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Abstract

Alpha-dystroglycanopathy is caused by the glycosylation defects of a-dystroglycan (a-DG). The clinical spectrum ranges from severe
congenital muscular dystrophy (CMD) to later-onset limb girdle muscular dystrophy (LGMD). Among all a-dystroglycanopathies,
LGMD type 2I caused by FKRP mutations is most commonly seen in Europe but appears to be rare in Asia. We screened
uncategorized 40 LGMD and 10 CMD patients by immunohistochemistry for o-DG and found 7 with reduced o-DG
immunostaining. Immunoblotting with laminin overlay assay confirmed the impaired glycosylation of a-DG. Among them, five
LGMD patients harbored FKRP mutations leading to the diagnosis of LGMD2I. One common mutation, c¢.948delC, was identified
and cardiomyopathy was found to be very common in our cohort. Muscle images showed severe involvement of gluteal muscles and
posterior compartment at both thigh and calf levels, which is helpful for the differential diagnosis. Due to the higher frequency of
LGMD2I with cardiomyopathy in our series, the early introduction of mutation analysis of FKRP in undiagnosed Taiwanese
LGMD patients is highly recommended.
© 2013 Published by Elsevier B.V.

Keywords: Alpha-dystroglycan; Alpha-dystroglycanopathy; Limb-girdle muscular dystrophy type 2I; FKRP; Dilated cardiomyopathy; Glycosylation
defect; Laminin binding; Muscle imaging

1. Introduction phenotypes form a broad spectrum, ranging from severe
congenital muscular dystrophy (CMD) with or without
Alpha-dystroglycanopathy is a group of muscular  ocular and central nervous system involvement to
dystrophies caused by altered glycosylation of  later-onset limb girdle muscular dystrophy (LGMD) [3-5].
a-dystroglycan (a-DG), which is one of the components A number of genes have been reported to cause
of dystrophin—glycoprotein complex [1,2]. The clinical  a-dystroglycanopathy, including POMTI, POMT2,
POMGnTI, FKTN, FKRP, and LARGE that are known
I to be involved in glycosylation of o-DG, and DAGI,
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kinds of oa-dystroglycanopathy are inherited with
autosomal recessive trait.

Among those causative genes for a-dystroglycanopathy,
FKRP mutations are the most frequently seen in the
Caucasian population, causing LGMD2I and congenital
muscular dystrophy type 1C (MDCIC). In the Asian
population, on the other hand, the most common
a-dystroglycanopathy is Fukuyama congenital muscular
dystrophy and LGMD2M caused by the mutations in
FKTN [20-24]. This phenomenon may be caused by the
founder effect of c.826C>A substitution in FKRP and the
ancestral insertion of a SINE-VNTR-Alu (SVA)
retrotransposon in FKTN in different geographic areas
[21,25]. Recently, an increasing number of patients
having FKTN mutations were identified outside Asia but
so far few Asian patients with LGMD2I caused by
FKRP mutations have been reported [26-29].

In this study, we found that LGMD2I is common in the
Taiwanese patients with o-dystroglycanopathy due to a
common mutation, ¢.948delC (p.Cys317Alafsx111), which
may cause more severe phenotype and cardiomyopathy.

2. Materials and methods
2.1. Patients

Forty patients clinically and pathologically diagnosed as
LGMD and 10 patients with CMD who received muscle
biopsy in Kaohsiung Medical University Hospital from
January, 2008 to December, 2011 were enrolled. LGMD
was defined as progressive proximal-dominant muscle
weakness with characteristic dystrophic changes in muscle
pathology. CMD was recognized as infantile floppiness
with dystrophic muscle. Patients with deficiencies of
dystrophin, sarcoglycans, dysferlin, merosin or collagen
VI were excluded by immunohistochemistry beforehand.
All merosin deficiency patients were confirmed to have
LAMA2 mutations [30]. This study was approved by the
institutional review board of the Kaohsiung Medical
University Hospital.

2.2. Histochemistry

Biopsied muscle specimens were frozen in isopentane
cooled in liquid nitrogen. A serial frozen section
was stained by a battery of histochemical methods
including hematoxylin and eosin (H&E), modified
Gomori-trichrome (mGt) and NADH-tetrazolium
reductase (NADH-TR).

2.3. Immunohistochemistry

Frozen sections of 6 um thickness were used for
immunohistochemistry according to the standard
protocols with Vantana Benchmark automated stainer.
Primary antibodies used in this study were monoclonal
anti-o-DG (VIA4-1; Upstate Biotechnology, Lake Placid,

NY, USA) and anti-B-DG (43DAG1/8D5; Novocastra
Laboratories, Newcastle upon Tyne, UK) antibodies.

2.4. Immunoblotting and laminin overlay assay

The detailed techniques of immunoblotting, and laminin
overlay assay have been described previously [31]. The
following antibodies were used for immunoblotting
analysis: monoclonal anti-a-DG (VIA4-1) and polyclonal
anti-o-DG (GT20ADG, kindly provided by Prof. K.
Campbell, Iowa Univ.), polyclonal anti-laminin-1 (Sigma,
St. Louis, MO, USA), and monoclonal anti-p-DG
(43DAG1/8D53).

2.5. Mutation analyses of a-DGP associated genes

Genomic DNA was extracted from leukocytes in
peripheral blood lymphocytes according to standard
protocols. All exons and their flanking intronic regions of
FKRP (NM_024301.4), FKTN (NM_001079802.1),
POMGnTI (NM_001243766.1), POMTI (NM_007171.3),
POMT2 (NM_013382.5), and LARGE (NM_004737.4)
were amplified and sequenced using an automated 3100
DNA sequencer (Applied Biosystems, Foster, CA, USA).
Primer sequences are available upon request. DNA
samples from 100 Taiwanese individuals without
apparent neuromuscular disorders were analyzed as
controls.

3. Results
3.1. Patients with a-DGP caused by FKRP mutations

Seven of 50 patients with unclassified LGMD and CMD
had a reduced o-DG immunoreaction  using
VIA4-lantibody, which recognizes glycosylated forms of
o-DG on muscles, and they were thus considered to have
a-dystroglycanopathy (Fig. 1). Among these seven
patients, six had LGMD phenotype and one was CMD.
Mutation screening revealed that five LGMD patients
from four families harbored FKRP mutations (Fig. 2).
No mutation in FKTN, POMGnTIl, POMTI, POMT?
and LARGE was identified in these seven patients. The
clinical, pathological and biochemical information of all
five patients with FKRP mutations are summarized in
Table 1 together with that of a previously reported
Taiwanese LGMD2I patient who was the first reported
case in East-Asia (Patient 6) [26]. The c¢.948delC
(p.Cys317Alafsx111) mutation was found heterozygously
in four newly diagnosed patients (Patients 2, 3, 4 and 5)
as well as in Patient 6. Patients 2, 3, and 4 carried a
c.545A>G  (p.TyrY182Cys) mutation, which was
previously reported in two Brazilian patients, and a
c.823C>T (p.Arg275Cys) mutation was identified in
Patients 5 and 6. The compound heterozygous mutations
for Patients 2, 5, and 6 were also found to lie on different
parental alleles. Patient 1 bears two different novel
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Fig. 1. Immunohistochemistry for a-DG (VIA4-I) in Patients 1, 2, 4, 5, and 6 (A-E). All patients’ muscle samples showed markedly reduced staining, as

compared with controls (F). Bar: 50 um.
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Fig. 2. Sequence analysis of FKRP revealed homozygous ¢.263A>T and ¢.560C>G mutations in Patient 1 (A), compound heterozygous ¢.545A>G and
¢.948delC mutations in Patients 2, 3, and 4 (B), and compound heterozygous ¢.823C>T and ¢.948delC mutations in Patients 5 and 6 (C). The pedigree of
Patient 1 is also shown; the youngest brother of Patient 1 died of unknown causes at 7 months of age (A).

homozygous mutations, c¢.263A>T (p.Try88Phe) and
¢.560C>G (p.Alal87Gly), neither of which were identified
in the human genome mutation database (HGMD) and
100 healthy individuals. The consanguineous healthy
parents of Patient 1 carried these two missense
mutations, heterozygously.

3.2. Reduced glycosylation of a-DG in LGMD2I patients

We further confirmed the altered glycosylation of
o-DG in our LGMD2I patients (P2, 4, 5 and 6) using
immunoblotting analysis and laminin overlay assay. On
immunoblotting analysis using VIA4-1 antibody, skeletal
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Table 1
Summary of clinical, pathological, biochemical and molecular analyses for the patients with a-dystroglycanopathy.
Pl P2 p3* P4 P5 P6°
Sex/age (years) F/35 M/16 M/31 M/30 M/10 F/23
Age of onset (years) 2 5 10 17 2 2
Calf hypertrophy Y Y Y Y Y Y
Cardiomyopathy (age of Y (28) Y (14) Y (31) Y (30) N Y (17)
diagnosis, years) DCM DCM DCM DCM DCM
Loss of ambulatory ability N Y Y (29) N N Y (12)
(age, years) 6-min walk: 6-min walk: 6-min walk: not 6-min walk:
76 m 343 m done 210 m
Cognition Normal Normal Normal Normal Normal Normal
Brain MRI: negative
finding
Other anomalies Over-active N N N N Scoliosis with op
bladder
CK (IU/L) 1000-1500 4000-8000 1500-2000 1500-2000 6000-9000 200-500
max: unknown max:>10,000 max: max: unknown max: >10,000
unknown
Lung function FVC: 32% FVC: 45% FVC: 43% FVC: 62% FVC: 64% FVC: 10%
FEV1: 33% FEVI1: 53% FEVI1: 36% FEVI1: 73% FEVI1: 76% FEVI1: 12%
PCF: 2.12 L/s PCF: 691 L/s PCF: PCF: 3.7L/s PCF: 4.64 L/s PCF: 0.42 L/s
3.46 L/s BiPAP use at night
FKRP mutations ¢.263A>T ¢.545A>G (F, c.545A>G c.545A>G ¢.823C>T (M, ¢.823C>T (F, hetero)
homo hetero) ¢.948delC ¢.948delC hetero) ¢.948delC (M,
(F & M, hetero)  ¢.948delC (M, ¢.948delC (F, hetero)
c.560C>G hetero) hetero)
homo

(F & M, hetero)

Y: yes; N: nil; DCM: dilated cardiomyopathy; min: minute; m: meter; op: operation; max: maximum; F: Father; M: Mother.

@ Siblings.
® Previously reported (Reference [21]).

muscles from all four patients showed fainter and smaller
sized bands than the control (Fig. 3A). With GT20ADG
antibody for the core region of a-DG, all skeletal muscles
from these patients showed fainter broadbands with
smaller molecular mass than that detected in the control
(Fig. 3B). Laminin overlay assay displayed greatly
reduced binding ability of «-DG to laminin in all patients
(Fig. 3C).

3.3. Clinical findings of LGMD2I patients (Table 1)

The mean age of all 6 LGMD2I patients at examination
was 24.2 + 9.7 years, and the mean disease duration was
17.8 9.1 years. The disease onset was variable, ranging
from early childhood to late teens (2-17 years; 6.3 + 6.1).
All patients had calf hypertrophy and proximal dominant
muscle weakness, starting from lower extremities and

A VIA4-1 B GT20ADG C Laminin overlay

C P2 P4 P5 P6 C P2 P4 P5 P6 C P2 P4 P5 P6
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Fig. 3. Immunoblotting analysis. All 4 patients (P2, P4, P5 and P6) examined showed fainter and smaller sized bands than controls using a-DG (VIA4-1)
(A). With the antibody of GT20ADG, fainter broadbands with smaller molecular weights were detected (B). Laminin overlay assay displayed greatly

reduced binding ability of a-DG to laminin in all patients (C).
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then extending to shoulder girdle and arms. Patient 2
became wheelchair-bound at the age of 29 years while
Patient 6 lost her ambulatory ability at 14 years of age.
Dilated cardiomyopathy (DCM) was seen in five of six
patients (83.3%) and they are currently under medication.
DCM was diagnosed with echocardiogram in Patients 2,
3, and 4 at their first visit to our hospital, so that the
exact onset age of cardiac involvement was unclear. All
patients had impaired pulmonary function with different
degrees of severity but only Patient 6 required ventilator
assistance (1 in 6; 16.7%). All patients had normal
cognitive functions and the brain MRI of Patient 6
showed no notable abnormal changes. As for other
abnormalities, only Patient 6 received an operation for
scoliosis at 13 years of age. Serum creatine kinase levels
were usually up to 10,000 TU/L at disease onset and then
declined to hundreds at a later stage.

3.4. Muscle CT of LGMD?2I patients

On muscle CT, all assessed patients (Patients 1-5)
showed similar patterns of muscle involvement (Fig. 4)
Lower extremities were more severely affected than upper
extremities. Gluteus maximus was the most affected

muscle (Fig. 4A), followed by posterior compartment of
thigh muscles, among which biceps femoris and then
adductors showed marked hypodensity (Fig. 4B). In the
anterior compartment of thigh, vastus muscles and rectus
femoris were equally involved. At the calf level, posterior
especially gastrocnemius and

compartment muscles,

soleus, were also more affected than anterior part
(Fig. 4C). As for upper extremities, involvement of
shoulder girdle muscles including subscapularis,
infraspinatus and supraspinatus was more prominent
than trapezium and deltoid muscles (Fig. 4D).

4. Discussion

Wide variability in clinical picture has been reported in
LGMD2I, of which the clinical features can be Duchenne
muscular dystrophy-like, late-onset LGMD phenotypic
and even asymptomatic [32,33]. In European countries,
homozygosity of the most common missense mutation of
¢.826C>A (p.Leu276lle) has been reported to confer a
relatively milder phenotype than patients with compound
heterozygous mutations [34]. A homozygous mutation of
c.545A>G identified in the Brazilian patients has
previously been reported to cause mild clinical
phenotypes and disease course [32]. In our series, Patients
2-4 harbor the same compound heterozygous mutations
of c.545A>G and c.948delC while Patients 5 and 6 both
carry the same ¢.823C>T and ¢.948delC mutations. The
patients carrying ¢.823C>T and ¢.948delC seem to show
more severe clinical features than the patients having
¢.545A>G and c.948delC in terms of the age at onset,
disease course, motor deterioration and complications.
Because only a limited number of patients were included,
however, additional patients with each mutation are
required to clarify the phenotype and genotype
correlation more clearly.

Fig. 4. Muscle CT on Patient 2. Gluteus maximus muscles were severely affected (A), followed by biceps femoris and adductors (B). At the calf level,
gastrocnemius and soleus muscles were severely involved (C). In the upper extremities, involvement of subscapularis, infraspinatus and supraspinatus were
more severe than trapezium and deltoid (D). (D: deltoid; IS: infraspinatus; SC: subscapularis; BF: biceps femoris; ST: semitendinosus; SM:
semimembranous; S: soleus; F: fibularis; G: gastrocnemius; GM: gluteus maximus; RF: rectus femoris; VL: vastus lateralis; AM: adductor magus; G:

gracilis).
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Noteworthily, ¢.948delC in FKRP is a common
mutation in Taiwanese LGMD2I patients. The mutation
could cause frame shift and premature termination in
translation (p.Cys317Alafsx111). We further screened 300
controls without neuromuscular diseases to determine the
carrier frequency of ¢.948delC but none carried this
mutation. This result suggests that the prevalence of the
homozygosity of ¢.948delC is at least lower than 1 in
360,000, which may be too low to identify a homozygous
patient. On the other hand, this result may also indicate
that the homozygosity of this frame shift mutation is too
severe to survive, since none of the homozygous null
mutations in FKRP has been reported to date and FKRP
knockout mice also showed embryonic lethality [35].

Interestingly, two different homozygous mutations,
c.263A>T (p.Tyr88Phe) and c.560C>G (p.Alal87Gly),
were found in Patient 1, but not in 100 controls. Her
parents were consanguineous (cousins) and both
harbored these two mutations heterozygously. Compared
the amino acid sequences of the FKRP protein among
different species, p.Tyr88 is highly conserved in mammals
while p.Alal87 is preserved among primates and some
mammals, but not in rodents. Furthermore, predictions
of functional effects of these two variants using software
showed that p.Tyr88Phe change is probably damaging
but p.Alal87Gly is benign in terms of functional impact
(http://genetics.bwh.harvard.edu/pph2/index.shtml).
Accordingly, ¢.263A>T (p.Tyr88Phe) is more likely to be
pathogenic in Patient 1 although further functional
studies are still necessary.

In our cohort, cardiomyopathy accounted for 83% of
our patients, whereas about 10-55% of European
LGMD2I patients were reported to have cardiac
problems [36]. As for respiratory function, only one of
our patients (Patient 6) was ventilator-dependent at night
although the other five developed variable degrees of
respiratory impairment. However, the proportion of
respiratory aid requirement was slightly lower than other
reports [20, 36-38], probably because the assessment age
and disease duration of our patients were also lower.
Similar to previously reported LGMD?2I patients, none of
our patients had overt mental retardation.

So far few papers have focused specifically on the muscle
imaging of LGMD2I patients [37,39]. Based on previous
related literature, gluteal muscles and posterior
compartment of thigh muscles were more affected than
anterior compartment in LGMD?2I. In our report, similar
muscle involvement was seen on CT images in which
gluteal maximus was the most severely affected, followed
by adductors and biceps femoris. Some of these changes
may overlap with those seen in other common LGMD,
especially LGMD2A [39], such as the early involvement
of gluteal muscles and predominant involvement of
posterior compartment. However, selective involvement
of medial gastrocnemius and soleus and relative sparing
of wvastus lateralis are characteristic for LGMD2A
[12,21,40], which suggests that muscle images are still

helpful for a differential diagnosis. In addition, different
clinical phenotypes including commonly-seen calf
hypertrophy and cardiac involvement in LGMD2I and
the presence of characteristic lobulated fibers on muscle
pathology of LGMD2A are also important to make the
differentiation. In our series, all patients showed calf
hypertrophy and 83% had cardiac problems; lobulated
fibers were not observed in skeletal muscle from any
patient and molecular analysis of CAPN3 revealed no
mutation.

LGMD2I is one of the most prevalent LGMD in
Europe but is very rare in Asia. Only one from Taiwan
(P6), two from China and another Asian patient from
North America have been reported on thus far [26-28].
Also in Japan, only one LGMD2I patient was identified
by the National Center of Neurology and Psychiatry,
which has the largest muscle repository in Japan.
Therefore, our report discloses that LGMD?2I is not rare
at least in Taiwan. Considering that the glycosylation
defect may be too mild to be detected by
immunohistochemical screening, there must be more
LGMD2I patients who are as yet undiagnosed in
Taiwan. Larger scale mutation analysis for uncategorized
LGMD patients may be necessary for an early diagnosis
of LGMD2I to be made. One common mutation,
c.948delC, in the Taiwanese population may be
associated with higher frequency and early development
of cardiomyopathy although a larger number of patients
is required to make this conclusive. However, it is still
suggested that clinicians should closely monitor the
cardiac function of LGMD2I patients harboring this
mutation from late childhood or their early teens.
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