force F(x) in the special
case of a constant diffusion coefficient, Eq. (54) becomes

J [F (x)] = S2[F (x)] = Dβ2

4
〈F 2(x)〉eq. (55)

The same information expression can also be obtained by us-
ing an entropy measure of the probability densities of trajec-
tories and taking the continuum limit.45 Next, Eq. (54) will
serve as the foundation for the analysis of dynamical infor-
mation in Langevin trajectories.

VII. THE EQUILIBRIUM DISTRIBUTIONS OF LEAST
INFORMATIVE DYNAMICS

With the analytical expression of FIT, the LID models
under various constraints can be deduced via the constrained
optimization approach.39, 46, 47 To the best of our knowledge,
deriving parameters of the equation of motion using dynamic
information as the objective function has not yet been estab-
lished for continuous stochastic processes. In this section, we
use several examples to illustrate how Eq. (54) can be used to
achieve this objective.

Finding the least informative distribution of ρeq(x) under
a set of constraints can be performed via minimizing the infor-
mation objective function of J in Eq. (54) under the specified
constraints. The resulting Lagrangian for this optimization is

L(ρeq(x), �ω) = tobsD〈ρeq|∇ · ∇|ρeq〉︸ ︷︷ ︸
FIT

−
∑

i

ωi

(〈ρeq|C i |ρeq〉 − Ci

)︸ ︷︷ ︸
Constraint

.
(56)

In Eq. (56), ωi’s are the Lagrange multipliers for the con-
straints indexed here by i, C i’s are the constraint operators,
and Ci’s are the desired values for the constraints. For exam-
ple, in the constraint of C1 = 1, i.e., the operator of summing
all probabilities, C1 = 1 is the targeted value to ensure proper
normalization of the equilibrium distribution.

Minimization of the Lagrangian of Eq. (56) is accom-
plished by setting the functional derivative δL/δρeq(x) to zero
to reach a solution ρ∗

eq(x)(x; ω) that depends on the Lagrange
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multipliers parametrically

L∗( �ω) = inf
ρeq(x)

L(ρeq(x), �ω). (57)

The solution of Eq. (57) requires the Lagrange multipli-
ers to satisfy the Karush–Kuhn–Tucker (KKT) conditions of
optimality.48 Alternatively, the Lagrange multipliers can also
be determined by optimizing the Lagrangian

ω∗ = arg min
ω

L∗( �ω). (58)

This is similar in favor to the derivation of the maximum en-
tropy Boltzmann distribution for the canonical ensemble.49

Applications of using the analytical form of FIT to de-
rive the least informative parameters for Gaussian pro-
cesses with a constant force and diffusion coefficient as well
as the Ornstein-Uhlenbeck (OU) process are presented in
Appendixes D and E, respectively.

If all of the constraints are expressed in the form of lin-
ear operators as in Eq. (56), numerical techniques for solving
partial differential equations can be utilized to determine the
optimal profiles of LID. Several examples of using the pro-
cedure outlined above to deduce continuous PMF profiles is
presented next to highlight the generality of the theoretical
framework we developed. The diffusion coefficient is treated
as a constant in these calculations. The least informative dy-
namics models also illustrate how the criterion of reducing
trajectory information differs from the static objective of max-
imizing the entropy of the state distribution.

A. The LID model constraining on fixed
domain bounds

If the only observation regarding the dynamics of a sys-
tem is that x is bounded in the fixed domain between [−L,
L], the LID model with a constant diffusion coefficient is
found by setting the functional derivative of the Lagrangian in
Eq. (56) with respect to ρ to zero:

δL
δρ(x)

= 2tobsD∇2ρ(x) − ω1ρ = 0. (59)

The normalization constraint is achieved by setting C1 = 1
and C1 = 1. With the boundary conditions of ρ(x)|−L, L = 0,
the solution of this Strum-Liouville problem is

ρ∗(x) = C1 cos(ω′x), (60)

ω′ = nπ

2L
; n ∈ N. (61)

Here, n’s are natural numbers and C1 is determined by the
normalization condition.

After substituting the above form of ρ∗(x) into the defini-
tion of L, the choice of ω′ can be achieved by performing the
minimization:

ω∗ = arg min
ω

L∗( �ω) = arg min
ω

C1

(nπ

2L

)2
. (62)
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FIG. 4. LID (least informative dynamics) distributions. (Top) For the
bounded domain constraint of x ∈ [0.7, 1.3]. The flat profile obtained via
maximizing the equilibrium entropy Seq = 〈ln peq(x)〉eq is shown for compar-
ison. The profile obtained by minimizing FIT (Fisher information of trajecto-
ries) has the functional form of cos 2((x − μ)π /2L) instead. (Bottom) For the
constraints of fixed average 〈x〉 = μ and variance 〈(x − μ)2〉 = σ 2. In this
case, maximizing Seq and minimizing FIT give the same functional form of
the profile as ∼exp ( − (x − μ)2/2/σ 2).

This optimization simply selects the smallest possible n. As a
result,

p∗
eq(x) = 1

L
cos2

(xπ

2L

)
, (63)

F ∗(x) = π

L
tan
(xπ

2L

)
. (64)

Fig. 4 plots the distribution of x based on the principle of LID
in comparison with the maximum entropy profile of maxi-
mum entropy Seq = ∫

peq(x)ln peq(x), which is a flat distribu-
tion in the domain with diverging forces at the boundaries.
Because the Fisher information of trajectories includes a mea-
sure of the deterministic force in dynamics as indicated in
Eq. (55), diverging values of F(x) at the boundaries are not
desirable. Alternatively, a distribution cos 2(x) that smoothly
decays to a zero gradient at the domain edges is selected in-
stead according to the criterion of LID.
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B. The LID model constraining on fixed values
of the mean and variance of peq

If the knowledge of mean μ and variance σ 2 of x are
available, the LID distribution of x can be found by setting
the two constraints C1 = x1 and C2 = x21. This optimiza-
tion can be performed in the Fourier space and this approach
is adopted here to illustrate the generality offered by having
the analytical expression of FIT. Because the Lagrangian is
essentially a set of inner products, the Parseval’s theorem50

says that the Fourier transforms (FT) of functions f(x) and
g(x), f̃ (k) and g̃(k), respectively, satisfy∫

dx f (x)g†(x) =
∫

dk f̃ (k)g̃†(k). (65)

The † sign indicates complex conjugation. Because the FT of
∇ρ(x) is ikρ̃(k), where i is the imaginary number, the FT of
the information measure in Eq. (54) reads

J = −D

∫
dk k2ρ̃2(k). (66)

This functional form is isomorphic to the square curvature po-
tential when using the Green’s function analysis to determine
the power spectrum of a density field, where the magnitude
of the Fourier components decays with the wave number k as
ρ̃(k) ∝ 1/(1 + k2).51

For the constraint on mean, g(x) = xρ(x), g(k)
= idρ̃(k)/dk, and variance h(x) = x2ρ(x), h̃(k) = −d2ρ̃(k)/
dk2, the FT version of the Lagrangian is thus

L(ρ̃(k)) =
∫

dk ρ̃(k)

(
− tobsDDk2ρ̃(k)

−ω1i
dρ̃

dk
(k) − ω2

d2ρ̃

dk2
(k)

)
. (67)

The functional derivative δL/δρ̃(k) in the Fourier space then
gives the differential equation for optimization:

ω2
d2ρ̃

dk2
(k) + ω1i

dρ̃

dk
(k) + tobsDk2ρ̃(k) = 0. (68)

By utilizing the translation operation in the Fourier
space, we assume the functional form of the solution
as ρ̂(k) = e−ω1ik/2ω2 ρ̃(k) to eliminate the first derivative in the
equation

d2ρ̂

dk2
(k) +

(
tobsD

ω2
k2 − ω2

1

4ω2
2

)
ρ̂(k) = 0. (69)

The solutions of this equation are the Hermite functions, the
same as those for the wave function of a quantum harmonic
oscillator. The ground state mode with the least information
thus has the form of a Gaussian

p̃(k) ∝ e−ω′
1ike−ω′

2k
2
, (70)

where the requirement of constraints is incorporated into ω′

for simplicity. Inverse Fourier transform then takes Eq. (70)
to the real-space solution:

ρ∗
eq(x) = F−1(p̃(k)) ∝ e−ω′′

2 (x−ω′
1)2

. (71)

With the constants determined to satisfy the constraints of
the observed mean and variance as well as probability nor-
malization, the final result for the equilibrium probability is a

Gaussian as shown in Fig. 4:

p∗
eq(x) = 1√

2πσ 2
e−(x−μ)2/2σ 2

. (72)

This result of LID model is the same as that obtained by
maximizing the static entropy Seq despite the use of FIT. How-
ever, this coincidence can be rationalized by inspecting the
two different information measures and their corresponding
inequality bounds to establish that the Gaussian equilibrium
probability density is indeed optimal in both cases:52

FIT :

(∫
dx x2ρ2(x)

)(∫
dk k2ρ̃2(k)

)
≥ 1

16π2
, (73)

Seq :
∫

dx ρ2(x) ln ρ2(x) +
∫

dk ρ̃2(k) ln ρ̃2(k) ≤ ln 2 − 1.

(74)

The inequality of Eq. (73) can be viewed as an uncertainty
principle of continuous stochastic dynamics.52 It contains a
static measure of the variance in position multiplied by the
dynamic information of J . Here, J plays the analogous role
of the variance of velocity in the Heisenberg uncertainty of
quantum mechanics.53 On the other hand, the inequality of
Eq. (74) is the Hirschman uncertainty principle54 which adds
a static measure of equilibrium entropy Seq with the Shan-
non information measure of the velocity distribution. In both
cases, a balance can be reached between a static and dynamic
measure of information and the Gaussian distribution is opti-
mal and achieves equality in both scenarios among all of the
normalized profiles of peq(x) ∈ L2.

C. The LID model constraining on fixed values
of the mean first passage times (MFPTs)

If the transition between two metastable states locating at
xA and xB with the reaction rate of kA→B is known, the mean
first passage time between the two states is τrxn(xA → xB)
= k−1

A→B . This knowledge can be used as the constraint
for finding the corresponding LID model. According to
Gardiner,55 the mean first passage time from xA to xB can be
expressed as

τxA→xB = k−1
A→B = 1

D

∫ xB

xA

dx ρ−2(x)
∫ x

xL

dx ′ ρ2(x ′),

τxB→xA = k−1
B→A = 1

D

∫ xA

xB

dx ρ−2(x)
∫ x

xR

dx ′ ρ2(x ′).
(75)

Here, we use ρ = √
p as the variable within the finite domain

x ∈ [xL, xR].
The constraints on MFPTs defined in Eq. (75) are non-

linear and do not follow the advantageous linear mode of
Eq. (56). Using τ xB→xA

and τ xA→xB
to represent the opera-

tion on ρ in Eq. (75), the Lagrangian of LID becomes

L = tobsD

∫
dx(∇ρ(x))2 + ω1

(∫
dxρ2(x) − 1

)
+ω2

(
τ xB→xA

[ρ] − k−1
B→A

)+ ω3
(
τ xA→xB

[ρ] − k−1
A→B

)
.

(76)

The optimization of this Lagrangian is achieved by setting its
functional derivative with respect to ρ to zero, and requires
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the solution of the resulting equation

2tobsD∇2ρ(x) + ω12ρ(x) + ω2
δτ xB→xA

δρ(x)
+ ω3

δτ xA→xB

δρ(x)
= 0.

(77)

However, there is no simple and closed form solution for
this equation because the functional derivatives of the MF-
PTs with respect to ρ depend on the specific locations within
the domain in a nonlinear manner:

δτ xA→xB

δρ(x)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2

D
ρ

∫ xB

xA

ρ−2(x ′)dx ′ x ≤ xA

2

D
ρ(x)

∫ xB

x

dx ′ρ−2(x ′) − 2

D
ρ−3(x)

∫ x

xL

dx ′ρ2(x ′) xA < x ≤ xB

0 x > xB.

(78)

The derivation of this equation is shown in Appendix F. The
nonlinear optimization problem of Eq. (77) can be solved nu-
merically by using a quasi-Newton method iteratively.48 The
resulting PMFs and equilibrium distributions for three sets of
reaction rates are shown in Fig. 5.
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FIG. 5. Least informative dynamic models for using the mean first passage
times as constrains. (Top) The optimal equilibrium probability density p∗

eq(x)
for the constraint of rate constant/mean first passage time between two states
located at xA = 0.8 and xB = 1.2 with diffusion constant D = 1. (Bottom) The
corresponding potential of mean force V ∗(x) = − ln p∗

eq(x). The constrained

values of rate constants in the unit of s−1 are labeled as the legend of each
profile.

It can be seen from Fig. 5 that the LID profiles of peq(x)
constrained on MFPTs generally follow those of Kramer’s
type of reactions56 that have quadratic potentials for stable
states connected by an inverted quadratic barrier. This re-
sult thus provides a framework for justifying Kramer’s ap-
proach of modeling rare event processes. Observation of the
LID models with MFPT constraints indicates that the results
follow the Hammond-Leffler postulate based on a heuristic
arguments, which states that the transition state x‡ of an “en-
dothermic” reaction is closer to the product.57 Therefore, the
principle of LID is shown here to be consistent with the out-
standing theories of chemical kinetics.

In this example of MFPT constraints, we illustrate that
the analytical expression of FIT can be applied with the
knowledge of kinetic observables to stitch together a least
informative profile of the equilibrium probability density of
state distribution. The theoretical framework developed in this
work thus provides a systematic way of modeling dynamic
systems that evolve with stochasticity. The diverse examples
presented in this section establish that the principle of LID can
also be used to estimate the underdetermined continuous pa-
rameters given the limited number of observables in the mea-
sured data.

VIII. CONCLUSION

For trajectories following the Langevin equation at equi-
librium, a theoretical framework is developed in this work to
evaluate the Fisher information. The corresponding Fokker-
Planck equation of Langevin dynamics is transformed into
a Hermitian form to allow an eigenbasis decomposition of
the time propagator. Essential to the success of this approach
is using the square root of the equilibrium probability den-
sity as the form on model parameters. This unique choice
of basis not only symmetrizes the FPE, it also makes the
Fisher information matrix constant, resulting in tremendous
simplification in the calculation of the information metric of
trajectories in the parameter space. In the continuum limit,
we show that the analytical form of the Fisher information
matrix for Langevin trajectories is a Laplacian kernel. With
this constant-information matrix, a line integral in the pa-
rameter space can be devised to give an analytical measure
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of dynamics information given the PMF and diffusion co-
efficient of the Langevin equation. An immediate impact of
this derivation is enabling the imputation of least informa-
tive dynamics model constrained on the observables that are
known or available. Although the examples of LID models
presented in this work were derived from scalar constraints,
generalization to using an arbitrary functional in describing
the observable of interest, such as the likelihood of single-
molecule FRET measurements,58–60 other properties mea-
sured by single-molecule methods, or molecular simulation
results, is expected to be equally applicable. The methodol-
ogy developed in this work can be used to systematically uti-
lize the measurable data to formulate a dynamics model based
on the principle of the least informative description.
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APPENDIX A: DERIVATION OF EQ. (18) OF FIT
FOR SYMMETRIC ρ(xt, x0)

The starting point is Eq. (12) and is restated here:

I�t (x, y) =
∫

dxtdx0
δ ln p(xt |x0)

δρeq(x)

δ ln p(xt |x0)

δρeq(y)
p(xt , x0).

(A1)

Inputting p(xt|x0) = ρeq(xt)ρ(xt, x0)/ρeq(x0) and ln p(xt|x0)
= ln ρeq(xt) + ln ρ(xt, x0) − ln ρeq(x0) leads to 9 terms:

I�t (x, y) =
∫

dxtdx0
δ ln ρ(xt , x0)

δρeq(x)

δ ln ρ(xt , x0)

δρeq(y)
p(xt , x0)

(A2)

+
∫

dxtdx0
δ ln ρeq(xt )

δρeq(x)

δ ln ρeq(xt )

δρeq(y)
p(xt , x0)

(A3)

+
∫

dxtdx0
δ ln ρeq(x0)

δρeq(x)

δ ln ρeq(x0)

δρeq(y)
p(xt , x0)

(A4)

−
∫

dxtdx0
δ ln ρeq(x0)

δρeq(x)

δ ln ρeq(xt )

δρeq(y)
p(xt , x0)

(A5)

−
∫

dxtdx0
δ ln ρeq(xt )

δρeq(x)

δ ln ρeq(x0)

δρeq(y)
p(xt , x0)

(A6)

+
∫

dxtdx0
δ ln ρeq(xt )

δρeq(x)

δ ln ρ(xt , x0)

δρeq(y)
p(xt , x0)

(A7)

−
∫

dxtdx0
δ ln ρeq(x0)

δρeq(x)

δ ln ρ(xt , x0)

δρeq(y)
p(xt , x0)

(A8)

+
∫

dxtdx0
δ ln ρ(xt , x0)

δρeq(x)

δ ln ρeq(xt )

δρeq(y)
p(xt , x0)

(A9)

−
∫

dxtdx0
δ ln ρ(xt , x0)

δρeq(x)

δ ln ρeq(x0)

δρeq(y)
p(xt , x0).

(A10)

The collection of integrals of that makeup I�t(x, y) can
be paired down because the density field is symmetric to ex-
change of xt↔x0, ρ(xt, x0) = ρ(x0, xt). Performing this ex-
change on Eq. (A10) gives an exact copy and cancels with
Eq. (A9). Likewise Eq. (A8) cancels with Eq. (A7). The re-
maining 4 integrals containing the ρeq term require the func-
tional derivative

δ ln ρeq(xt )

δρeq(x)
= δ(xt − x)

ρeq(x)
. (A11)

Therefore, Eqs. (A5) and (A6) become the integral of two
delta functions∫

dxtdx0
δ(xt − x)

ρeq(x)

δ(x0 − y)

ρeq(y)
p(xt , x0) = ρ(x, y), (A12)

for which the property of ρ(x, y) = p(x, y)/ρeq(x)ρeq(y) is
utilized as well. Applying the same functional derivative to
Eqs. (A3) and (A4) gives the alternative result:∫

dx0
δ(x0 − x)

ρeq(x)

δ(x0 − y)

ρeq(y)

∫
dxtp(xt , x0) = δ(x − y).

(A13)

Here, the integration over xt can be done from the onset due
to the lack of its dependence in the delta functions and noting
that p(x0)/ρeq(x0)ρeq(x0) = 1. Combining these results gives
Eq. (18):

I�t (x, y) =
∫

dxtdx0
δ ln ρ(xt , x0)

δρeq(x)

δ ln ρ(xt , x0)

δρeq(y)

×p(xt , x0) + 2δ(x − y) − 2ρ(xt , x0). (A14)

APPENDIX B: PROOF OF THE HERMITIAN PROPERTY
OF THE SYMMETRIZED FOKKER-PLANCK EQUATION

The Hermitian property is established by showing that
〈ψi |H|ψj 〉 = 〈ψi |H|ψj 〉. For the targeted operator defined in
Eq. (20), the left-hand side is∫

dx
ψi(x)

ρeq(x)
∇ · (D(x)ρ2

eq(x)∇ ψj (x)

ρeq(x)
). (B1)

This equation can be transformed by an integration by parts
to

−
∫

dx(D(x)ρ2
eq(x)∇ ψj (x)

ρeq(x)
) · ∇ ψi(x)

ρeq(x)
. (B2)

The zero boundary terms in the space of square integrable
functions ψ⊂L2 were applied. Another integration by parts
on the ∇(ψ j(x)/ρeq(x)) term gives∫

dx
ψj (x)

ρeq(x)
∇ · (D(x)ρ2

eq(x)∇ ψi(x)

ρeq(x)
), (B3)
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TABLE I. Interpolation points for V (x).

Position 0.5 0.8 0.9 1 1.1 1.2 1.5
V (x) 60 0 4 ln (4) 5 ln (2) 60

which is recognized as 〈ψi |H|ψj 〉. The Hermitian property of
the operator defined in Eq. (20) is thus verified.

APPENDIX C: POTENTIAL OF MEAN FORCE
OF THE REFERENCE MODEL

The potential of mean force V (x)/kBT is constructed
using the piecewise cubic Hermite interpolation polynomial
pchip() in MATLAB with the following points (Table I):

APPENDIX D: FIT FOR THE GAUSSIAN PROCESS
OF CONSTANT FORCE

The time propagator for this process is

p(x�t |x0) = 1√
4πD�t

exp

(
− (x�t − x0 − FD�t)2

4D�t

)
.

(D1)

The calculation of FIT via Eq. (12) starts by taking
derivatives of p(x�t|x0) with respect to the x-independent
force F and diffusion coefficient D

∂ ln p(x�t |x0)

∂F
= (�x − FD�t)

2
, (D2)

∂ ln p(x�t |x0)

∂D
= F (�x−FD�t)

2D
+ (�x−FD�t)2

4D2�t
− 1

2D
.

(D3)

Here, �x = x�t − x0. Each element of the Fisher information
matrix can then be found by multiplying these derivatives by
one another and taking the expectation over the joint proba-
bility

∫
dx�tdx0 p(x�t, x0) which by rotating the domain, can

easily be done as an integration over �x and �x′ = x�t + x0:

IF,F = E

[
(�x − FD�t)2

4

]
= D�t

2
, (D4)

IF,D = ID,F = F�t

2
, (D5)

ID,D = 1

2D2
+ F 2�t

2D
. (D6)

The following properties for the moments of the Gaussian dis-
tribution have also been used to calculate the matrix elements:

E
[
(X − μ)N

] =

⎧⎪⎪⎨
⎪⎪⎩

0 N = 1
σ 2 N = 2
0 N = 3
3σ 3 N = 4

. (D7)

The mean μ is FD�t and the variance σ 2 is 2D�t.

Taking the continuous limit for the Fisher information of
trajectories, I = lim�t→0+ tobsI�t/�t , the terms with �t can-
cels the first factor terms for ID, D. To evaluate the information
change between parameter sets J1→2, we integrate according
to Eq. (49) for the path

F (ξ ) = F1 + (F2 − F1)ξ, (D8)

D(ξ ) = D1 + (D2 − D1)ξ, (D9)

where ξ ∈ [0, 1]. After applying the sum over the two parame-
ters and the Fisher information

∑
i,j

∂θi

∂ξ
Ii,j (�θ ) ∂θj

∂ξ
, the follow-

ing integral remains:

J1→2 = tobs

2

∫ 1

0
dξ (�F )2 D(ξ )

2
(D10)

+(�F�D)F (ξ ) + (�D)2

(
F 2(ξ )

2D(ξ )
+ �t−1

2D2(ξ )

)
. (D11)

Here, �F = F2 − F1 and �D = D2 − D1. After performing
the integration and collecting terms, the information change
is

J1→2 = tobs
(F2D2 − F1D1)2

2D2
+ lim

�t→0+

tobs

�t

[
2 − D2

D1
− D1

D2

]
.

(D12)

This information change is 0 for the case when D1 = D2

and F1 = F2. However, the two groupings have different scal-
ing behaviors as �t → 0. The second grouping which solely
depends upon the ratio of diffusion constants gives a rate of
divergence at ∝1/�t. This asymptotic behavior for Gaussian
processes has also been worked out via the Kolmogorov-Siani
entropy measure.61 However, the term with the difference in
the square force remains constant through different values of
time resolution and grows linearly with the length of the tra-
jectory tobs.

APPENDIX E: FIT FOR THE ORNSTEIN-UHLENBECK
PROCESS

The OU process is a system governed by a simple har-
monic potential V (x) = −1/2kx2 with the spring constant k
reflecting the width of the harmonic PMF. The equilibrium
probability density of the OU process is Gaussian:

peq(x) =
√

k

2π
e−kx2/2. (E1)

The time propagation probability density for the OU pro-
cess is

p(x�t |x0) =
√

k√
2π (1 − e−2Dk�t )

× exp

(
−k
(
x�t − x0e

−kD�t
)2

2 − 2e−2Dk�t

)
. (E2)

In the continuum limit, we take the Taylor expansion of
the exponential exp ( − 2Dk�t) � 1 − 2Dk�t to give the
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approximate propagator

p(x�t |x0) = 1√
4πD�t

exp

(
− (x�t − x0 + x0kD�t)2

4D�t

)
.

(E3)

Taking the derivative of the log propagator with respect to k
results in

∂ ln p(x�t |x0)

∂k
= −x0 (x�t − x0 + x0kD�t)

2
. (E4)

Then, the Fisher information is the expectation of this deriva-
tive squared:

Ik = tobs

�t
Ex�t ,x0

[
x2

0 (x�t − x0 + x0kD�t)2

4

]
. (E5)

First, taking the expectation over x�t puts 2D�t in place of
what is essentially a term of E[(X − μ)2]. Next, the remain-
ing expectation over x2

0 gives the variance of the equilibrium
distribution which is 1/k for a final answer:

Ik = tobsD

2k
. (E6)

To relate this result to the overall change in information from
an initial state of k = k1 to a final state of k = k2, we perform
the line integral

J = −1

2

∫ 1

0
dξ�k

tobsD

2k(ξ )
�k = − tobsD

4
�k ln

k2

k1
. (E7)

Here, �k = k2 − k1 and both k1 and k2 are posi-
tive and cannot be zero. Comparing to the result via the
general functional of Eq. (55), J = −D

∫
dx (∇ρeq(x))2

= −(Dk2/4)
∫

dx x2peq(x) = −Dk/4, the result is different
in the limit that k1 � 1 with pure free diffusion due to the non-
ergodic nature of this brownian diffusion which does not have
a proper equilibrium distribution of states. This is also appar-
ent because the Fisher information is not constant with the pa-
rameter k and thus the choice of integration path now alters the
final form of the integral J . Naturally, systems with a larger
spring constant are more restrictive and also moves faster,
i.e., the dynamics is more deterministic. Therefore, there is
more information for dynamics models with a larger spring
constant.

APPENDIX F: FUNCTIONAL DERIVATIVE OF MEAN
FIRST PASSAGE TIMES

The functional derivatives for the mean first passage time
are given by

τxA→xB = k−1
A→B = 1

D

∫ xB

xA
dx ρ−2(x)

∫ x

xL
dx ′ ρ2(x ′),

τxB→xA = k−1
B→A = 1

D

∫ xA

xB
dx ρ−2(x)

∫ x

xR
dx ′ ρ2(x ′), (F1)

is derived from finding the first order perturbation from a test
function f(x) that vanishes at the boundaries of the domain and
has bounded derivatives:∫

dx
δτ xA→xB

δρ(x)
f (x) = d

dε
τxA→xB [ρ(x) + εf (x)]

∣∣∣∣
ε=0

. (F2)

Performing the differentiation of the above equation with
respect to ε gives

∫
dx

δτ xA→xB

δρ(x)
f (x) =

Parts︷ ︸︸ ︷
2

D

∫ xB

xA

dx ρ−2(x)
∫ x

xL

dx ′ f (x ′)ρ(x ′)

(F3)

− 2

D

∫ xB

xA

dx f (x)ρ−3(x)
∫ x

xL

dx ′ ρ2(x ′). (F4)

The perturbation f(x) is isolated from the nested integral
in Eq. (F3) by performing an integration by parts with
u = ∫ x

xL
dx ′f (x ′)ρ(x ′) and dv = ρ−2(x) to give

Parts = 2

D

(∫ x

xL

f (x)ρ(x)

)(∫ x

xA

dx ′ρ−2(x ′)
)∣∣∣∣xB

xA

− 2

D

∫ xB

xA

dxf (x)ρ(x)
∫ x

xA

dx ′ρ−2(x ′). (F5)
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