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Diagnosis of Single Faults in Bitonic Sorters 
Tsern-Huei Lee, Member, IEEE, and Jin-Jye Chou 

Abstract-Kitonic sorters have recently been proposed to con- 
struct along with banyan networks the switching fabric of future 
broadband networks [2]. Unfortunately, a single fault in a bitonic 
sorter may have disastrous consequences for the switching sys- 
tem. Therefore, a bitonic sorter must be proved to be free 
of faults before it can be used. In this paper we study the 
topological properties of bitonic sorters and present an efficient 
fault diagnosis procedure to detect, locate, and identify the fault 
type of single faults. Our diagnosis procedure can detect most 
single faults in two tests. Faults which cannot be detected in two 
tests can always be detected in four tests. Several binary search 
techniques are developed to locate a faulty sorting element (Le., 
a 2 x 2 sorter). 

I. INTRODUCTION 
ITONIC SORTERS [ I ]  have recently been proposed B to construct along with banyan networks the switching 

fabric of future broadband networks [2]. The purpose of using 
sorters is to resolve the intemal blocking of banyan networks 
and consequently enhance the performance of a switching 
system. Unfortunately, a fault occurring in a bitonic sorter 
may have disastrous consequences for the switching system. 
Therefore. a bitonic sorter must be proved to be free of faults 
before it can be used. 

An efficient and effective fault diagnosis procedure has 
been proposed to detect, locate, and identify the fault type 
for banyan networks suffering from a single solid logical fault 
[3]. It is natural to wonder if this procedure can be modified to 
diagnose bitonic sorters. It turns out that it can [4]. However, 
this procedure can be applied only to banyan networks having 
state control lines. The number of state control lines in a 
banyan network is equal to rL = log, N ,  where N denotes 
the number of inputs/outputs, because each stage must have 
a separate line. Since the complexity of adding state control 
lines is not negligible, the procedure proposed in [3] may be 
unsuitable for large networks. In [ 5 ] ,  the authors presented 
an efficient diagnosis procedure for banyan networks without 
state control lines. For a bitonic sorter with N inputs/outputs, 
the number of stages is equal to log, N(log, N + 1)/2, which 
is much larger than that in a banyan network with the same 
number of inputs/outputs. Thus, a diagnosis procedure which 
relies on state control lines is unrealistic for large bitonic 
sorters. 
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This paper presents an efficient fault diagnosis procedure 
for bitonic sorters without state control lines. The proposed 
procedure can be used to detect, locate, and identify the fault 
type of any single fault. Owing to space limitations, we present 
in this paper the procedures for detecting and locating single 
faults. A procedure for identifying the fault type can be found 
in [6]. Since a large bitonic sorter is often built from several IC 
chips, the faulty chip can be replaced once the fault is located. 

Section I1 describes the fault model and operation of a 
sorting element (SE), i.e., a 2 x 2 sorter. Section 111 studies 
some properties of bitonic sorters which lead to the design 
of test vectors. Diagnosis of link faults and SE faults are 
presented in Sections IV and V, respectively. In Section VI, 
we study some examples. Section VI1 concludes the paper. 

11. FAULT MODEL AND OPERATION OF A SORTING ELEMENT 

A. Fault Model 

The fault model considered in this paper is exactly the same 
as that studied in [3]. That is, faults occurring in a bitonic 
sorter are classified into link faults and SE faults. A link fault 
is either a stuck-at-zero (s-a-0) fault or a stuck-at-one (s-a-1) 
fault. A functional approach is used to study SE faults. An 
SE is considered to be a 2 x 2 crosspoint switching matrix 
which has as many as 16 possible states, as illustrated in Table 
I. For each SE only the direct state (5’10) and the cross state 
(S5) are valid states. A faulty SE can be in any one of the 16 
possible states. Thus, for an SE with two valid states, there 
are 256 possible state combinations. Let S denote the set of 
all 16 states. As in [3], we use the set {(SI, s p )  I s, E S} to 
describe the state combinations and refer to each ( s l ,  sz)-pair 
as a functional state. Assume the first valid state is Slo and 
the second valid state is S5. As a consequence, only the state 
combination (5’10, S5) is the normal functional state and the 
other 255 state combinations are faulty functional states. 

and ~2 are binary bits applied respectively 
to the upper and the lower inputs. Similarly, .C; and i, are 
binary bits appearing at the upper and the lower outputs, 
respectively. The symbol “?” denotes logically unidentified 
output and ‘‘8’ represents logically erroneous output, where 0 
and 1 are simultaneous inputs. The output values of “?’ and 
“8’ depend on the particular circuit implementation. However, 
both of them are assumed to be constant values in a given 
bitonic sorter. Note that an erroneous fault cannot be observed 

In Table I, 
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A: Activity Bit 
R: Routing Vector 

x: integer applied to the upper input 
y: integer applied to the upper input 

Fig. 1 .  Operations of sorting elements. 

to an undesired output. For example, a binary fault occurs if 
an SE is in state S:j while its valid state is S ~ O .  

B. Opemtion 

There are two types of SE's in a bitonic sorter: the up SE 
(indicated by an upward arrow) and down SE (indicated by a 
downward arrow). The state of a fault-free SE is controlled by 
the activity bits and the numbers applied to both inputs. Fig. 1 
illustrates the operation of the two types of fault-free SE's. 
In Fig. 1. z and y represent the integers applied to the upper 
and lower inputs, respectively. An input is said to be active if 
the activity bit of the vector applied to the input is one. When 
both inputs are active or inactive, a down (up) SE will be in 
state Slo if .E 5 y (z 2 y) or state S5 if z > y (z < y). If 
only one input is active, then the active input is connected to 
the lower output of a down SE or the upper output of an up 
SE and the inactive input is connected to the other output. In 
other words, we treat the activity bit as the most significant 
bit. In addition, an SE is always in state ,910 when the two 
applied vector3 are identical. 

level- I level-2 level-3 
sub-sorters sub-sorters siib-sonpr 

4 I 

-U- + t t + + +  
stage 1 stage I stage Zstage I stage 2 stage 3 

Fig. 2. A three-level bitonic sorter. 

111. SOME PROPERTIES OF BITONIC SORTERS 

Consider a bitonic sorter with N inputs/outputs. Such a 
sorter consists of n = log,N levels of sub-sorters and 
thus is called an n-level bitonic sorter. Fig. 2 illustrates a 
three-level bitonic sorter. There are 2n-z level-.i sub-sorters 
and each level-i sub-sorter is similar to a banyan network 
with 2i inputs/outputs. Therefore, for convenience, a sub- 
sorter is also referred to as a banyan sorter (BS). A sorter 
is called an ascending (descending) sorter if it sorts the inputs 
in ascending (descending) order. In this paper, we consider 
ascending sorters. 

To diagnose a fault, one has to check both valid states for 
each SE. According to the operation of SEs described in the 
last section, one can set all the SE's to be in state SI" by 
applying identical numbers to all the inputs. However, a fault 
may not be detected if all the numbers applied are identical. 
Moreover, it is impossible to set all the SE's to state S5 
for n 2 2 .  This can easily be proved by showing that it is 
impossible for n = 2. Therefore, one has to find two sets of 
numbers that can be used for fault diagnosis. It turns out that 
monotonic sequences can serve this purpose. Throughout this 
paper, we use  CL^}::^ to denote a strictly increasing sequence 
with ai = 1: - 1 and {bi}?Ll to denote a strictly decreasing 
sequence with bi = a,v-i+l. 

The following propositions concerning the topological prop- 
erties of bitonic sorters are very useful in designing test 
vectors. In these propositions, we assume the activity bit of 
each applied vector is one. In this paper, the leftmost bit 
of a vector is the most significant bit and we always count 
from the left or the top. For example, we may refer to the ith 
(from the left) bit of a vector or the j th  (from the top) l ~ u e l - i  
BS. In addition, when a sequence, say is partitioned 
into IC ( k  is a divisor of N )  groups G I ,  Ga, . . .  .arid Gk, 
we mean all the groups are of equal size and G1 contains 
the first f elements of {ui}pLl,  G2 contains the second 
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elements of {u;}ill,  and so on. Further, the elements of G; 
are arranged in ascending order. We use G: to denote a group 
whose elements are identical to those in Gi but may not 
be arranged in ascending order. For example, if {u;}:=~ is 
partitioned into two groups G1 and G2, then GI = [ u ~ c L ~ u ~ u ~ ]  
and G2 = [u5uga7u~]. A G\ can be [alu3u4u2]. When a 
sequence of numbers (say {ui};Ll) is applied to the inputs (of 
a bitonic sorter), we mean that the j th  number ( a j )  is applied 
to the j th  input. In the following propositions, the sorter is 
assumed to be fault-free unless otherwise stated. The proofs 
of these propositions can be found in [6]. 

Proposition I :  If the state of an SE is ,510 (or S5) when 
{u;}~~ '= , i s  applied to the inputs, then its state is S5 (SI,,) when 
{b;};L1 is applied. 

Proposition 1 suggests that one might be able to apply 
{ai}zl and {bi}zlseparately to the inputs to test the two 
valid states of each SE. Unfortunately, as will be seen later, 
not all of the SE faults can be detected by this approach. 

For the following two propositions, we partition {u;)tL1 
into 2'groups GI, C&, . . ., and G2k. Define Gl e [ I C ]  to be the 
group obtained by removing IC from Gl. Moreover, for any 
two groups ,Y and Y ,  define X @ Y to be the group obtained 
by adding the elements of group Y to the end of group X .  
The output of a fault-free bitonic sorter can be represented by 
GIG2 . . . G2b. An output is said to be faulty if it is different 
from GlG2 . . . G2k. 

Proposition 2: Let {ui}:Ll or {bi):ll be applied to the 
inputs. Suppose an SE in stage k - j (0 5 j 5 k - 1) of a 
level-(n - j )  BS is faulty such that it is in state 5'10 (5'5) while 
its valid state is Ss (5'10). Then the output is correct if k = n 
and j 2 1 or becomes GlG2 . . . G;m-lG;,, . . . G2k for some 
7rb, where GZmPl = (GLntPl 6 [XI) @ [y] and GZm = 
[ X I  @ (G/,,,, 6 [ y ] )  for some 5 E G2,-1 and E G2nL. Besides, 
there are 2n-k  SEs in each of the stages considered that can 
result in the same value of m. An SE in each of the stages 
considered can result in the value m, if and only if (iff) its 
two input numbers are both in G2,-1 @ G2m. That is, the ith 
SE in each of the stages considered can result in the value m 
iff (m  - 1)2"-k + 1 5 i 5 m2n-k when {ui)T=l is applied 
or (2"-' - rn)2"-'" + 1 5 i 5 ( 2 n - k  - m + 1)2"-' when 
{bi};L1 is applied. 

Fig. 3 illustrates an example of the stages considered in 
Proposition 2 for n =4 and k =3. Several remarks should be 
made conceming Proposition 2. First, although there are 2n-k  
SE's in each of the stages considered in the proposition that 
can result in the same value of m, the contents of G;m-l 
and Gam could be different for different SEs. Figs. 4 and 5 
show respectively examples of SE faults which result in the 
same or different Gam-1 and Gam. The sequence 
is partitioned into 8 groups in Fig. 4 or 4 groups in Fig. 5. 
Therefore, one may be able to tell which SE is faulty by 
observing the output. However, there are too many cases to 
be distinguished and thus, in our diagnosis procedure, we 
ignore this possibility. In other words, two faulty outputs are 
considered to be distinguishable only if they have different m 
values. Second, an SE fault cannot be detected (by applying 
{ ~ i } ~ ~ ~  or {bi}:ll) if the faulty SE is in the last stage of 
a level-i (i n - 1) BS and its faulty state is S ~ O  or S5 

stage 1 of level-2 stage 2 of level-3 stage 3 of Icvel-4 
sub-sorter (i=2) sub-sorter (i= I)  suh-sorter Q=O) 

Fig. 3. Stages considered in Proposition 2 for =4 and k = 3  

(because the fault will be corrected by a succeeding 
( i  + 1) BS). Fig. 6 shows an example of an SE fault 
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1 c I! el - 
which 

results in a correct output. Third, assuming the faulty BS (i.e., 
the BS which contains the faulty SE) is in level-i and has 
been identified, one can know only that the faulty SE is in an 
ambiguity set which contains 2"-' elements in stage i - I I  + k 
of the faulty BS. 

We now describe how to detect an SE fault when the 
faulty SE is in the last stage of a level-i ( i  5 11 - 1) 
BS and its faulty state is Slo or SS. Define a permutation, 
called the Bit Reverse Permutation (BRP) by BRP({u~};=~) = 
(BRP({u2i-l}i=l 1, B R P ( ( U ~ ~ } ' ~ ~ ' ; ~ / ~ ) )  and BRP((Llr a 2 )  = 
( a l ,  a2). The permutation is called BRP because if {ei};"=, = 
BRP({ui}iIl) and a; = c i -  1, then the binary representation of 
e; is the bit reverse of that of U;. For the rest of the paper, we 
define { c ; } ~ ~ ~  = BRP({u;}?L~) and {d;}:L1 = BRP({bi}El). 

Proposition 3: Let {c;}?:, or {di}:Ll be applied to the 
inputs. Suppose an SE in the last stage of a level-k BS is faulty 
and its faulty state is ,910 or 5'5. Then the output becomes 
G1G2...G;,_,Ga,...G2~, where = 8 
[ I C ] )  cI3 [y] and G;, = [z] @ (GL, 8 [y]) for some IC E G2m-l 
and y E Gz,. Moreover, there are 2n-k  SE's which can result 
in identical and Gam. These 2"-' SE's belong to 2n-k  
distinct level-k BSs and the two numbers entering into any of 
these SE's are both in G2,-1 @ Gz,. 

Proposition 4: There is at most one common link shared 
by a path when {u ; } j L1  is applied and another path when 
{bi}z l  is applied. 

k N / 2  
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Fig. 4. SE faults which result in I ) )  =1 with the same G&,,-l and G5mt. Fig. S. Se faults which result in f i t  = I  with different G.;,,,-, and <:anz 

Proposition 5: Let or {bi}rLl be applied to the 
inputs. Any two paths can meet at most once at some SE 
within a BS. If two paths meet at an SE in stage k (1 < k 5 i )  
of a levcl-i BS, then they meet again at an SE in stage k+l  
of a levr:l-(i+l) BS. 

Although Proposition 5 is stated for k > 1, it is valid for 
k: = 1 a n d i  = 1. 

Proposition 6: Let or {bi}r i l  be applied to the 
inputs. If two paths meet at an SE in stage 1 of a level-1: ( i  > 
1) BS, then they meet only once. 

or {bi}ril  be applied to the 
inputs. The binary representations of the two numbers entering 
into an SE in the first stage of a level4 BS differ in exactly 
i bits, the rightmost i bits. 

Proposition 8: Let {ai}pLl or {bi}rLl be applied to the 
inputs. The binary representations of the two numbers entering 

Proposition 7: Let 

into an SE in stage k ( k  > I )  of a level-i BS differ in exactly 
one bit, the (n - i + k)th bit. 

To conclude this section, we describe our diagnosis proce- 
dure. The procedure consists of two phases. A test vector in 
each phase consists of four fields, namely, the activity bit, the 
routing tag, the checking data which is the 1’s complement of 
the routing tag, and a two-bit constant data field whose content 
is 01. Fig. 7 shows the format of a test vector. In phase I and 
phase 11, the sequences { a z } ~ ~ l  and {bt}:Ll, respectively, are 
selected as the routing tags. Additional tests may have to be 
performed in some cases. For example, we need to perform 
at least two more tests by applying {cz}PLl and {d6};Ll to 
diagnose the SEs in the last stage of BSs if both phase I and 
phase I1 result in correct outputs. As mentioned before, the 
binary representation of e, (d,) is the bit reverse of that of 
a, ( b t ) .  For example, for a four-level bitonic sorter, the binary 
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Fig. 6.  An SE fault which results in a correct output. 
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Fig. 7. Format of a test vector. 

representation of a9 is lo00 and that of cg is 0001. Note that 
from the routing tag and the checking data, one can determine 
(according to Propositions 7 and 8) the stages the faulty SE 
can possibly be in if there is an erroneous fault. Furthermore, 
the constant data field is added so that an erroneous fault 
can always be distinguished from an unidentified fault. For 
example, without the constant data field, states S1 and Si  
cannot be distinguished if the faulty SE is in the first stage 
of the level-n BS and "?" = " p  = 1. The reason is that 
the two routing tags (and thus the checking data) of the test 
vectors entering into an SE in the first stage of the level-n BS 
are 1's complements of each other and, therefore, without the 
constant data field, states SI and S7 produce identical vectors 
at the outputs of the faulty SE. 

Iv. DIAGNOSIS OF LINK FAULTS 
For convenience, we define the expected path of a test vector 

to be the path it traverses when the bitonic sorter is free of 
faults. Furthermore, a test vector is said to be a faulty vector 
if it is lost (i.e., does not appear at the output) or duplicated 
(i.e., more than one copy appears at the output). The expected 
path of a faulty test vector is called a faulty path. 

For an s-a-0 fault, one of the test vectors becomes an all- 
zero vector and thus can be easily detected. In addition, by 
observing the vectors received by the output ports, one can 
determine which test vector is lost. From Proposition 4, the 
faulty link can be located by finding the common link of two 
faulty paths, one in each phase. 

Similarly, for an s-a-1 fault, one of the test vectors becomes 

TABLE I 
STATE NAMES AND THEIR SYMBOLIC REPRESENTATIONS OF SORTING ELEMENT 

NitEh elemen 

symbol 

U 
4 3  
€t 

# 
# 
# 

U 

U 

- 
X - 
? 

X 

? 

X 

? 

X 

? 

X 

- 

witch elemen 

symbol 

# 
PI 
I 3  
la 
Et 

n 
U 

I and another faulty path in phase 11. By intersecting the two 
faulty paths, one gets the faulty link. 

v. DIAGNOSIS OF SORTING ELEMENT FAULTS 

To detect and locate single SE faults, we partition the 
16 states listed in Table I into four sets, B1 = {S3,S12}, 

U = {SO, S1, S2, S4, S8}. Sets B1 and B2 contain states that 
result in only binary faults. Set E contains states that result in 
at least one erroneous fault. Set U contains states that result 
in at least one unidentified fault but no erroneous fault. 

Note that, using our proposed test vectors, a single SE fault 
can always be detected. If the faulty state is in B1, then at the 
output, one test vector is lost and one is duplicated and thus the 
fault can be detected. According to Proposition 2, an SE fault 
can be detected if the faulty state is in Ba unless the faulty SE 
is in the last stage of a level-i (i 5 n - 1) BS. For this case, 
the two additional tests using {.;}El and {&}El as routing 
tags guarantee that the fault can be detected. If the faulty state 
is in E,  then there is at least one lost test vector and one 
unexpected vector (whose constant data field is 01) appears 

BZ 1 ( 5 ' 5 ,  s l ~ } ,  E = (S6r s7, s9, S11,S13r s 1 4 ,  Slj}, and 

an all-one vector. Again, one can obtain a faulty path in phase at the output and thus the fault can be detected. Finally, if 
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the faulty state is in U ,  then at least one unexpected all-zero 
or all-one vector appears at the output. Based on the above 
results, one not only can detect the fault but also determine 
to which set the faulty state belongs. This information can be 
used to identify the fault type [6]. 

We now discuss how to locate the faulty SE. There are 
three cases to consider: 1) phases I and 11 both result in faulty 
outputs, 2 )  only phase I or phase I1 results in a faulty output, 
and 3 )  neither phase I nor phase I1 results in a faulty output. 

Case I: Phases I and 11 both result in faulty outputs. For 
Case 1, we have the following theorems. In these theorems, s1 
and s2 represent the states of the faulty SE when its valid state 
is 5’10 or Sg, respectively. For ease of description, we assume 
s 1  is the state of the faulty SE in phase I and sz is that of 
the faulty SE in phase 11. In each theorem, we select only one 
case to prove because the other cases can be proved similarly. 

Theorem 1: If s1 E B1 , S Z  E B1 U E U U  or SI E 
B1 U E U U,  s2 E B1, then the faulty SE can be located. 

Proof: Consider the case where SI E B1 and s z  E E.  
Since SI  E B1, there are two faulty paths, path 1 and path 
2 ,  in phase I. According to Proposition 5, the faulty SE is in 
an ambiguity set which contains the common SE’s traversed 
by paths 1 and 2. Note that every SE in the ambiguity set 
can result in the observed output and no two SEs can be in 
the same BS. Similarly, sz E E implies there is at least one 
faulty path, path 3, in phase 11. By intersecting paths 1 and 3,  
one gets a common link. The element in the ambiguity set to 
which the common link is connected is the faulty SE. 

Theorem 2: If S I ,  s z  E Bz, then the faulty BS can be 
identified. 

Proof: Suppose the faulty SE is in stage IC of a level-% 
BS. Let A ( B )  denote the ambiguity set of all the SE’s that can 
result in an output undistinguishable (i.e., same value of m in 
Proposition 2 )  from that observed in phase I (phase 11). Also, 
let Al (Bl) be a subset of A ( B )  that contains all the SE’s in 
A ( B )  that belong to a level4 BS. According to Proposition 2,  
we know that A; = B;, because the faulty SE is assumed to be 
in a level-i BS. Define R1 (Rz )  to be the set of paths that pass 
through any SE in A; (B;)  in phase I (phase 11). The faulty 
BS can be identified if one can prove Al Bl = 0 for 1 # i .  

Suppose IC > 1 and consider 1 = i - 1. The paths in sets 
R1 and Rz can only pass through two ZetieZ-(i - 1) BSs, BSI  
and BSz .  Since the routing tags of the applied test vectors are 
increasing in phase I and decreasing in phase 11, all the paths 
in R1 (or Rz) must pass through the same level-(i  - 1) BS, 
BSI or BSz. Moreover, if the paths in RI pass through BSI, 
then the paths in R2 must pass through BSz and vice versa. 
Therefore, we have A;-1 Bi-1 = 0. Before level i - 1, the 
two sets of paths are in disjoint BSs and thus Al n Bl = 0 
for 1 5 i - 1. From these results, one can conclude that 
Al n Bl = 0 for 1 > i because if Ai+j n B;+j # 0 for some 
j ,  1 5 j 5 n - i ,  then, according to Proposition 2, one should 
have Ai+j = Bi+j and thus Al n Bl = 0 for 1 5 i + j - 1, 
which contradicts A; = B;. 

Consider the case of IC = 1. From Proposition 2 ,  we 
know that A( = Bl = 0 for 1 5 i - 1. Therefore, the 
proof is completed for i = n. Assume i < n. Suppose 
Ai+jr)B;+j # 0 for some j ,  1 5 j 5 n - i. Since the 

SE’s in A;+, are not in the first stage of a level-(i  + , j )  BS, 
we know from the arguments provided in the last paragraph 
that Al n Bl = 0 for 1 5 ,i + .j - 1, which again contradicts 
A; = B;. This completes the proof of Theorem 2. 

To locate the faulty SE after identifying the faulty BS for 
the case where s1, s2 E Bz, one can apply a set of special test 
vectors to the inputs. The routing tags of the special test vectors 
are all identical so that all the SEs are supposed to be in  state 
Slo. However, the checking data of the special test vector ap- 
plied to input i is chosen to be i-1 . If the bitonic sorter is free of 
faults, then output port i should receive the test vector applied 
to input i .  Under a single fault, two of the output ports will 
exchange the test vectors they should receive when the bitonic 
sorter is fault-free. Therefore, the faulty SE can be located by 
finding the common SE in the faulty BS that is traversed by 
the expected paths of the two exchanged test vectors. 

Theorem 3: If S I  E B1, s z  E B2 or s1 E Bz, s:! E B , ,  then 
the faulty SE can be located. 

Proof: Consider the case where s1 E B1 and s 2  E B2. 
Assume the faulty SE is in stage IC of a 1ew:l-i BS. If k = 
1 and i > 1, then, according to Proposition 6, the faulty SE 
can be located by intersecting the two faulty paths obtained 
in phase I. 

Suppose k > 1 or i = 1. In this case, the faulty SE can be 
located once the faulty BS is identified because s 1  E B1 gives 
two faulty paths and the stages the faulty SE can possibly 
be in (see Proposition 5). Let C ( B )  denote the set of all the 
SE’s which can result in an output undistinguishable from that 
observed in phase I (phase 11). Also, let Cl (Bl)  be a subset 
of C ( B )  which contains all the SE’s in C ( B )  that belong 
to a level4 BS. Then C (Cl) is a subset of A (Al) defined 
in the proof of Theorem 2 and thus the arguments provided 
there can be directly applied here to identify the faulty BS 
and complete the proof. 

Theorem4: If s1 E B ~ ! s z  E E U U  or s 1  E E U I r , s 2  E 
BP, then the fau,lty SE can be located. 

Proof: Let us consider the case where s1 E B2 and 
s2 E E. If the faulty SE is in the first stage of a level-i 
( i  2 2 )  BS, then from the faulty path, the routing tag, and 
the checking data of an unexpected vector observed in phase 
11, one can immediately locate the faulty SE (see Propositions 
6 and 7). 

Suppose the faulty SE is not in the first stage of a /euel-i 
( i  2 2) BS. In this case, the faulty SE can be located once the 
faulty BS is identified because there is a faulty path in phase 
I1 and, from s1 E Bz, one knows the stages the faulty SE 
can possibly be in. Again, the same arguments provided in the 
proof of Theorem 2 can be applied here to complete the proof. 

Theorem 5: If s1 E E ,  5-2 E E U U or s1 E E U U, s 2  E E ,  
then the faulty SE can be located. 

Proof: Since SI E E ,  one knows from Proposition 5 that 
the faulty SE is in an ambiguity set which contains at most 
n SEs traversed by a faulty path in phase I .  Also, s‘ E U 
provides another faulty path in phase 11. From the two faulty 
paths, one can find a common link. The SE in the ambiguity 
set to which the common link is connected is the faulty SE. 
In fact, the faulty SE can be located in phase I if it is in the 
first stage of a level-i (i 2 2) BS (see Propositions 6 and 7). 
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TABLE I1 
LWATING PRWESS FOR CASE 1 

locating 52  

SI 
process BI B2 E c- 

B1 Theorem 1 Theorem 3 Theorem 1 Theorem 1 

BL Theorem 3 Theorem 4 Theorem 4 

Theorem 2 

special test 
vectors 

+ 

E Theorem I Theorem 4 Theorem 5 Theorem 5 
ci Theorem 1 Theorem 4 Theorem 5 Identification 

TABLE I11 
LOCATING PROCESS FOR CASE 2 WHEN THE 

ADDITIONAL TEST RESULTS IN A CORRECT OUTPLT 

5 Locating process 
B1 Binary Search (BSearchl) if the 

faulty SE is not in the first stage 
of a BS 

BSearchl + BSearch2 
Binary Search (BSearchl) if the 

faulty SE is not in the first stage of a BS 

BSearchl + BSearch3 

B2 Binary Searches 

E 

lT Binary Searches 

The remaining case is SI, s2 E U. If SI (sa) is state SO, then 
the situation is similar to SI E B1 and s2 E U (sl E U and 
s2 E B1). Thus the faulty SE can be located. Suppose neither 
s1 nor s2 is state SO. In this case, one can still obtain a common 
link of the faulty paths observed in phase I and phase 11. The 
ambiguity set contains two SE's connected by the common 
link. To determine which one is faulty, one needs to identify 
the fault type. The identification process is described in [6 ] .  
We summarize the locating process for Case 1 in Table 11. 

Case 2: Only phase I or phase I1 results in a faulty output. 
Suppose phase I results in a faulty output and phase I1 does 
not. (The faulty SE can be located similarly for the other case.) 
In this case, we need to perform an additional test by applying 
{ d }  to the inputs. 

If the output is faulty, then {c} is further applied. Consider 
the output when {c} is applied. If the output is correct or faulty 
and the states of the faulty SE are in different sets (B1. B2, E, 
or U when {c} and { d }  are applied, respectively, then the 
faulty SE must be in the last stage of a BS and s1 must be 
in B1 U E U U (because in this case no faulty output can be 
observed in phase I if s1 E B2). According to Proposition 3, 
one knows the level number of the faulty BS. Therefore, the 
faulty SE can be located because there is at least one faulty 
path in phase I. 

If the output is faulty and the states of the faulty SE are in 
the same set when {c} and { d }  are applied, respectively, then 
the faulty SE is not in the last stage of any BS. The locating 
procedure for this case is identical to that described below for 
the case where the output is correct when { d }  is applied. 

If the output is correct when {dz}pL1 is applied, then the 
faulty SE is not in the last stage of a BS and s2 is the 
desired valid state. In this case, one or two binary searches are 
required to locate the faulty SE. We summarize the locating 
process for this case in Table 111. In this table, s is either s1 

TABLE IV 
LOCATING PROCESS FOR CASE 3 

Condition Locating process 
Both additional tests (applying { c , } ?  = 1 

and {&}? = 1) result in faulty outputs 
Only one additional test results in 

Special test vector5 

Binary Search 
faulty output BSearch4 

Fig. 8. Result of applying { U ! } ; " = ,  to a fault-free four-level bitonic sorter. 
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Fig. 9. Result of applying { rl }:E*=, to a fault-free four-level bitonic sorter. 

or sa. Different types of binary searches are listed in Table 
111. If s E B1 U E, then the faulty SE can be located once 
the faulty BS is identified. Therefore, binary search BSearchl 
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Fig. IO. 
(b) result of phase I1 diagnosis. 

Diagnosis results for Example 1: (a) result of phase I diagnosis and 

is designed to identify the faulty BS. When s E Bz, one 
can adopt BSearchl to identify the faulty BS and then use 
BSearch2 to locate the faulty SE. BSearch2 is designed to 
locate the faulty SE in an ambiguity set containing several 
SE’s in the same stage of a BS. When s E U ,  the faulty 
BS can be identified using BSearchl. After the faulty BS is 
identified, another binary search, BSearch3, is needed to locate 
the faulty SE. BSearch3 is designed to locate the faulty SE in 
an ambiguity set containing i SE’s in a level-i BS. We describe 
in the Appendix how to modify the test vectors applied to the 
inputs to accomplish a desired search. 

Case 3: Neither phase I nor phase I1 results in a faulty 
output 

For this case, one has to perform additional tests by applying 
{ c ~ } ~ ~ ~  and {d;) iL=, to the inputs to check the SEs in the last 
stages of BS’s. There are two subcases: 1) both additional 
tests result in faulty outputs, and 2) only one of the additional 
tests results in a faulty output. For both subcases, one knows 
from Proposition 3 the level number of the faulty BS. If both 
additional tests result in faulty outputs, one can locate the 

faulty SE by applying the special test vectors with identical 
routing tags and increasing checking data as we did previously 
for the case where S I ,  s2 E Bz. For subcase 2, one needs to 
perform a binary search BSearch4 to identify the faulty BS. 
Bsearch4 is designed to identify the faulty BS among all the 
BSs at the same level. The locating process for Case 3 is 
summarized in Table IV. 

VI. ILLUSTRATIVE EXAMPLES 
In this section, we study some examples of SE faults. 

A four-level bitonic sorter is used in these examples. For 
reference, Figs. 8 and 9 illustrate the results of applying 
{ a , > ~ = ,  and { c z } z l ,  respectively, to the inputs of a fault- 
free bitonic sorter. The shaded SE’s in Figs. 10-13 form the 
ambiguity set that contains the faulty one. The ambiguity set 
is finally reduced to contain only one element (i.e. the faulty 
SE) in each figure. 

Example I :  Fig. 10(a) and (b) show an example in which 
SI E B1 and s2 E E.  The fault can be detected in both phases 
and the faulty SE can be located according to Theorem 1. 

Example 2: Fig. ll(a)-(d) show an example of using 
BSearchl and BSearch2 to locate the faulty SE. In this 
example, we assume both phase I1 and the additional test 
applying {d,}:Ll to the inputs result in correct outputs. 
Fig. l l (a)  shows the result of phase I diagnosis. From the 
output (the test vectors having a2 and a3 as their routing 
tags switch positions at the output) we know s1 E B2. By 
Proposition 2, we can determine the ambiguity set, as shown 
in the figure. Fig. l l (b)  and (c) illustrate how to identify the 
faulty BS using BSearchl. In Fig. ll(b), the states of all the 
SE’s in the level-4 BS are changed (with respect to the states 
shown in Fig. 8) and the output is faulty (the test vectors 
with a10 and all as their routing tags switch positions at the 
output). Therefore, the faulty SE is in the first level-2 BS or 
the upper level-3 BS. In Fig. 1 l(c), the states of all the SEs in 
the upper level-3 BS and the level-4 BS are changed and the 
output is correct. Thus the faulty SE is in the upper level-3 
BS. Fig. l l (d)  shows the locating process using BSearch2. 
The state of the second SE in the second stage of the upper 
level-3 BS is changed. Since the output is faulty, we know 
the faulty SE is the one shown in the figure. 

Example 3: Fig. 12(a)-(c) give an example of using 
BSearch3 to locate the faulty SE. In this example, we assume 
that the faulty BS (i.e., the level-4 BS) has been identified 
by BSearchl. Fig. 12(a) shows the diagnosis result of phase 
I, from which we know that the faulty SE is traversed by 
the expected path of the test vector applied to input 5. Let 
{SEI ,  SE2, SE j ,  SE4) denote the ambiguity set, where SE, 
is in stage i. In Fig. 12(b), we change the states of SE1 
and SE2. Since the output is faulty, the faulty SE is either 
SE3 or SE4. In Fig. 12(c), the states of SEI. SE2, and SE3 
are changed and the output is correct. Therefore, SE3 is the 
faulty SE. 

Example 4: Fig. 13(a)-(b) show an application of 
BSearch4. In this example, we assume both phase I and 
phase I1 result in correct outputs. Moreover, the output is 
also assumed to be correct when { d , ) z l  is applied to the 
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Fig. 11. Diagnosis results for Example 2. (a) Result of phaqe I diagnosis. (b), (c) Binary search BSearchI, and (d) binary search BSearch2. 

inputs. Fig. 13(a) shows the result of applying { c ~ } , " = ~  to the 
inputs. From Proposition 3, we know from the output that 
the faulty SE is either the upmost one in the last stage of 
the upper level-3 BS or the lowest one in the last stage of 
the lower level-3 BS. In Fig. 13(b), we change the states 
of all the SEs in the lower level-3 BS. Since the output is 
faulty, we know the upmost SE in the last stage of the upper 
level-3 BS is the faulty one. 

VII. CONCLUSION 
We have presented in this paper an efficient fault diagnosis 

procedure for detecting and locating single faults in a bitonic 
sorter without state control lines. We showed that at most four 
tests are required to detect a single fault and most faults require 
only two tests to be detected. In some cases, one or two binary 
searches are necessary to locate the faulty SE. For the case 
where SI. sz E U - {SO},  the faulty SE is shown to be in 
an ambiguity set which contains two elements. To determine 
which one is faulty, one needs to identify the fault type. The 
identification process can be found in [6]. Unfortunately, when 
-51, -42 E U - {SO}, there are 12 SE faults which cannot 

be pinpointed at the single SE level and these faults cannot 
be distinguished from a link stuck fault. This result is also 
explained in [6]. Further research should focus on diagnosis 
of multiple faults. 

APPENDIX 
In this appendix, we describe the binary searches BSearchl , 

BSearch2, BSearch3 and BSearch4. We assume that phase I 
results in a faulty output and phase I1 does not. The situation 
for the other case is similar. The faulty SE is assumed to be 
in stage k of the pth level-z BS. Notice that, for a level-r BS, 
there are 2"' sub-BS from stage k .  We assume the faulty SE 
is in the mth sub-BS from stage k of the faulty BS. In this 
appendix, we consider routing tags only because they are the 
only data required to set the state of each SE. 

The sequence { u ~ } ~ ~ ~  can be partitioned into 23  groups 
denoted by F:, F i , .  . ., and Fi3, where 0 5 J 5 2". For 
example, can be partitioned into two groups F: and 
F i  if j = 1 or four groups F f ,  F;, F:, and F2 if J = 2. 
It is clear that F," = FiZl @ FiZ'. The numbers entering 
into the faulty BS are those in Fp-'. For BSearch2 and 
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The function of BSearchl is to identify the faulty BS in 
an ambiguity set D1 = { BS(z--lc+l), BS(L-k+2), . . . , BS,}, 
where BS, is a level-j  BS. Notice that a faulty path passes 
through all the BS's in DI. BSearchl is possible if one can 
apply an appropriate sequence to change the states (from Slo 
to S5 or S, to SI*) of all the SEs in BS, for all J 2 n - 1, 
where 0 5 I 5 71 - z + I C  - 2, without changing the state of any 
SE in B S ,  for all T < 71 - 1. Suppose BS,  is the f,th I t  vel-] 
BS. It is not hard to see that f n  = 1 and ft- l = 2 f t  - 1 or 2f t .  
The states of all the SEs in the level-n BS are changed if the 
sequence F;F: is applied to the inputs. To change the states 
of all the SE's in BS,,-l and BS,, one need only modify the 
input sequence to become F2FjFf for fn-l = 1 or FiF;Ff 
for fn-l = 2. suppose f i L - I  = 2 .  me states of all the  SE'^ In 

BS,,_z. BS,-1, and BS,, are changed if the applied sequence 
becomes F ~ F ~ F ~ F ~  for f n - 2  = 3 or FiFiFiF; for f , ,-2 = 
4. This process is continued until we reach BS,-l. Examples 
of BSearchl can be found in Fig. ll(b) and (c). 

The function of BSearch2 is to identify the faulty SE in 
an ambiguity set 132 = { S E I ,  SE;!, . . . . SE2t-n }. Remember 
that, from stage k ,  the faulty BS can be divided into 2"' 
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Fig 12 Diagnosis results for Example 3 (a) Result of phase I diagnosis 
(b), (c) Binary qearch BSearch3 

BSearch3, the group F;- will be further partitioned into 
2l groups H I , H i .  . and H $ ,  where 1 is a vanable and 
0 5 I 5 t .  Owing to $pace limitations, we only describe how 
to accomplish a desired search and omit the proofs. Note that 
the following descriptions are for fault-free bitonic sorters. 
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disjoint sub-BS’s. The ambiguity set D2 contains all the SE’s 
in the first stage of the mth sub-BS which contains the faulty 
SE. Without loss of generality, we assume SEj is the j th SE 
in the first stage of this sub-BS. BSearch2 is possible if one 
can change the states of SEj for all j 2 2i-k - I ,  where 
0 5 1 I: 2 i -k  - 2 ,  without changing the states of SE, for all 
T < 2zpk - 1.  To accomplish this, one need only exchange 1 
numbers in and H i  if m 5 2“’ or Him and H i  if 
2 k - 2  + 1 5 m 1. 2”’. Fig. l l (d)  provides an example of 
BSearch2. 

The function of BSearch3 is to identify the faulty SE in an 
ambiguity set 0 3  = { S E 1 ,  SEz , .  . . , SE;} ,  where SE3 is an 
SE in stage j of the faulty BS. Notice that all the SE’s in D3 
are traversed by a faulty path. BSearch3 is possible if one can 
change the states of SEj for all j 5 E ,  where 1 5 1 5 i - 1, 
without changing the states of SE,. for all T > 1. 

Assume SEj ,  1 5 j 1. i, is in the f j h  sub-BS from stage j 
of the faulty BS. It can be shown that the state of each SE in 
the upper (lower) sub-BS from stage 2 of the faulty BS is ,910 
(Sj). Consider the case where the faulty path passes through 
the upper sub-BS from stage 2 (i.e., f 2  = 1). One can change 
the states of SEj for all j 5 1 as follows. Let t = n-i. Modify 
all the numbers in Hjl+l  to be equal to the smallest one in this 
group and then apply F;+’F;+’ . . . F;:’Fi:?l . . . Fi$+: to 
the inputs. Notice that, if F;+’F;+’ . . . Ft+’ 2 p  Ft+l 2p-1 . . .F,t+I t+’ 

are applied to the inputs without modifying the numbers in 
H!l+l, then the states of all the SE’s in 0 3  will be changed. 
With the modification, the states of SE,. are not changed 
for all T > 1. For f2 = 2, one can apply the decreasing 
sequence { b i } Z ,  to the inputs after modifying and changing 
the positions of the numbers entering into the faulty BS. The 
technique for this case is similar. Fig. 12(b) shows an example 
of BSearch3. 

For BSearch4, we assume the faulty SE is in the last stage of 
a level-iBS. The function of BSearch4 is to identify the faulty 
BS in an ambiguity set D q  = { B S l , B S z , . . - , B S , - - . ) ,  
where BS‘j is a level-i BS for all j,l 5 j 5 2’“-”. Since 
the inputs to these BS’s are all different, one can change the 
states of all the SEs in each BS independently. To change 
the states of all the SE’s in SSj ,  one need only partition the 
test vectors entering into BSj into two halves and exchange 
their positions. For example, one can apply the sequence 

Fn-i+l 7n i+l n-i+l n-i+l , . .  F;-i+lF;-i+l . , . 
23 ‘2; l  ’ * ’  F2k F2k-1  

F;n:tz:-lF;n::z: to the inputs to change the states of all 
the SEs in BSj and Bsk  ( I C  > j ) .  Therefore, BSearch4 is 
possible. Fig. 13(b) gives an example of BSearch4. 
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