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ABSTRACT—This study proposed an automatic optical inspection (AOI) technique to improve the

inspection of chemical stains on solar wafers. Poly-silicon solar cell wafers were inspected for chemical

stains, and the inspection was rapid and stable. The system used a laser-reflection-point-based AOI

method for solar wafer chemical stain inspection. Based on the fuzzy theory, the image binarization

algorithm could efficiently filter irrelevant image information, and the back-propagation method was

also utilized to determine if the image was stained. The inspection algorithm integrated fuzzy theory and

the back-propagation method in order to shorten the comparison time and quickly find the target. The

experiment proved that the validity of the proposed method could achieve a recognition rate of 98%

from among 1000 images.

Key Words: Solar wafer; Laser-reflection-point based AOI method; Chemical stain inspection; Fuzzy
theory; Back-propagation; Image binarization algorithm; Stain recognition

1. INTRODUCTION

Solar energy has the potential to fulfill a major part of the sustainable energy demands of future

generations. According to different materials, solar cells can be roughly divided into [1]: 1) single-

crystalline silicon solar cells; 2) poly-crystalline silicon solar cells; 3) multi-material cells using inorganic

salts such as gallium arsenide III-V compounds, cadmium sulfide, copper indium selenium compounds; and

4) amorphous thin film solar cells etc.

Solar cell polysilicon material consists of many monocrystals of various sizes, and its atomic

arrangement is not periodic. It is usually made by casting and solidifying fused silicon; hence, the cost is
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low, and the output of polysilicon-based solar cells has gradually exceeded that of monocrystal-silicon-

based solar cells. Amorphous silicon based substances include GaAs, GaInP, InGaAs, CdTe, CuInSe2

(CIS), and CuInGaSe2(CIGS), and the derived solar cells have high efficiencies. Although there are many

solar panel inspection methods available, fragile or scratch-prone materials, such as solar panels, are

unsuitable for probe inspection; hence, the automatic optical inspection (AOI) system is widely applied.

During solar cell production, surface stains derived from various chemical processes have a serious impact

on product quality. However, there are defects in the production lines that traditional AOI systems fail to

inspect. For example, surface chemical contaminations have a great impact on solar panels; however, the

accuracy rate of such inspections is low. When using a traditional AOI system to analyze surface chemical

contamination, the accuracy rate is only 30–50%; hence, methods that improve the accuracy rate of auto-

inspections have become a pressing topic.

Poly-crystalline silicon solar cells are made from high-quality silicon with a thickness of 180 ,
350mm. Such silicon wafers are cut from Czochralski or casted silicon ingots [2]. The wafers are usually

lightly p-type doped. To make a solar cell from the wafer, a surface diffusion of n-type dopants is

performed on the front side of the wafer. This forms a p-n junction a few hundred nanometers below the

surface [3]. Antireflection coatings, which increase the amount of light coupled into the solar cell [4], are

typically next applied. Over the past decade, silicon nitride has gradually replaced titanium dioxide as the

antireflection coating of choice, because of its excellent surface passivation qualities. It is typically applied

in a layer several hundred nanometers thick using plasma-enhanced chemical vapor deposition (PECVD).

In recent years solar cells have had textured front surfaces [5] that, like antireflection coatings, serve to

increase the amount of light coupled into the cell.

The wafer has a full area metal contact on the back surface, and a grid-like metal contact made up of

fine fingers and larger busbars is screen-printed onto the front surface using a silver paste. The rear contact

is also formed by screen-printing a metal paste, typically aluminum. Usually this contact covers the entire

rear side of the cell, although in some cell designs it is printed in a grid pattern [6]. The paste is then fired at

several hundred degrees Celsius to form metal electrodes that are in ohmic contact with the silicon. After

the metal contacts are made, the solar cells are interconnected in series/parallel by flat wires or metal

ribbons, and are then assembled into modules or solar panels. Figure 1(a) illustrates a poly-crystalline

silicon solar cell process.

However, during the manufacturing process of the solar cell, several kinds of defects may occur,

such as residual acid, water stains, saw marks, busbar peeling, and so on. If these defects are ignored,

there will be cost concerns, and the inferior wafers will impact the production efficiency [7,8,9].

Increasing methods for detecting defects in solar cells, strings and modules have been proposed.

Belyaev et al. [10] presented a resonance vibration approach to measure the residual stress in the poly-

crystalline silicon wafers used in solar cell manufacturing. This method can detect cracks as small as

5–10 mm; however, the wafer has to be submerged in a water bath. Li et al. [11] developed a

hyperspectral imaging system to identify cracks and fracture defects in solar cells using the spectral

angle mapper algorithm. Hilmersson et al. [12] used an impact test method to detect the cracks in

single-crystalline silicon wafers, which, according to the data from defective wafers with lower natural

frequencies, higher damping levels, and lower peak amplitudes. Tsai et al. [13] proposed a machine

vision scheme for detecting micro-crack defects in solar wafer manufacturing. The proposed diffusion

model takes both gray-level and gradients as features to adjust the diffusion coefficients. Only the pixels

with both low gray-levels and high gradients will generate high diffusion coefficients. It then smooths

the suspected defect region and preserves the original gray-levels of the faultless background. By

subtracting the diffused image from the original image, the micro-crack can be distinctly enhanced in

the difference image. Zhang et al. [14] presented a four-layer feed forward fuzzy neural network with

an associated learning algorithm. The FNN combines the advantages of fuzzy logic systems and neural
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networks, providing a convenient method for solving complex recognition processes such as TFT-LCD

mura evaluations.

Numerous applications of defect inspection using fuzzy neural networks have been developed [14–

15], but they have mainly been used on TFT-LCD (thin film transistor liquid crystal display). Unlike the

ripe techniques of TFT-LCD, methods that use a fuzzy neural network for detecting defects on solar cells

have been discussed less. In this paper, a novel method of inspecting defects in the chemical process of

poly-crystalline solar cell wafers by the fuzzy theory was presented. Laser-reflected spots of quality solar

wafers were used as a standard reference for comparison with the spots of inferior wafers. In addition, the

fuzzy algorithm and back-propagation method were applied in the system in order to improve the system’s

efficiency.

2. BACK-PROPAGATION METHOD

This study analyzed solar wafer images based on laser reflection points and designed a chemical stain

analysis program to identify whether a light reflection point on a solar wafer was a chemical stain. This

program included image-processing techniques such as fuzzy inference binarization, image feature

acquisition, and back-propagation recognition. During the experiments, a He-Ne laser beam was projected

onto a solar wafer, via two reflectors, and then reflected onto a screen to produce a laser reflection point.

When the laser reflection point was formed on the screen, a computer captured this image with a digital

Figure 1. (a) A poly-crystalline silicon solar cell process; (b) Polysilicon solar cell wafer (not stained); (c) Polysilicon solar cell wafer

(stained).
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camera (CCD) and conducted subsequent analysis. If the projection site on the solar wafer had no chemical

stains, the resulted light reflection point image would be a quasi-circular and luminous image; contrarily, if

the projection site on the solar wafer had chemical stains, the resulting light reflection point image would

have an irregular geometric figure.

Upon acquiring an image, it must first be binarized in order to filter out irrelevant information. During

binarization, noises often occur on an image; hence, other image processing techniques are required to filter

the image. In this study, fuzzy inference was used to binarize an image to filter out noises and highlight

image features.

The back-propagation learning algorithm [15–16] in this study utilized a supervised learning

algorithm, which conducts its computed learning processes in batches. The eigenvalue of each laser

reflection point image is entered into the network in order to calculate the output, and the expected output is

set for each data entry and represents whether there is contamination. Network errors are equal to the

expected value minus the output; such errors propagate from the back-end to the front-end in order to

modify network parameters and achieve network convergence.

Suppose that, during batch-training of the laser reflection point feature images, the eigenvector of each

laser reflection point is X and each target output vector is T. In the back-propagation neural network

(BPNN), the input of the j th neuron in the n th layer will be Xn
j , and the output of the j th neuron in the n th

layer will be Yn
j ; thus, the expected output of the j th neuron in the output layer is Tj. The interconnecting

weight between the i th neuron and the j th neuron isWij, and the threshold of the j
th neuron is uj. When f(x)

denotes the network activation function, the sigmoid function, 1/1 þ e2x is adopted. Eq. (1) represents the

network neuron output in the n th layer:

Yn
j ¼ f netn21

j

� �
¼ f

X
i

Wij £ Xi 2 uj

 !
ð1Þ

The general BPNN error function is expressed by Eq. (2). The error is the difference between the target

output and the expected output, which is expected to decrease through learning [17]:

E ¼
PðTj 2 YjÞ2

2
ð2Þ

Adjusting the network neuron weight (W) and the neuron threshold (u) can decrease errors between the
output and the expected value. The main purpose of a neural network learning algorithm is to adjust the

interconnecting weight and the neuron threshold. The weight correction formula is as shown in Eq. (3), in

which DW is the corrected value of the interconnecting weight:

W ¼ W þ DW ð3Þ
Next, take a partial derivative, with respect to the interconnecting weight and neuron threshold from

the output layer to the hidden layer. The results are shown in Eq. (4) and (5).

DWij ¼ 2h £ ½2ðTj2Yj
Þ� £ f 0ðnetjÞ £ Yhj ¼ h £ ðTj 2 YjÞ £ ð12 YjÞ £ Yj £ Yhj ¼ h £ 6y £ Yh ð4Þ

Duj ¼ 2h
›

›Yo

1

2

X
k

ðTk2Yk
Þ2

" #
£ ›

›net
½f ðnetÞ� £ ›

›uj

X
k

Wik £ Yh 2 uj

" #

¼ 2h £ ðTj 2 YoÞ £ 12
1

1þ e2net

� �
£ 1

1þ e2net

� �
¼ 2h £ 6y ð5Þ
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where, Dwij denotes the corrected value of the interconnecting weight between the i
th neuron in the hidden

layer and the j th neuron in the output layer, Duj denotes the corrected threshold value of the j
th neuron in the

output layer, Yhj denotes the output of the j th neuron in the hidden layer, h denotes the inertial factor

learning rate, which normally ranges between 0 , 1, and 6y ¼ (Tj 2 Yj) £ f0(netj) denotes the error of the
output layer.

For the hidden and input layers, the interconnecting weight and neuron threshold correction formula is

as follows:

DWij ¼ 2h £
X
k

›E

›nettnþ1
k

£ ›netnþ1
k

›Yj

" #
£ ›Yj

›netj
£ ›netj
›Wij

¼ 2h £
X
k

26nk £Wjk

� � £ f 0ðnetÞ £ yhj ð6Þ

Similarly, the hidden layer neuron threshold correction formula can be deduced:

Duh ¼ 2h
›E

›uh
¼ 2h

›E

›Yn
j

£ ›Yn
j

›netnj
£ ›netnj

›uh
¼ 2h £

X
k

›E

›netnþ1
k

£ ›netnþ1
k

›Yj

£ ›Yj

›netj
£ ›netj

›uh

" #

¼ 2h £
X
k

6nk £Wjk

� � £ f 0ðnetÞ ð7Þ

The modified neuron interconnecting weight and threshold are as follows:

Wij ¼ Wij þ DWij ¼ Wij þ h £ 6 £ Yh ð8Þ

uj ¼ uj þ Duj ¼ uj 2 h £ 6 ð9Þ

To determine if back-propagation learning is sufficient to recognize contaminations, the root mean

square (RMS) is normally used to determine if the network convergence is decreasing. When the network

finishes one learning cycle, the value of the network RMS is checked to ensure that it is less than the preset

error. Eq. (10) shows the network RMS formula:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
p

PN
j T

p
j 2 Y

p
j

� �2
M £ N

vuut
ð10Þ

where,M denotes the number of training laser reflection point images, N denotes the number of output layer

neurons in a neural network, T
p
j denotes the target output of the j

th neuron in the example of the p th laser

reflection point image, and Y
p
j denotes the inferred output of the j th neuron in the example of the p th laser

reflection point image.

The target of this study was polysilicon solar cell wafers. The tested image of a solar cell panel is

shown in Figure 1(b) and (c). The laser reflection point images were acquired using CCD for subsequent

analysis. The image resolution was 640 £ 480, and the image format was RGB. This study adopted a

fuzzy theory-derived image processing algorithm. After the images were loaded, binarization was

performed in order to filter out irrelevant information. During image binarization, noises often occur in

the images; thus, other image processing techniques are required in order to filter images prior to

The Chemical Stain Inspection of Polysilicon Solar Cell Wafer by the Fuzzy Theory Method 395

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

2:
08

 2
5 

A
pr

il 
20

14
 



Figure 2. (a) Image fuzzification membership function; (b) Fuzzy inference output function; (c) Image fuzzification membership

function; (d) Fuzzy inference output function.
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binarization. In this study, fuzzy inference was used to binarize the images in order to filter out noises and

highlight image features.

Suppose that the grayscale of pixels (x,y) in image I is I(x,y), the maximal grayscale in a 3 £ 3

image around pixel I(x,y) will be M3£3(x,y), and the grayscale of pixel (x,y) in output image Y will

be Y(x,y). In image fuzzification, the brightness fuzzy function mB(x,y) represents the fuzzified

brightness (brightness), the grayscale fuzzy function mG(x,y) represents the fuzzified grayscale

(gray), and the darkness fuzzy function mD(x,y) represents the fuzzified darkness (dark), as shown in

Figure 2(a).

The number of rules for the fuzzy inference rule base is 3, in which y0 denotes the three fuzzy inference
outputs. The fuzzy rule base settings are shown as follows [18–20]:

if Iðx; yÞ is Brightness then y0W isWhite ð11Þ

if Iðx; yÞ is Dark then y0B is Black ð12Þ

if Iðx; yÞ is Gray then y0M isMiddle ð13Þ

After the inferred fuzzy rule is established, the fuzzy output can be obtained. The three fuzzy output

functions are shown in Figure 2(b), in which y0W denotes the white output, grayscale 255; y0Mdenotes the
middle output, grayscale 128; and y0Bdenotes the black output, grayscale 1.

The fuzzy inference rules can be simplified by Eq. (14)–(15), and the fuzzification function is shown in

Figure 2(c). As the binarized output is either 0 or 255, only two single-value functions need to be designed

to conform to the binarized output, as shown in Figure 2(d):

if Iðx; yÞ is Brightness then y0W isWhite ð14Þ

if Iðx; yÞ is Dark then y0B is Black ð15Þ

When the feature image of the test image is in a high-brightness region, the fuzzy rule of the base

setting can binarize the image, as well as accentuate the high-brightness region of the image. Hence, fuzzy

inference increases the brightness of the high-brightness pixels and decreases the brightness of the low-

brightness pixels. However, when binarized, there will be a significant change of the grayscales in the

transitional region between the high brightness and low brightness; namely, the resulting grayscales will

have a serrated feature, which can be resolved using an erosion operator. This study adopted an erosion

algorithm, which was based on Dubois and Prade’s fuzzy set operation of T-Norm [21]. Eq. (16) shows the

T-Norm formula:

Tða; bÞ ¼ a £ b

max ½a; b;a� ð16Þ
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In order to obtain a smoother image, this study added a T-Norm dilation algorithm for binary inference,

as follows:

a ¼ 0:98

double TNormðdouble a; double bÞ
{

return a£b
max ða;b;aÞ

}

WhileðMeanGray . 4Þ
{

Newgray ¼ Iðx;yÞ
256

forði ¼ x2 1; i # xþ 1; iþþÞ{
forðj ¼ x2 1; j # xþ 1; jþþÞ{

if ði ¼¼ x&&j ¼¼ yÞ continue
Newgray ¼ TNorm Newgray; Iðx;yÞ

256

� �
}

}

if Newgray £ 255 is Brightness then y0W isWhite

if Newgray £ 255 is Dark then y0B is Black

}

The modified fuzzy binarization algorithm maintains the original fuzzy inference and adds the

subordinate program TNorm, in order to obtain the T-Norm algorithm of variables a and b. The NewGray

variable is resulted from the T-Norm algorithm of the saved 3 £ 3 area image of I(x,y), and the MeanGray

variable is the average grayscale of the saved image. The algorithm is terminated when the average image

grayscale is less than 4.

After obtaining the fuzzy output of the fuzzy inference, it must be defuzzified. Height defuzzification

was employed for I, as the grayscale of the binarized image was either 255 or 0, and height defuzzification

was most suited for a binarization algorithm. Eq. (17) shows the height defuzzification equation:

Yðx; yÞ ¼ y‘W £ mBðx; yÞ þ y‘M £ mGðx; yÞ þ y‘B £ mDðx; yÞ
mBðx; yÞ þ mGðx; yÞ þ mDðx; yÞ ð17Þ

This study used BPNN to inspect the chemical stains of the back-propagation architecture, which had

three layers representing the chemical stain probability; namely, the input layer (seven nodes), the hidden

layer (29 nodes), and the output layer (two nodes). The learning algorithm adopted by this study was a

back-propagation learning algorithm. In order to determine a chemical stain, this study acquired attributes,

such as the area ratio of the light reflection point image, the feature image area ratio, the radian, the feature

image geometric distance coefficient of variation (CV), the X-axis and Y-axis projection CVs, and the

feature image aspect ratio. Figure 3 shows the differences between a laser reflection point projected onto a

chemical stain and onto a non-chemical stain. For the non-chemical stain image, as shown in Figure 3(a),
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the projected feature image was close to circular, had a light reflection point brightness, and a halo around

the feature image; whereas, the chemical-stained feature image was an irregular geometric figure.

The network inputs in this study employed a number of attributes, such as the light reflection point

image area ratio, the feature image area ratio, the radian, the feature image geometric distance CV, the X-

axis and Y-axis projection CVs, and the feature image aspect ratio.

1. Light reflection point image area ratio:

Afeature ¼ ALaserSpeckle

imageW £ imageH
ð18Þ

where, Afeature is the ratio of the feature image area over the light reflection point image area, ALaserSpeckle is

the area of the largest inseparable speckle in the binarized feature image, imageW is the width of the

acquired light reflection point image, and imageH is the length of the acquired light reflection point image,

2. Feature image radian:

e ¼ 4p�ALaserSpeckle

LLaserSpeckle
ð19Þ

where, ALaserSpeckle is the area of the largest inseparable speckle in the binarized feature image, LLaserSpeckle
is the perimeter of the largest inseparable speckle in the binarized feature image, and e is the calculated

radian.

3. Feature image area ratio:

Aratio ¼ Aother

ALaserSpeckle þ AOther

ð20Þ

where, Aratio is the feature image area ratio, ALaserSpeckle is the area of the largest inseparable speckle in the

binarized feature image, and AOther is the area of the binarized feature image, minus the area of the largest

inseparable speckle image.

4. Feature image geometric distance coefficient

Ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðDxy2DaverageÞ2

PixelsLaserSpeckle

r
Daverage

ð21Þ

where, Ds is the standard deviation of the feature image geometric distance, Dxy is the geometric distance of

the feature image pixel from the original, Daverage is the geometric mean distance of the feature image, and

PixelsLaserSpeckle is the number of pixels in the binarized feature image, as shown in Figure 3(c).

5. Feature image aspect ratio:

Rate ¼ Widthfeature 2 Heightfeature
�� ��
Widthfeature þ Heightfeature

ð22Þ

where, Rate is the feature image aspect ratio,Widthfeature is the width of the feature image X-axis projection,

and Heightfeature is the width of the feature image Y-axis projection.

6. X-axis projection coefficient

XCRV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Xi2 �X
Widthfeature

q
�X

ð23Þ
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where, XCRV is the X-axis projection coefficient. X is the X-axis projection mean, Xi is the projection

coordinate on the X-axis, and Widthfeature is the width of the feature image X-axis projection.

7. Y-axis projection coefficient

YCRV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Yi2 �Y
Heightfeature

q
�Y

ð24Þ

where, YCRV is the Y-axis projection coefficient. Y is the Y-axis projection mean, Yi is the projection

coordinate on the Y-axis, and Heightfeature is the width of the feature image Y-axis projection.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In addition to an automatic inspection, the system developed in this study (Figure 4) enabled manual light

reflection point image acquisition and back-propagation training. In addition, the parameters could be

saved for future usage. The main purpose of this experiment was to obtain laser reflection point images, as

seen in Figure 5, in which the image without a stain appears focused and has a quasi-circular shape, while

the image with a stained light reflection point shows an irregular geometric figure.

Figure 3. Laser reflection point image acquisition: (a) The acquired laser reflection point feature image; (b) The binarized image; (c)

The image of the largest inseparable speckle after binarization.

Figure 4. Human-machine interface of the inspection system in this study.
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The images of the laser reflection points were binarized to calculate the eigenvalue as a network input

for the learning process. Table 1 lists the network parameters, and Figure 6 shows the errors arising from

back-propagation learning. As seen, the back-propagation learning inclined to a convergence, which

converged to the expected error after approximately 4000 learning cycles. Figure 7 shows the eigenvalues

of the light reflection point image.

Figure 5. (a) Laser reflection point image (no stain); (b) Laser reflection point image (no stain); (c) Laser reflection point image (with

stain).

Table 1. Back-propagation system.

Type of neural network Number of network layers Input Layer Hidden Layer Output Layer

Back-propagation neural network 3 7 neurons 29 neurons 2 neurons

Sample size of light reflection point image Learning cycles Expected error Average error

36 5000 0.01 0.009936
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Figure 6. Neural network learning average error.

Figure 7. (a) , (c) Laser reflection point feature image and eigenvalues.
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As seen in Figure 8, the inability or failure to recognize light reflection point feature images was due to

the feature images being too small or too bright. As a result, the network determined that the outputs of the

feature images were less than 0.6, which led to recognition failure.

Table 2 shows the back-propagation recognition results after the learning experience was completed.

In the output layer of the network, the output threshold was 0.6. When the output was greater than 0.6, its

eigenvalue would be 1; otherwise, it was 0. According to network recognition, a total of 1096 images were

provided for testing light reflection points, in which 747 images had no chemical stains and 340 images had

chemical stains, for a recognition rate of 98%.

From the experimental results, the characteristics of the proposed system could be listed as follows:

1. The fuzzy theory was separated from the back-propagation network. The fuzzy neural network

architecture proposed by Yu Zhang [14] combines a neural network with fuzzy theory, and then

fuzzifies the image’s eigenvalues through fuzzy functions and inputs these values into the next layer

of the network.

2. The back-propagation method was used to correct the network weights during learning in order to

reduce errors.

3. An additional limitation of this study was the fact that the structural details of solar cells are in a

random arrangement, and the light reflection point images are also randomly distributed. For

different levels of surface roughness, the directions and phases of the scattered laser light will vary

with the distribution of the light spots [22]. In other words, violent variations of the surface

roughness will influence the accuracy of this system.

Figure 8. (a) , (d) Unrecognizable light reflection point image.

Table 2. Back-propagation recognition results.

Test samples Number of samples without chemical stains Number of samples with chemical stains

1096 760 336

Recognition result

Without chemical stains 747

With chemical stains 340

Unrecognizable 9

Statistic result

Correct recognition number 1078

Recognition rate 98%
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4. CONCLUSIONS

This study combined fuzzy theory with an image-processing algorithm in order to efficiently filter noises

from light reflection point images, and it employed inference to fuzzify the results of human decision

methods for image processing. The inspection system proposed in this study used a fuzzy theory to process

images, and then acquired the image eigenvalues as neural network inputs.

As solar wafer material is fragile, the proposed laser reflection point inspection method could be used

to inspect solar wafers without having to make contact. Future studies could incorporate a computer-

integrated manufacturing technique in order to develop a more comprehensive manufacturing automation

process, which would increase the capacity, quality, and yield.
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