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1 Introduction

In recent years, a significant progress in the study of scattering amplitudes is the discovery

of color-kinematic duality [1]. At tree-level, the duality states that the complete Yang-Mills

tree amplitude Atot can always be written into the following formula

Atot =
∑

i

cini

Di
, (1.1)

where the sum runs over all distinct cubic tree diagrams. In the formulation of Bern, Car-

rasco and Johansson (BCJ), the kinematic factors ni, which we will call “BCJ numerator”,

satisfy the same algebraic relations as those of the color factors ci, i.e.,

antisymmetry : ci → −ci ⇒ ni → −ni

Jacobi− like identity : ci + cj + ck = 0 ⇒ ni + nj + nk = 0. (1.2)

The duality between color and kinematic factors provides strong constraints on color-

ordered Yang-Mills tree amplitudes. Specifically, the antisymmetry of kinematic factors
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implies Kleiss-Kuijf [2, 3] relations, while the Jacobi-like identity implies BCJ relations [1].

The newly discovered BCJ relations have been understood both from string [4–6] and

field theory [7–10] perspectives. BCJ relations also serve as the key to the understanding

of KLT relations [11], which express gravity tree amplitude in terms of products of two

color-ordered Yang-Mills tree amplitudes (See [12–15]). Although a proof at loop-levels is

currently absent, explicit calculations show that the duality (1.2) is also satisfied at the

first few loops [16–25].

Because of the applications in the study of Yang-Mills and gravity amplitudes, the

construction of BCJ numerators has become an important problem, and there are many

discussions in the literature. In [26], BCJ numerators were constructed by string pure-

spinor method. In [27, 28], a light-cone gauge approach for the kinematic algebra was

suggested, which provides a natural algebraic explanation to BCJ duality. Using this

approach BCJ numerators of MHV Yang-Mills amplitude and all amplitudes in self-dual

Yang-Mills theory can indeed be expressed as structure constants of a diffeomorphism alge-

bra [27, 28]. Based on this idea, we have proposed a more general kinematic algebra in [29],

from which one can construct BCJ numerators at tree-level in arbitrary D-dimensions and

for arbitrary helicity configurations.

The fact that the color factors ci and the kinematic numerators ni share the same

algebraic structure, also suggests that the existing decompositions of Yang-Mills tree am-

plitudes may have color-kinematic counterparts. Traditionally, we have two different de-

compositions of Yang-Mills amplitudes [3]

Trace form : Atot = gn−2
∑

σ∈Sn−1

Tr(T 1 . . . T σn)A(1, σ2, . . . , σn), (1.3)

DDM form : Atot = gn−2
∑

σ∈Sn−2

c1|σ(2,...,n−1)|nA(1, σ, n), (1.4)

where g is the coupling constant, and A’s are the color-ordered amplitudes. In Trace form

the generator T a is given by fundamental representation of U(N) group, while in DDM

form c1|σ(2,...,n−1)|n is constructed using structure constants fabc as

c1|σ(2,...,n−1)|n = f1σ2x1fx1σ3x2 . . . fxn−3σn−1n . (1.5)

The equivalence between BCJ form (1.1) and DDM form was shown in [30], where both

forms were proven to be equivalent to the KLT relation of color ordered scalar theory. To

show the equivalence between DDM form and Trace form [3], the following two properties

of U(N) Lie algebra are essential

Property One : (fa)ij = faij = Tr(T a[T i, T j ]), (1.6)

Property Two :
∑

a

Tr(XT a)Tr(T aY ) = Tr(XY )

∑

a

Tr(XT aY T b) = Tr(X)Tr(Y ) . (1.7)
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Based on BCJ duality (1.1), it is natural to exchange the role between ci and ni and

consider the following two dual forms

Dual Trace form : Atot = gn−2
∑

σ∈Sn−1

τ1σ2...σnÃ(1, σ2, . . . , σn), (1.8)

Dual DDM form : Atot = gn−2
∑

σ∈Sn−2

n1|σ(2,...,n−1)|nÃ(1, σ, n), (1.9)

where Ã’s are color ordered tree amplitudes of scalar theory with fabc as its cubic coupling

constants (see references [30, 31]) and τ (which we will call “Dual-trace factor” or simply

τ -function) is required to be cyclic invariant. Indeed, the Dual-DDM form was given in [32]

while the Dual-Trace form was conjectured in [33] with explicit constructions for the first

few lower-point amplitudes and a general construction was suggested in [28].

Although the existence of the above two dual forms were established, a systematic

Feynman rule-like prescription to τ -functions and BCJ numerators nσ is not yet known

at this moment. The dual DDM-form was studied in [29], where the construction of

BCJ numerators n1|σ(2,...,n−1)|n was given (see (2.5)). Although the result in [29] for BCJ

numerators is just a small step towards the systematic local diagram construction, it does

give us some useful applications.

In this paper, we use BCJ numerators to systematically construct the dual-trace fac-

tor τ and realize the proposed Dual-trace form (1.8). Unlike the trace factor Tr(T a . . .)

which satisfies cyclic symmetry by construction, there is no relation presumed among these

τ -functions, thus in principle there are n! τ -functions we need to determine. Any solution

to these n! τ -functions will be a rightful choice as long as it gives the right total ampli-

tude (1.8). However, from the way dual-DDM forms are labeled, we see that there are only

(n− 2)! BCJ numerators n1σn needed to completely fix the total amplitude, thus it is very

natural to impose some relations to reduce the number of independent τ ’s. These imposed

relations are [33]:

• (A) Cyclic symmetry:

τ12...n = τn1...(n−1). (1.10)

Using the cyclic symmetry, we can fix the first index to be any particular number,

for example, 1, thus the number of independent τ -functions is reduced to (n− 1)!.

• (B) KK-relation:

τ1,α,n,βT = (−1)nβ

∑

{σ}∈OP ({α}
⋃
{β})

τ1,σ,n, (1.11)

where nβ is the number of elements in the set β, and βT denotes the inverse of the

ordering of set β. The sum in (1.11) is over all permutations of the set {α}
⋃
{β}

where relative ordering inside both subsets α and β are kept. Using this relation, we

can fix two particular numbers, for example, 1 and n, at the first and last positions,

thus the number of independent τ -functions is (n− 2)!.
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Having imposed the above two relations, we need to find these (n − 2)! independent τ -

functions, such that relation (1.8) is satisfied. This problem is solved by imposing the

following relations between (n − 2)! BCJ numerators n1σn
1 and (n − 2)! τ1σn-functions

(where σ ∈ Sn−2(23 . . . (n− 1)))

n1σ2...σ(n−1)n = τ1[σ2,[...,[σn−1,n]...]], (1.12)

here [ , ] denotes the antisymmetric combination, for example n123 = τ1[2,3] = τ123 − τ132.

After solving τ1σn as linear combinations of n1σn using (1.12), we can use (1.11)

and (1.10) to obtain all other τ -functions. The claim is that if we put these τ ’s back

to the right hand side of (1.8), we do get the left hand side. In fact the proof of equivalence

of Trace form (1.3) and DDM form (1.4) only relies on two facts: (1) Partial amplitudes

A(1, σ, n) are cyclic symmetric and satisfy KK-relations. (2) We have two different factors

(in this case the trace and the color factor) satisfying the relation

c1σ2...σ(n−1)n = Tr(T 1[T σ2 , [. . . , [T σn−1 , Tn] . . .]]). (1.13)

Noting that the imposed relation (1.12) is exactly the same as (1.13) and that partial

amplitudes Ã(1, σ, n) in (1.8) and (1.9) are cyclic symmetric and satisfy KK-relations, we

see that the claim is true.

The above logic is perfectly right, but there are two unclear points. The first is that

each solution is based on (1.12) where a pair of numbers ((1, n) in the example above) are

fixed. Choosing a different pair will result in a different solution in principle. For example,

the same τ123...n-function can have two different expressions corresponding to two different

choices of the fixed pair (i1, j1) and (i2, j2). Secondly, for a given fixed pair, (1, n) for

example, are the expressions for any two τ -functions related to each other by a correspond-

ing relabeling? Specifically, let us assume two τ -functions are τσ1 =
∑(n−2)!

i=1 cin1αin and

τσ2 =
∑(n−2)!

j=1 djn1αjn, where n1αn’s are the (n− 2)! independent numerators in KK-basis

with (1, n) fixed at two ends. If two orderings are related to each other by a permutation

P of n-elements, i.e., σ2 = P (σ1), we can get another expression
∑(n−2)!

i=1 cinP (1αin) by

relabeling from the expression of τσ1 . Then the question is that whether we have

(n−2)!∑

j=1

djn1αjn
?
=

(n−2)!∑

i=1

cinP (1αin) . (1.14)

These two points are related to each other. In fact, if (1.14) is satisfied, it should

be expected that τ -functions are unique no matter which pair is taken fixed in (1.12) to

get them, since different choices can be related to each other by a permutation. In this

paper, we will show that the solution obtained by our algorithm based on (1.12) will have

this natural relabeling property. In other words, conditions (1.12) and natural relabeling

property are in fact consistent with each other. With this understanding we present another

algorithm that uses relabeling property to solve τ -functions.

1Since in our whole paper, we will only use BCJ numerators of the DDM-chain form, to simplify the

notation we will use n123...n ≡ n1|23...|n.
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The structure of this paper is the following. In section 2, we provide a short review

of the kinematic algebra proposed in [29]. Then we provide an algorithm to construct

dual-trace factors in section 3. To demonstrate the idea outlined in section 3, we present

several examples in section 4. We discuss the natural relabeling property and prove that

the solution obtained from our algorithm in section 3 does satisfy the relabeling symmetry.

A short summary of this work is given in section 6. Finally, details of the proof of the

relabeling property are given in the appendix.

2 Useful properties of BCJ numerators

Before presenting the construction of dual-trace factors, let us review some useful properties

of BCJ numerators discussed in [29]. Especially we will use the Jacobi identity to establish

some relations among BCJ numerators nα with different orderings. To show these relations

we will follow the method given in [3], but there is a small difference. The proof done in [3]

is for color factors cσ constructed using structure constant fabc of U(N) Lie algebra. The

construction is local in the sense that it is given by a chain-shaped Feynman diagram with

a set of Feynman rules prescribing the contribution of each vertex. For BCJ numerator

nσ, there is still no local construction based on Feynman diagram with Feynman-like rules

prescribing its vertices. In fact, finding a such local construction is one motivation of our

work [29], where some progress has been made towards this goal, which we review in this

section.

To construct local expressions of BCJ numerators nα, we need to use structure con-

stants of kinematic Lie algebra with the generator given by

T k,a ≡ eik·x∂a. (2.1)

Using these generators, we can calculate commutation relations and find the kinematic

structure constant fab
c

[T k1,a, T k2,b] = (−i)(δa
ck1b − δb

ck2a) e
i(k1+k2)·x∂c

= f (k1,a),(k2,b)
(k1+k2,c) T

(k1+k2,c). (2.2)

These kinematic structure constants satisfy antisymmetry property

f12
3 = −f21

3, (2.3)

and Jacobi identity

f1a,2b
(1+2)ef

(1+2)e,3c
(1+2+3)d+f2b,3c

(2+3)ef
(2+3)e,1a

(1+2+3)d+f3c,1a
(1+3)ef

(1+3)e,2b
(1+2+3)d = 0.

(2.4)

It is worth noticing that unlike structure constants of group Lie algebra, for the f12
3 given

in (2.2) there is no natural way to lift index 3 up thus indices 1, 2, 3 cannot be put on the

same footing. To distinguish these three indices, we use arrows and the Jacobi identity (2.4)

can be represented as the cyclic sum over three incoming arrow legs illustrated in figure 1.
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34

Figure 1. The Jacobi identity (2.4) of kinematic structure constants can be represented by the

sum over cyclic orderings of three incoming arrows 1, 2, 3.

Using the above kinematic algebra, we have shown in previous work [29] that the total

tree-level amplitude of YM-theory can be written as dual-DDM form (1.9) where the BCJ

numerator is given by

n12...(n−1)n =
N∑

j=1

cjǫ(qj) ·




 2   3   4         n-2  n-1

n1

...

 3   4         n-2  n-1

n1

...

+

2

+

.

.

.

+

 2   3   4         n-2  n-1

n1

...

 2   3   4         n-2  n-1

n1

...




(2.5)

where each term in the bracket is constructed using kinematic structure constants as cou-

pling for each cubic vertex. The ǫ(qj) is defined as
∏n

t=1 ǫ
µt

t (qtj) where ǫµt

t (qtj) is the

polarization vector of the t-th external particle with gauge choice qtj . The cj ’s are coef-

ficients solved by our averaging procedure given in [29]. The explicit expressions of cj ’s

are not important for our purpose here and the only useful fact we need is that cj ’s are

independent of color orderings. In other words, for all color orderings of nα, the cj ’s are

same. Because of this structure, when we discuss BCJ numerators, the
∑

j cjǫ(qj) part can

be neglected and we will focus only on the part inside the bracket.

Now the part inside the bracket has a Feynman diagram-like structure, much like the

color structure discussed in [3]. Using the same method given in [3] (i.e., using the Jacobi

identity (2.4) and antisymmetry property (2.3)), we can find some nice relations among

BCJ numerators nα with different orderings. For example, we have the following two

identities

nnα1...αi1ρ1...ρj(n−1) =
∑

{ρ}∈OP ({β}
⋃
{γ})

(−1)r+1nnα1...αiγ1...γs(n−1)βr...β11. (2.6)
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and

nnα1...αi1ρ1...ρj(n−1) =
∑

{ρ}∈OP ({β}
⋃
{γ})

(−1)i+sn1β1...βr(n−1)γs...γ1αi...α1n. (2.7)

From now, without explicit explanations, all sets are ordered in all manipulations, thus

OP ({β}
⋃
{γ}) denotes all possible unions of two sets with arbitrary relative ordering

between them, but relative ordering inside each set has been kept (see the explanation

after equation (1.11)). The sum in (2.6) and (2.7) can alternatively be regarded as over

all possible splittings of the ordered set {ρ} into two ordered subsets {β} and {γ} (both

sets {β} and {γ} can be empty set). In each ordered subset, the relative ordering must be

the same as the relative ordering in the mother set {ρ}. These two identities are relabeling

invariant, i.e., if we act a permutation P ∈ Sn on n-indices on both sides, there two

identities still hold.

Although identities (2.6) and (2.7) are well known for experts in the field, it nevertheless

did not appear in the literature explicitly. Since these two identities are very important

to the discussion of the relabeling property of τ -functions constructed by the algorithm

outlined in previous sections, to be self-contained, we would like to review their proofs

using the method given in [3]. As we have mentioned, the cjǫ(qj)-part is the same for all

orderings, so we just need to prove that the part in the bracket of (2.5) satisfies above two

identities. For this purpose we draw the diagram representing a typical term in part (a) of

the figure 2 and apply Jacobi identity to the part framed by a box. The result is give in part

(b) of figure 2 for a particular arrow configuration. It can be shown that the same result is

true for all other possible arrow configurations. The result in part (b) tells us that we can

move the ρ1 attached to the (n − 1)-th block to two places. At the first place ρ1 will be

attached to n-th block with + sign and at the second place ρ1 will be attached to leg 1 with

− sign. Repeating above manipulations, we can move down ρ2, ρ3 and finally ρj . A typical

final configuration will be the ordering {n, α1, . . . , αi, γ1, . . . , γs, n − 1, βr, . . . , β1, 1} with

sign (−)r+1 (The extra − sign comes from pulling n−1 from up to down by antisymmetry),

where sets {γ1, . . . , γs} and {β1, . . . , βr} come from the splitting of original set {ρ1, . . . , ρj}

with relative ordering kept in each subset. By now, we have proved the identity (2.6).

Finally we reverse the ordering to get {1, β, n−1, γTs , α
T , n} with sign (−)r+1+(n−2). Using

n− 3 = i+ j and j = r + s we get the sign to be (−)i+s (where T means the reversing of

ordering). Thus the identity (2.7) is proved.

Identities (2.6) and (2.7) can also be replaced by the following two forms (where for

later applications we have switched the 1 ↔ n)

n1α1...αinρ1...ρj(n−1) = −n1α1...αi[ρ1,[ρ2,...[ρj ,(n−1)]...]]n. (2.8)

and

nρ1...ρj1,α1,...,αi,n = (−)n1[[[ρ1,ρ2],...],ρj ],α1,...,αi,n , (2.9)

and [ , ] is the anti-commutative bracket, i.e., n...[a,b]... = n...ab... − n...ba.... Furthermore, if

the set ρ is empty, [ρ1, [ρ2, . . . [ρj , (n− 1)] . . .]] is just (n− 1). Using formula (2.8) and (2.9)

we can move one index to the last or to the first position.
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n
1

n-1

Apply Jacobi

n

n-1

1=

(a) A typical term 

n

n-1

1

=

=

n

n

n

n

n-1

n-1

n-1

1_ _ 1

1 _ 1

n-1

(b) Applying Jacobi relation for particular arrows

1  i

1

 j

1

1

1 1

1 1

Figure 2. (a) Diagrammatic representation of a typical term nnα1...αi1ρ1...ρj(n−1) and its simplified

schematic. On the left hand side we use a square to highlight the place where Jacobi identity

is subsequently applied in the graphs below. (b) The manipulation using Jacobi identity on a

particular arrow assignment. For simplicity, we use an “n-box” to schematically represent the chain

{n, a1, . . . , ai} drawn in (a) and similarly an “(n−1)-box” to represent the chain {n−1, pj , . . . , p2}.

There is one remark before we conclude this section. It will be clear soon that all

discussions in this paper are based on the above two identities (2.6) and (2.7). Although

the derivation has explicitly used a local diagram construction following the approach in [3],

it seems that the local diagram construction is not essential since all we need are Jacobi

identities of these BCJ numerators nα plus antisymmetry.

3 Construction of τ by BCJ numerators

In this section, we present the construction of τ -functions using (1.12), (1.10) and (1.11).

With (1, n) fixed and a given ordering σ2,. . . ,σn−2, the τ and n are related by (1.12)

n1σ2...σn−1n = τ1[σ2,[...,[σn−1,n]...]], (3.1)
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where the bracket [A,B] ≡ AB −BA. For example, we have

τ1[2,[3,4]] = τ1234 − τ1243 − τ1342 + τ1432.

The expansion at the right handed side of (3.1) includes cases where n is not at the last

index. Thus we should use KK-relation (1.11) to put n to the last position. After such

manipulations we get

n1σ2...σn−1n =
∑

σ′∈Sn−2

G1,n(σ|σ
′)τ1σ′n. (3.2)

To solve τ by n, we need to understand the matrix G1,n(σ|σ
′). The (n − 2)! × (n − 2)!

matrix can be obtained by following steps. First it is easy to see that

τ1[σ2,[...,[σn−1,n]...]] =
∑

{σ}∈OP ({α}
⋃
{β})

(−1)nβτ1αnβT (3.3)

where nβ is the number of elements of the set β and the sum has the same meaning as the

sum in (2.6) and (2.7), i.e., it is over all possible splittings of the ordered set {σ2, . . . , σn−1}

in two subsets α and β (empty sets are allowed) such that inside each subset the relative

ordering defined by the set σ is kept. For example, the set σ = {234} has the following

eight splittings

(α, β) =

({234}, ∅)/({23}, {4})/({24}, {3})/({34}, {2})/(∅, {234})/({4}, {23})/({3}, {24})/({2}, {34})

Secondly using the imposed KK relation on τ (1.11), any (−1)nβτ1αnβT can be expressed

as
∑

ρ∈OP ({α}
⋃
{β})

τ1ρn. Combining these two steps we arrive at

τ1[σ2,[...,[σn−1,n]...]] =
∑

{σ}∈OP ({α}
⋃
{β})

∑

{ρ}∈OP ({α}
⋃
{β})

τ1ρn. (3.4)

From this formula we can see that the matrix element G1,n(σ|σ
′) is the number of splittings

of σ into two subsets α, β, such that the ordering σ′ can be obtained by recombining two

subsets α, β arbitrarily with relative ordering kept inside each subset.

Let us give a few examples of G1,n(σ|σ
′) with σ = {234}. For σ′ = {234}, there are

eight splittings of σ, which can be used to recombine to get σ′, so G1,5({234}|{234}) = 8.

For σ′ = {243} there are four splittings ({23}, {4}), ({24}, {3}) , ({4}, {23}), ({3}, {24})

available, soG1,5({234}|{243}) = 4. For σ′ = {423} there are only two splittings ({23}, {4}),

({4}, {23}) available, so G1,5({234}|{423}) = 2. For σ′ = {432}, there is no any splitting,

so G1,5({234}|{432}) = 0. In fact, one can show that for three numbers i, j, k, if their

ordering inside the set σ is i > j > k and their ordering inside the set σ′ is i < j < k,

the G1,n(σ|σ′) = 0. The reason is the following. To reproduce the right ordering inside σ′,

when we split σ into two subsets, elements i, j must belong to different subsets. Similar

distributions must hold for pairs i, k and j, k, but these three conditions can not be satisfied

simultaneously. From this general argument, we can see that majority elements of matrix

G1,n(σ|σ′) are zero.

– 9 –
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Now let us discuss some general properties of matrix G1,n(σ|σ
′):

• (1) First the value can be written as

G1,n(σ|σ
′) =

∑

{σ′}∈OP ({α′}{β′})

∑

{σ}∈OP ({α}
⋃
{β})

δ({α}, {β}|{α′}, {β′}), (3.5)

where these two sums are over all the possible ordered sets α, β such that

{σ} ∈ OP ({α}
⋃
{β}) and all the possible ordered sets {α′}, {β′} such that

{σ′} ∈ OP ({α′}{β′}. In other word, we sum over all the possible splittings of σ and

σ′ into two ordered subsets respectively. This means elements of matrix G1,n(σ|σ
′)

can be calculated by another way. First we find all 2nσ splittings of the set σ to

two subsets (α, β) with relative ordering kept and all splittings of the set σ′ into

two subsets (α′, β′) with relative ordering kept. Then we find all subsets such that

(α, β) = (α′, β′). The total number is G1,n(σ|σ
′).

• (2) From the above property (3.5), it is easy to see that G is symmetric

G1,n(σ|σ
′) = G1,n(σ

′|σ). (3.6)

• (3) Some special elements can be obtained. When σ = σ′, all possible splittings of

σ ∈ Sn−2 should be counted, i.e., G1,n(σ|σ) = 2n−2. If σ, σ′ are different only by

one permutation of two adjacent numbers, then G1,n(σ|σ
′) = 2n−3. If σ, σ′ have the

following orderings: σ = (. . . , i1, i2, . . . , j1, j2, . . .) and σ′ = (. . . , i2, i1, . . . , j2, j1, . . .),

we have G1,n(σ|σ
′) = 2n−4. Similar pattern holds for more interchanges of adjacent

pairs.

• (4) The fourth observation is that

G1,n(σ|σ
′) = G1,n(P (σ)|P (σ′)) (3.7)

where P is any permutation of (n− 2) elements. The reason is that (3.5) cares only

relative orderings between sets σ, σ′, so it does not matter if a element is called x

or y.

Having discussed the matrix G1,n(σ|σ′), we can solve τ1,σ,n by BCJ numerators us-

ing (3.2) and obtain

τ1σ′n =
detG′

detG
, (3.8)

where G = G1,n(σ|σ
′) is the (n− 2)!× (n− 2)! matrix, and G

′ is obtained by replacing the

column σ′ of G by the column of BCJ numerators n1σn. Now we have provided a general

construction of (n− 2)! τ ’s with 1, n fixed at the two ends (3.8). Other (n!− (n− 2)!) τ ’s

can be obtained by KK relations and cyclic symmetry (see (1.10) and (1.11)).

The above construction for τ ’s is complete and there is no any ambiguity. The only

subtle point is that in the construction, two special elements have been fixed, for example
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1 and n. Then it is natural to ask what is the relation between two solutions obtained

by fixing two different pairs (i1, j1) and (i2, j2)? There are two possibilities. The first

possibility is that these two solutions do not have any relation. Another possibility is that

these two solutions will relate to each other by some manipulations. As we will show in later

sections, there is a natural relabeling property for solutions obtained by above construction.

This property tells us that if we have an expression for just one τ -function, expressions

for all other τ ’s can be obtained by relabeling. Furthermore, all solutions coming from

different fixed pairs will give same answer.

4 Examples

In this section, we will use several examples to explicitly demonstrate the algorithm for

τ -functions and check that the solution satisfies the natural relabeling property.

4.1 Three-point case

In this case, with 1, 3 fixed we have G1,3({2}|{2}) = 2,

n123 = 2τ123 =⇒ τ123 =
1

2
n123. (4.1)

Other five τ ’s can be obtained from τ123 by cyclic symmetry and KK-relations

Cyclic : τ312 = τ231 = τ123

KK− rel : τ213 = τ321 = τ132 = −τ123 (4.2)

To check the relabeling, noticing that if we exchange 3 ↔ 2 in (4.1), we get

τ̃132 =
1

2
n132 (4.3)

Because for three-point case, BCJ numerator n is cyclic symmetric and anti-symmetric

under exchanging of pair, i.e., n123 = −n132, we see that τ̃132 is equal to τ132 in (4.2),

i.e., τ132 can be obtained from τ123 by relabeling indices. It is easy to check the relabeling

property for other τ ’s.

4.2 Four-point case

For four-point case, we have 4! = 24 τ ’s. Now let us use our algorithm to determine all of

them and check the relabeling property:

Solving the τ ’s in KK-basis: we have (4 − 2)! = 2 equations and (4 − 2)! = 2 inde-

pendent τ ’s. With ordering ({23}, {32}) the matrix is

G1,4 =

(
4 2

2 4

)
(4.4)
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From this we can solve

τ1234 =

∣∣∣∣∣
n1234 2

n1324 4

∣∣∣∣∣
∣∣∣∣∣
4 2

2 4

∣∣∣∣∣

=
1

3
n1234 −

1

6
n1324 (4.5)

and

τ1324 =

∣∣∣∣∣
4 n1234

2 n1324

∣∣∣∣∣
∣∣∣∣∣
4 2

2 4

∣∣∣∣∣

= −
1

6
n1234 +

1

3
n1324 (4.6)

Find remaining τ ’s: having τ1234 and τ1324, we can construct other 22 τ ’s. Using

KK-relation, we can obtain the following four τ with 1 fixed:

τ1243 ≡ −τ1234 − τ1324 = −
1

6
n1234 −

1

6
n1324

τ1342 ≡ −τ1234 − τ1324 = −
1

6
n1234 −

1

6
n1324

τ1423 ≡ +τ1324 = −
1

6
n1234 +

1

3
n1324

τ1432 ≡ +τ1234 =
1

3
n1234 −

1

6
n1324 (4.7)

Having obtained all τ1σ, the remaining 18 τ ’s are obtained by imposed cyclic symmetry.

For example, we have

τ1234 = τ4123 = τ3412 = τ2341 =
1

3
n1234 −

1

6
n1324 (4.8)

Relabeling property: using these explicit result, we can check the relabeling property.

First it is easy to see that expression (4.6) can be obtained from (4.5) by replacing 2 →

3, 3 → 2. In principle, this fact does not need to hold. However, by symmetric property

and property (3.7) of matrix G, it is natural to get τ1P (σ)n = P (τ1σn).

Now we check the relabeling property for τ1σ. From solution τ1234 by index relabeling

(3, 4) → (4, 3) we can write down

τ̃1243 =
1

3
n1243 −

1

6
n1423 (4.9)

To check if τ̃1243 is equal to τ1243 obtained in (4.7), we use relation (2.6) to get

n1243 = −n1234, n1423 = −n1234 + n1324 (4.10)

Putting it back, it is easy to check τ̃1243 = τ1243. In other words, two expressions, i.e., the

one obtained by our imposed KK-relation and the one obtained by index relabeling from

known solution τ1σ4, are same!
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Next, we check the relabeling property for τ ’s where 1 is not the first index. By

relabeling (1, 2, 3, 4) → (4, 1, 2, 3) from τ1234 we have

τ̃4123 =
1

3
n4123 −

1

6
n4213. (4.11)

Using relation (2.7), this expands into

n4123 = n1234 − n13(24), n4213 = −n1324, (4.12)

and we do find τ̃4123 is equal to the τ4123 written down in (4.8).

Although we have presented only three examples, using the Mathematica we have

checked that indeed the result obtained from our algorithm (including using KK and cyclic

relations) does agree with the one obtained from relabeling of single τ1234 expression.

4.3 Five-point case

Having seen the above four-point example, we will not present too much detail for cases

with five, six and seven points. The rest can be easily recovered via the same algorithm.

Solutions from our algorithm: first we can solve τ ’s in KK-basis using the following

equation




n12345

n12435

n13245

n14235

n13425

n14325




=




23 22 22 21 21 0

22 23 21 22 0 21

22 21 23 0 22 21

21 22 0 23 21 22

21 0 22 21 23 22

0 21 21 22 22 23







τ12345
τ12435
τ13245
τ14235
τ13425
τ14325




. (4.13)

and obtain an expression of τ12345 as

τ12345 =
1

4
n12345 −

1

10
n12435 −

1

20
n14235 −

1

10
n13245 −

1

20
n13425 +

1

10
n14325. (4.14)

Other five τ ’s can be obtained by relabeling 2, 3, 4 from (4.14). Having these six τ solutions

for KK-basis, we can use the KK-relations and cyclic relations to find other 114 τ ’s.

Relabeling property: now we need to check if the above result has the relabeling prop-

erty. Although we have used Mathematica to check that all 120 τ ’s are related to each

other by relabeling property, here we will give only a few examples. The first example is2

τ12534 = −
1

20
n12345 +

1

10
n12435 −

1

20
n13425 +

1

20
n14235 +

1

10
n14325 (4.15)

which is obtained from KK-relation. Let us relabel the solution (4.14) with 3 → 5, 4 →

3, 5 → 4. After plugging

n12534 = −n12345 + n12435

2It is worth noticing that the expression of τ12534 is simpler than (4.14) because it has only 5 terms and

simpler coefficients. It will be interesting to investigate if it is general.

– 13 –



J
H
E
P
0
7
(
2
0
1
3
)
0
5
7

n12354 = −n12345

n13254 = −n13245

n15234 = −n12345 + n12435 + n13425 − n14325

n15324 = n12435 − n13245 + n13425 − n14235

n13524 = −n13245 + n13425

it can be checked that the relabeling (4.14) does reproduce (4.15).

The second example is τ51234 ≡ τ12345 by our definition. The relabeling of (4.14) gives

τ̃51234 =
1

4
n51234 −

1

10
n51324 −

1

20
n53124 −

1

10
n52134 −

1

20
n52314 +

1

10
n53214. (4.16)

Using the result

n51234 = n12345 − n12435 − n13425 + n14325,

n51324 = n13245 − n13425 − n12435 + n14235,

n53124 = −n12435 + n14235,

n52134 = −n13425 + n14325,

n52314 = n14325,

n53214 = n14235. (4.17)

it is easy to see that τ51234 = τ̃51234, i.e., the relabeling property is satisfied.

4.4 Six-point case

For six points, using the algorithm we can solve 24 τ ’s in KK-basis. Since they are related

to each other by relabeling, we simply write down one solution τ123456,

τ123456 =
1

630

[
126n123456 − 44n123546 − 44n124356 − 19n124536 − 19n125346 + 36n125436

−44n132456 + 16n132546 − 19n134256 − 19n134526 + n135246 + 11n135426

−19n142356 + n142536 + 36n143256 + 11n143526 − 9n145236 + 16n145326

−19n152346 + 11n152436 + 11n153246 + 16n153426 + 16n154236 − 44n154326

]
.(4.18)

Using KK-basis of τ we can get the remaining 696 τ ’s. Now let us check the relabeling

property. We have used the Mathematica to check that all 720 τ ’s are related to each

other by the relabeling property. Here we give only one example τ612345 ≡ τ123456 by cyclic

symmetry. The relabeling from τ123456 gives

τ̃612345 =
1

630

[
126n612345 − 44n612435 − 44n613245 − 19n613425 − 19n614235 + 36n614325

−44n621345 + 16n621435 − 19n623145 − 19n623415 + n624135 + 11n624315

−19n631245 + n631425 + 36n632145 + 11n632415 − 9n634125 + 16n634215

−19n641235 + 11n641325 + 11n642135 + 16n642315 + 16n643125 − 44n643215

]
.(4.19)

Using the result

n61ijk5 = n1ijk56 − n1jk5i6 − n1ik5j6 − n1ij5k6 + n1k5ji6 + n1i5kj6 + n1j5ki6 − n15kji6
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n6i1jk5 = −n1jk5i6 + n1j5ki6 + n1k5ji6 − n15kji6

n6ij1k5 = n1k5ji6 − n15kji6

n6ijk15 = −n15kji6. (4.20)

Indeed we see that τ̃612345 = τ612345.

4.5 Seven-point case

At seven-points, the expression for τ1234567 with 1, 7 fixed is

τ1234567 =
1

24192

(
4032n1234567−1284n1234657−1284n1235467−513n1235647−513n1236457+940n1236547

−1284n1243567+393n1243657−513n1245367−438n1245637+27n1246357+259n1246537

−513n1253467+27n1253647+940n1254367+259n1254637−213n1256347+337n1256437

−438n1263457+259n1263547+259n1264357+344n1264537+337n1265347−940n1265437

−1284n1324567+421n1324657+393n1325467+205n1325647+205n1326457−337n1326547

−513n1342567+205n1342657−438n1345267−513n1345627+32n1346257+205n1346527

+27n1352467−56n1352647+259n1354267+184n1354627+23n1356247+157n1356427

+32n1362457−6n1362547−51n1364257+143n1364527+6n1365247−259n1365427

−513n1423567+205n1423657+27n1425367+32n1425637−56n1426357−6n1426537

+940n1432567−337n1432657+259n1435267+205n1435627−6n1436257−148n1436527

−213n1452367+23n1452637+337n1453267+157n1453627−213n1456237+337n1456327

+23n1462357−53n1462537+6n1463257+11n1463527+148n1465237−205n1465327

−438n1523467+32n1523647+259n1524367−51n1524637+23n1526347+6n1526437

+259n1532467−6n1532647+344n1534267+143n1534627−53n1536247+11n1536427

+337n1542367+6n1542637−940n1543267−259n1543627+148n1546237−205n1546327

−213n1562347+148n1562437+148n1563247+107n1563427+107n1564237−393n1564327

−513n1623457+205n1623547+184n1624357+143n1624537+157n1625347−259n1625437

+205n1632457−148n1632547+143n1634257+344n1634527+11n1635247−184n1635427

+157n1642357+11n1642537−259n1643257−184n1643527+107n1645237−421n1645327

+337n1652347−205n1652437−205n1653247−421n1653427−393n1654237+1284n1654327

)
.

(4.21)

By relabeling the above expression (1, 2, 3, 4, 5, 6, 7) → (7, 1, 2, 3, 4, 5, 6), we get τ̃7123456. To

show that it is equal to τ7123456 = τ1234567 from cyclic symmetry, we just need to use the

following expressions

n71ijkl6 = n1ijkl67 − n1ijk6l7 − n1ijl6k7 + n1ij6lk7 − n1ikl6j7 + n1ik6lj7 + n1il6kj7 − n1i6lkj7

−n1jkl6i7 + n1jk6li7 + n1jl6ki7 − n1j6lki7 + n1kl6ji7 − n1k6lji7 − n1l6kji7 + n16lkji7

n7i1jkl6 = −n1jkl6i7 + n1jk6li7 + n1jl6ki7 − n1j6lki7 + n1kl6ji7 − n1k6lji7 − n1l6kji7 + n16lkji7
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n7ij1kl6 = n1kl6ji7 − n1k6lji7 − n1l6kji7 + n16lkji7

n7ijk1l6 = −n1l6kji7 + n16lkji7

n7ijkl16 = n16lkji7 (4.22)

5 Relabeling property

In the previous section, we have demonstrated the consistency between our algorithm

and the relabeling property. In this section, we will give a general understanding of this

property. Before doing so, we need to address a technical issue concerning the definition

of matrix G. Note that generically relabeling is a permutation of n elements while the

definition of G involves only permutation of (n− 2) elements since two of them have been

fixed. To relate matrix G with different fixed pairs, we enlarge the definition of matrix

G1,n(σ|σ
′) to G1,n(σ|σ

′) ≡ G(1, σ, n|1, σ′, n) and require that when we split the set {1, σ, n}

to two subsets, the first element 1 must be at the first subset and the last element n must

be at the second subset. It is easy to see that the new definition is equivalent to the old

one. More importantly, the relabeling property (3.7) of (n − 2) elements can be enlarged

to incorporate the relabeling of n elements, i.e, we will have that

G(σ|σ′) = G(P (σ)|P (σ′)), P ∈ Sn , (5.1)

where now σ, σ′ are lists of n elements.

Having enlarged the definition of matrix G, we can start our discussions. The structure

of this section is the following. First we will set up a general framework for discussions.

Then we will discuss how the relabeling property can be used to solve τ -function.

5.1 The proof of relabeling property

We note that the relabeling property can be proven without knowing the solution explicitly.

Since by our algorithm three equations (1.12), (1.10) and (1.11) fix the solution uniquely, we

can prove the property by showing that it is a property possessed by these three equations.

The imposed cyclic symmetry (1.10) and KK-relations (1.11) have this property obviously,

thus the key is to show that it is a property of equation (1.12) as well.

Consider the relabeling xs → zs with s = 1, . . . , n. Under the relabeling, an ordering

of n elements becomes another ordering of n elements, Xi → Zi with i = 1, . . . , (n − 2)!

running through the whole KK-basis. Thus equation (3.2) becomes

(n−2)!∑

j=1

GXiXj
τXj

= nXi
=⇒

(n−2)!∑

j=1

GZiZj
τZj

= nZi
(5.2)

where the sum is over KK-basis Xj . However, by cyclic and KK-relations, we have

τZi
=

(n−2)!∑

j=1

QZiXj
τXj

(5.3)
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and by (2.7) and (2.6) we have

nZi
=

(n−2)!∑

j=1

PZiXj
nXj

(5.4)

thus

GZiZj
τZj

= nZi
=⇒ GZiZj

QZjXk
τXk

= PZiXl
nXl

(5.5)

where to make the notation simpler, we have used Einstein summation convention.

To see that solution from our algorithm have the relabeling property, we just need to

show in addition,

[PZiXl
]−1GZiZj

QZjXk
= GXlXk

(5.6)

Now let us demonstrate the use of (5.6) by several examples. First let us consider the

four-point case where the matrix G is given by (4.4). For relabeling given by permutation

P (3, 4), we have X1 = (1, 2, 3, 4) → Z1 = (1, 2, 4, 3) and X2 = (1, 3, 2, 4) → Z2 = (1, 4, 2, 3).

Under this permutation we find
(
τZ1

τZ2

)
=

(
−1 −1

0 1

)(
τX1

τX2

)
(5.7)

and (
nZ1

nZ2

)
=

(
−1 0

−1 1

)(
nX1

nX2

)
(5.8)

Thus it is easy to check that
(
4 2

2 4

)
=

(
−1 0

−1 1

)−1(
4 2

2 4

)(
−1 −1

0 1

)
(5.9)

As a second example, we consider the permutation P (1, 2) at five-point, where the G

matrix is given by (4.13). For this permutation, we find the matrix representation of P

through the following manipulation



n12345

n12435

n13245

n13425

n14235

n14325




→




n21345

n21435

n23145

n23415

n24135

n24315




=(−)




n12345

n12435

n1[2,3]45

n1[[2,3],4]5

n1[2,4]35

n1[[2,4],3]5




=




−1 0 0 0 0 0

0 −1 0 0 0 0

−1 0 1 0 0 0

−1 0 1 0 1 −1

0 −1 0 0 1 0

0 −1 1 −1 1 0







n12345

n12435

n13245

n13425

n14235

n14325




. (5.10)

Similar manipulation gives the matrix of Q as

QZiXj
=




−1 0 −1 −1 0 0

0 −1 0 0 −1 −1

0 0 1 1 0 1

0 0 0 0 0 −1

0 0 0 1 1 1

0 0 0 −1 0 0




. (5.11)

It is straightforward to see that [PZiXl
]−1GZiZj

QZjXk
= GXlXk

is indeed satisfied.
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Having shown two examples, now we discuss how we could give a general proof. To

do so, we need the following observation. Assuming the relabeling from Xi → Zi can be

broken into two steps, Xi → Yi and Yi → Zi, it is easy to see that

τZi
= QZiYtτYt = QZiYtQYtXj

τXj
, nZi

= PZiYtnYt = PZiYtPYtXj
nXj

, (5.12)

and the condition (5.6) becomes

[PZiY
t
′PY

t
′Xl

]−1GZiZj
QZjYtQYtXk

= GXlXk
. (5.13)

If the relabeling property holds for both steps Xi → Yi and Yi → Zi, i.e.

[PY
t
′Xl

]−1GY
t
′ YtQYtXk

= GXlXk
(5.14)

and

[PZiY
t
′ ]
−1GZiZj

QZjYt = GY
t
′ Yt (5.15)

then (5.13) also holds. This observation reflects the structure of group, so that if we can

show (5.6) is true for all generators of permutation group Sn, it will be true for the whole

group.

For permutation group Sn, there are (n−1) generators. For our convenience, we choose

the following (n− 2) generators3

Pn = (1, n), Pi = (i, i+ 1), i = 2, 3, . . . , n− 2; (5.16)

plus any one permutation of the form P1i = (1, i) or Pni = (n, i) with i = 2, 3, . . . , n − 1.

For permutations Pi with i = 2, . . . , n − 2, they are permutations among KK-basis with

(1, n) fixed and it is easy to see that corresponding matrixes P,Q satisfy P = Q and

P−1 = P T . By the general property (3.7), P−1GP = G(P(σ)|P(σ′)) = G(σ|σ′), i.e., the

condition (5.6) is satisfied.

For permutation Pn, since 2, 3 . . . , n− 2 are invariant, we have

τnσ1 = τ1nσ = (−)n−2τ1σTn, nnσ1 = (−)n−2n1σTn (5.17)

and especially

G(1σTn|1γTn) = G(1σn|1γn) , (5.18)

thus the relabeling property for permutation Pn is proved. To finish the proof, we need to

check that the last permutation P1i or Pni satisfies the relabeling property (5.6). Since the

proof is very complicated, we leave it to appendix.

3To avoid confusion of matrix P and the generators of permutation group, we will use P for later.
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5.2 An application

Having shown that solution from our algorithm has the relabeling property, it is natural

to ask if we can use the relabeling property to fix the solution. In this subsection, we will

show that it can be done. There are two different approaches and we discuss them one by

one.

For the first approach, we need to use the relabeling property and only one equation

of the form (1.12). To demonstrate the idea, let us start with four-point example. First

we expand τ1234 into the KK-basis n1σn as

τ1234 = αn1234 + βn1324 (5.19)

Using the relabeling property other τ ’s in the KK-basis will have similar expansion. For

n = 4, thing is simple and we have only one

τ1324 = αn1324 + βn1234 (5.20)

To completely fix α, β we need to use one relation

n1234 = 4τ1234 + 2τ1324 = (4α+ 2β)n1234 + (4β + 2α)n1324 (5.21)

Since each BCJ numerator nα is independent, we get two equations

4α+ 2β = 1, 4β + 2α = 0 =⇒ β = −
1

6
, α =

1

3
(5.22)

For general n-points, we expand, for example, τ123...(n−1)n into the KK-basis n1σn of

BCJ numerators with (n− 2)! unknown variables αi. Then we use the relabeling property

to express all other τ ’s in KK-basis using the same set of variables αi. Next we put it

back to just one equation n123...n = τ1[2,[3,...[n−1,n]]]. Identifying both sides gives (n − 2)!

linear equations for coefficients αi. From these equations we can solve αi and determine

expressions of τ ’s.

Now we want to compare the first approach with the algorithm given in section 3. The

algorithm given in section 3 requires calculating a big matrix G and invert it. However,

calculating matrix G by formula (3.5) is not easy and there are a lot of combinations to

bookkeep. The first approach presented here does not require calculating G. All infor-

mation of G is automatically included in the above procedures (see (5.21) and (5.22)). In

other words, the first approach has bypassed the calculation of matrix G although solving

linear equations of (n− 2)! variables can still be a difficult problem.

The first approach has not used the full potential of relabeling property. Now we

present the second approach. To demonstrate, we use the five-point case as an example.

Expanding τ12345 into the BCJ basis we have

τ12345 = α1n12345 + α2n12435 + α3n13245 + α4n13425 + α5n14235 + α6n14325 (5.23)

with six unknown variables. Using the relabeling property we can write down the expansion

of other five τ ’s in KK-basis using the same six variables αi. Up to this step, it is the same
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as in the first approach. However, we have not used all generators of permutation group S5,

i.e., there are still two relabelings P(1, 5) and P(5, 4) not being used. Using the relabeling

property coming from P(1, 5), we have on the one hand

τ12345 → τ52341 = α1n52341 + α2n52431 + α3n53241 + α4n53421 + α5n54231 + α6n54321

(5.24)

by relabeling property, but on the other hand

τ12345 → τ52341 = τ15234 = −τ14325

= −(α1n14325 + α2n14235 + α3n13425 + α4n13245 + α5n12435 + α6n12345)

(5.25)

by cyclic symmetry and KK-relation of τ . Comparing these two results using n1σn =

(−)nnnσT 1, we immediately get the following equations

α1 = α1, α6 = α6, α2 = α3, α4 = α5 (5.26)

In other words, using the relabeling property of P(1, 5) we have reduced six unknown

variables to four unknown variables.

Now we discuss the implication of relabeling property coming from permutation P(4, 5).

On the one hand we have

τ12345 → τ12354 = α1n12354 + α2n12534 + α3n13254 + α4n13524 + α5n15234 + α6n15324

= n12345(−α1 − α2 − α5) + n12435(α2 + α5 + α6) + n13245(−α3 − α4 − α6)

+n13425(α4 + α5 + α6) + n14235(−α6) + n14325(−α5) (5.27)

The first line of the equation derives from relabeling, which subsequently produces the

second line using (2.8). On the other hand we have

τ12345 → τ12354 = −τ12345 − τ12435 − τ14235

= n12345(−α1−α2−α4)+n12435(−α2−α1−α3)+n13245(−α3−α5−α6)

+n13425(−α4−α6−α5)+n14235(−α5−α3−α1)+n14325(−α4−α6−α2)

(5.28)

where in the first line we have used KK-relation and in the second line we have used

the expansion of τ ’s into nα. Comparing the above two results, we obtain the following

equations

(−α1 − α2 − α5) = (−α1 − α2 − α4), α2 + α5 + α6 = (−α2 − α1 − α3),

(−α3 − α4 − α6) = (−α3 − α5 − α6), α4 + α5 + α6 = (−α4 − α6 − α5)

−α6 = (−α5 − α3 − α1), −α5 = (−α4 − α6 − α2) (5.29)

Combining (5.26) and (5.29) we find

α2 = α3 = −
2

5
α1, α6 =

2

5
α1, α4 = α5 = −

1

5
α1 (5.30)

If we put α1 =
1
4 back, we do reproduce the result (4.14).
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The above example can be generalized to arbitrary number of legs. The point of

this second approach is that if we fully use the potential of relabeling property, i.e, the

relabeling properties of all generators of permutation group Sn, we will be able to determine

expressions of all τ ’s over (n−2)! BCJ numerator n1σn up to an overall factor (for example,

α1 in above example). It is crucial to notice that in the second approach, we have used

only cyclic symmetry (1.10) and KK-relations (1.11) among τ ’s, but not the relation (1.12),

which relates τ with BCJ numerators nα. In other words, relabeling property, cyclic

symmetry plus KK-relations for τ ’s have uniquely determined the expression of τ in terms

of BCJ numerators nα up to an overall constant!

To determine the overall factor, relation such as (1.12) enters the game. However,

based on our examples in section 4, we found the following pattern of the expansion of

τ123...(n−1)n:

τ123 =
1

2
n123

τ1234 =
1

3
n1234 + . . .

τ12345 =
1

4
n12345 + . . .

τ123456 =
1

5
n123456 + . . .

τ1234567 =
1

6
n1234567 + . . . (5.31)

We believe that this pattern is right although we can not prove it at the moment. If we

accept this as an assumption, we find that (1.12) is not needed anymore.

Now we can see the difference between the second approach and the algorithm pre-

sented in section 3. For algorithm in section 3, the equation (1.12) is crucial. However,

in the second approach, the relabeling property is crucial. In fact, using the relabeling

property, plus cyclic symmetry and KK-relation, the equation (1.12) can be derived if we

use our observation (5.31).

5.3 The implication of permutation P(1, n)

From our previous discussions for the second approach, we see that all nontrivial equations

for (n− 2)! expansion coefficients of τ123...(n−1)n are given by relabeling properties coming

from permutations P(1, n) and P(n − 1, n). These equations coming from permutation

P(n − 1, n) will be complicated to write down. However, these equations coming from

permutation P(1, n) are very simple and we will present them in this subsection.

Let us start with the expansion

τ123...(n−1)n =
∑

σ∈Sn−2

cσn1σn (5.32)

with (n − 2)! coefficients cσ. The relabeling by permutation P(1, n), i.e, 1 ↔ n, leads to

the expression

τn23...(n−1)1 =
∑

σ

cσnnσ1 (5.33)
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Using the cyclic symmetry and KK-relation for τn23...(n−1)1 we arrive another expression of

τn23...(n−1)1

τn23...(n−1)1 = τ1n23...(n−1) = (−)nτ1(n−1)(n−2)...32n = (−)n
∑

σ

cσn1P̃(σ)n
(5.34)

where at the last equation we have used the fact that the expansion of τ1(n−1)(n−2)...32n can

be obtained from the expansion of τ123...(n−1)n by following permutation

P̃ ≡

{
(2, n− 1)(3, n− 2) . . . (n/2, n/2 + 1) n = even

(2, n− 1)(3, n− 2) . . . ((n− 1)/2, (n+ 1)/2 + 1) n = odd
(5.35)

Identifying two different expressions (5.33) and (5.34) we have

(−)n
∑

σ

cσn1P̃(σ)n
=
∑

σ̃

cσ̃nnσ̃1 = (−)n
∑

σ̃

cσ̃n1(σ̃)Tn (5.36)

where we have used (σ̃)T to denote reversing the ordering of the list σ̃. Since each BCJ

numerator nα is independent, to have identity (5.36), coefficient of each nα must be same

at both sides. Identifying n
1P̃(σ)n

= n1(σ̃)Tn for given pair of σ, σ̃, we find following result:

when two orderings σ and σ̃ are related to each other by P̃(σ) = (σ̃)T , their coefficients

must be same, i.e., we will have

cσ̃ = cσ (5.37)

or more explicitly

c1σn = c
1(P̃(σ))Tn

, ∀σ ∈ Sn−2 (5.38)

Results (5.38) are equations coming from relabeling property of permutation P(1n). It is

easy to check it with explicit results given in section 4.

From (5.38) we see that there are two special orderings which are singlet under about

transformation. They are c1234...(n−1)n and c1(n−1)(n−2)...32n. In fact, all coefficients will

organize themselves to orbits with one or two elements under the mapping (5.38).

6 Conclusion

In this paper, we have constructed the dual-trace decomposition for Yang-Mills tree ampli-

tudes from kinematic numerators. By imposing cyclic symmetry and KK relation, and the

relation between τ ’s and BCJ numerators in KK-basis, we find solutions of τ ’s as linear

combinations of BCJ numerators. The dual-trace factors solved in this way are related to

each other by relabeling. Thus we can get any dual trace factor by relabeling a single τ

with given permutation. We find that we can also turn things around and start with the

relabeling property to fix the dual-trace factors τ .
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A The relabeling of permutation P1i

To complete the proof of natural relabeling property, we need to prove that (5.6) is satisfied

for the permutation P1i = (1, i). In this appendix we provide a detailed proof. We note

that equation (5.6) can be rewritten as
∑

{ρ̃},{σ̃}

P (i, {ρ′}, 1, {σ′}, n|1, {ρ̃}, i, {σ̃}, n)G(1, {ρ̃}, i, {σ̃}, n|1, {ρ}, i, {σ}, n)

=
∑

{ρ′′},{σ′′}

G(i, {ρ′}, 1, {σ′}, n|i, {ρ′′}, 1, {σ′′}, n)Q(i, {ρ′′}, 1, {σ′′}, n|1, {ρ}, i, {σ}, n)

(A.1)

We introduce curly brackets to emphasize that, for example, {ρ} stands for a list of elements

ρ1, ρ2, . . . (which can be empty as well), and that the ordering of the list matters. We

break the proof into three steps discussed below:

Step-1: finding explicit expressions of elements of P and Q matrices. Under the

permutation P(1, i), a KK-basis numerator characterized by the fixed pair (1, n) changes

to a KK-basis numerator characterized by (i, n), and we need the collaboration of Jacobi

identity, antisymmetry to derive the matrix of P , and KK relation together with cyclic

symmetry to derive the matrix of Q in (1, n) basis.

Let us consider the matrix P first. Using the Jacobi identity and antisymmetry, we

have

ni,{ρ},1,{σ},n =
∑

{ρ}→{α}{β}

(−1)nα+1n1,{α}T ,i,{β},{σ},n. (A.2)

where
∑

{ρ}→{α}{β}

means summing over all possible splittings of set {ρ} to two subsets

{α}, {β} with their relative orderings kept. As remarked at the beginning of section 3,

this is equivalent to summing over all the ordered sets {α}, {β} satisfying the condition

{ρ} ∈ OP ({α}
⋃
{β}), yet the advantage of regarding this process as a splitting instead

of as imposing a constraint will become obvious shortly as the complexity increases. It is

straightforward then, to read off the elements of matrix P from the above equation

P (i, {ρ}, 1, {σ}, n|1, {α}T , i, {β}, {σ}, n) =

{
(−1)nα+1 (if {ρ} can splits into {α}, {β})

0 Otherwise
.

(A.3)

Next we consider the matrix Q. For τi,{ρ},1,{σ},n we can use cyclic symmetry and KK

relation

τi,{ρ},1,{σ},n = τ1,{σ},n,i,{ρ} =
∑

{δ}∈OP ({σ}
⋃
{ρT ,i})

(−1)nρ+1τ1,{δ},n. (A.4)

thus elements of Q can be read off

Q(i, {ρ}, 1, {σ}, n|1, {δ}, n) =

{
(−1)nρ+1 if {δ} ∈ OP ({σ}

⋃
{ρT , i})

0 Otherwise
. (A.5)

– 23 –



J
H
E
P
0
7
(
2
0
1
3
)
0
5
7

Because the ordering {ρT , i} in (A.5), nonzero elements of Q must have the form

Q(i, {αT }, 1, {β}, {σ}, n|1, {ρ}, i, {σ}, n) = (−1)nα+1, if {ρ} ∈ OP ({α}
⋃

{β}). (A.6)

Plugging the newly obtained explicit expression of matrix elements of P , the matrix

PG in (A.1) can be expressed as
∑

{ρ′}→{α̃},{β̃}

(−1)nα̃+1G1,n(1, {α̃
T }, i, {β̃}, {σ′}, n|1, {ρ}, i, {σ}, n). (A.7)

Similarly, the matrix GQ in (A.1) is given by
∑

{ρ}→{α},{β}

Gi,n(i, {ρ
′}, 1, {σ′}, n|i, {αT }, 1, {β}, {σ}, n)(−1)nα+1. (A.8)

To compare (A.7) and (A.8), using the relabeling invariant property of matrix G, we can

exchange the positions of 1 and i in (A.8) and this expression becomes
∑

{ρ}→{α},{β}

G1,n(1, {ρ
′}, i, {σ′}, n|1, {αT }, i, {β}, {σ}, n)(−1)nα+1. (A.9)

Finally the consistency condition (A.1) can be rewritten as
∑

{ρ′}→{α′},{β′}

(−1)nα′+1G1,n(1, {α
′T }, i, {β′}, {σ′}, n|1, {ρ}, i, {σ}, n)

=
∑

{ρ}→{α},{β}

(−1)nα+1G1,n(1, {ρ
′}, i, {σ′}, n|1, {αT }, i, {β}, {σ}, n). (A.10)

We need to show the sums at both sides of (A.10) give the same result.

Step-2: further simplification by properties of G Before finally deriving a proof

let us further simplify the condition (A.1). We notice that G1,n(α|β) can be written by the

property (3.5) as

G1,n(σ
′|σ) =

∑

s′∈{S(σ′)}

∑

s∈{S(σ)}

δ(s′|s), (A.11)

where to simplify the notation, we have used S(σ′) to denote the set of all possible splittings

of the set {σ′} into two subsets, for example {α′}, {β′}, with relative ordering kept, and

the sum is taken over all elements of the set S(σ′). The delta-function is defined as

δ(s′|s) =

{
1 (s′ = s)

0 Otherwise
. (A.12)

where s′ = s means that both {α′} = {α} and {β′} = {β} if {σ′} is split to {α′}, {β′} and

{σ} is split to {α}, {β}.

Substituting (A.11) into (A.10), we get

∑

{ρ′}→{α′},{β′}

(−1)nα′



∑

s′,s

δ(s′|s)


 =

∑

{ρ}→{α},{β}

(−1)nα



∑

s′,s

δ(s′|s)


 , (A.13)
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where we have summed over s′ ∈ {S({α′T }, i, {β′}, {σ′})} and s ∈ {S({ρ}, i, {σ})} on the

L.H.S, while we have summed over s′ ∈ {S({ρ′}, i, {σ′})} and s ∈ {S({αT }, i, {β}, {σ})}

on the R.H.S. The above equation can be further rearranged into

∑

s∈{S({ρ},i,{σ})}




∑

{ρ′}→{α′},{β′}

(−1)nα′
∑

s′∈{S({α′T },i,{β′},{σ′})}

δ(s′|s)




=
∑

s′∈{S({ρ′},i,{σ′})}




∑

{ρ}→{α},{β}

(−1)nα
∑

s∈{S({αT },i,{β},{σ})}

δ(s′|s)


 . (A.14)

For a given splitting s the sum in the brackets on the L.H.S. has a useful property
∑

{ρ′}→{α′},{β′}

(−1)nα′
∑

s′∈{S({α′T },i,{β′},{σ′})}

δ(s′|s)

=
∑

{ρ′}→{α′},{β′}

(−1)nα′
∑

s′∈{S({σ′}→ {σ′
L
},{σ′

R
})}

δ({{α′T }, i, {β′}, {σ′
L}}, {σ

′
R}|s). (A.15)

For a given splitting s′ the sum in the brackets on the R.H.S. has a similar property. The

meaning of (A.15) is that for all possible splittings only those with {α′T }, i, {β′} belonging

to the same subset contribute.4

Before giving a general proof of the above property (A.15), let us have a look at some

examples.

• (1) For the case nρ′ = 1, i.e., there is only one element in the set ρ′, there are two

possible splittings: {α′, β′} = {{ }, {ρ′1}}/{{ρ
′
1}, { }}. For the case α′ = {ρ′1}, the

splitting of {ρ′1, i, σ
′} contains two possibilities: either ρ′1 and i belong to the same

subset or to different subsets. For the case β′ = {ρ′1}, the splitting of {i, ρ′1, σ
′}

also contains two possibilities: either ρ′1, i belong to the same subset or to different

subsets. Putting all these together, the L.H.S. of (A.15) reads

∑

{σ′}→{σL},{σR}

[
−δ
(
{ρ′1, i, σ

′
L}, {σ

′
R}|s

)
− δ

(
{ρ′1, σ

′
L}, {i, σ

′
R}|s

)

+δ
(
{i, ρ′1, σ

′
L}, {σ

′
R}|s

)
+ δ

(
{i, σ′

L}, {ρ
′
1, σ

′
R}|s

)
]

(A.16)

After summing over all splittings {σ′} → {σ′}L, {σ
′}R, the second term and the

fourth term cancel each other and only two terms are left

∑

{σ′}→{σL},{σR}

[
−δ
(
{ρ′1, i, σ

′
L}, {σ

′
R}|s

)
+ δ

(
{i, ρ′1, σ

′
L}, {σ

′
R}|s

)
]
. (A.17)

which is just the R.H.S. of (A.15) when nρ′ = 1.

4One may notice the splitting can be either {σ1, i, σ2}, {σ3} or {σ3}, {σ1, i, σ2}. Since there is no differ-

ence for following discussions between the two kinds of splittings, we just need to deal with only the first

kind.
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• (2) For the case nρ′ = 2, similar consideration as the case nρ′ = 1 gives the L.H.S.:

∑

{σ′}→{σ′
L
},{σ′

R
}

{[
δ
(
{ρ′2, ρ

′
1, i, σ

′
L}, {σ

′
R}|s

)
+ δ

(
{ρ′2, i, σ

′
L}, {ρ

′
1, σ

′
R}|s

)

+δ
(
{ρ′1, i, σ

′
L}, {ρ

′
2, σ

′
R}|s

)
+ δ

(
{ρ′2, ρ

′
1, σ

′
L}, {i, σ

′
R}|s

)
]

−

[
δ
(
{ρ′2, i, ρ

′
1, σ

′
L}, {σ

′
R}|s

)
+ δ

(
{ρ′2, i, σ

′
L}, {ρ

′
1, σ

′
R}|s

)

+δ
(
{ρ′2, ρ

′
1, σ

′
L}, {i, σ

′
R}|s

)
+ δ

(
{ρ′1, i, σ

′
L}, {ρ

′
2, σ

′
R}|s

)
]

−

[
δ
(
{ρ′1, i, ρ

′
2, σ

′
L}, {σ

′
R}|s

)
+ δ

(
{ρ′1, i, σ

′
L}, {ρ

′
2, σ

′
R}|s

)

+δ
(
{ρ′1, ρ

′
2, σ

′
L}, {i, σ

′
R}|s

)
+ δ

(
{ρ′2, i, σ

′
L}, {ρ

′
1, σ

′
R}|s

)
]

+

[
δ
(
{i, ρ′1, ρ

′
2, σ

′
L}, {σ

′
R}|s

)
+ δ

(
{i, ρ′1, σ

′
L}, {ρ

′
2, σ

′
R}|s

)

+δ
(
{i, ρ′2, σ

′
L}, {ρ

′
1, σ

′
R}|s

)
+ δ

(
{ρ′1, ρ

′
2, σ

′
L}, {i, σ

′
R}|s

)
]}

(A.18)

Again, after summing over all splittings of {σ′}, terms cancel each other and we are

left with

∑

{σ′}→{σ′
L
},{σ′

R
}

[
δ
(
{ρ′2, ρ

′
1, i, σ

′
L}, {σ

′
R}|s

)
− δ

(
{ρ′2, i, ρ

′
1, σ

′
L}, {σ

′
R}|s

)

−δ
(
{ρ′1, i, ρ

′
2, σ

′
L}, {σ

′
R}|s

)
+ δ

(
{i, ρ′1, ρ

′
2, σ

′
L}, {σ

′
R}|s

)
]
, (A.19)

which is just the R.H.S. of (A.15) in the case of nρ′ = 2.

• (3) Similar calculation has been done for the case of nρ′ = 3, which we neglect here,

since the manipulations are quite similar to the examples shown.

Above examples give the idea of proof. For the case with nρ′ = r after the splitting

{ρ′} → {α′}, {β′} with nα′ = s and nβ′ = r − s, we need to sum over all splittings of

{α′, i, β′, σ′}. In general, the splitting will be {α′
1, i, β

′
1, σ

′
1}, {α

′
2, β

′
2, σ

′
2}. Among these two

subsets, unlike the subset {α′
1, i, β

′
1, σ

′
1} where i seperates the α′ part from β′ part, the

subset {α′
2, β

′
2, σ

′
2} can come from different splittings of {ρ′} → {α′}, {β′}. More explicitly,

the last element of α′
2 can be considered as the first element of β′′

2 . Thus when we put

the factor (−)nα′ back, the term coming from nα′ = s will cancel with the term coming

from nα′′ = s + 1. Because this kind of cancelations, only splittings with all elements of

{αT }, i, {β} in the same ordered subset contribute.
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Having established (A.15), (A.14) can be rewritten as

∑

s∈{S({ρ},i,{σ})}

[
∑

{ρ′}→{α′},{β′}

(−1)nα′
∑

S({σ′}→ {σ′
L
},{σ′

R
})

δ({{α′T }, i, {β′}, {σ′
L}}, {σ

′
R}|s)

]

=
∑

s′∈{S({{ρ′},i,{σ′}})}

[
∑

{ρ}→{α},{β}

(−1)nα
∑

S({σ}→ {σL},{σR})

δ({{αT }, i, {β}, {σL}}, {σR}|s
′)

]
.

(A.20)

Step-3: proving the relabeling properties PG = GQ via (A.20) From step-1 and

step-2, we have written the relabeling property PG = GQ to the form (A.20). Now let us

prove (A.20) by considering various configurations:

• (1) Both {ρ} and {ρ′} are empty: In this case, (A.20) becomes

∑

S({σ}→{σL},{σR})

[
∑

S({σ′}→ {σ′
L
},{σ′

R
})

δ({σ′
L}, {σ

′
R}|{σL}, {σR})

]

=
∑

S({σ′}→{σ′
L
},{σ′

R
})

[
∑

S({σ}→ {σL},{σR})

δ({σL}, {σR}|{σ
′
L}, {σ

′
R})

]
, (A.21)

which is trivially true.

• (2) Only one of {ρ} and {ρ′} is empty: assuming {ρ} is empty, possible nontrivial

terms on the L.H.S. of (A.20) is given as

∑

{i,σ}→{i,σL},{σR}

∑

{σ′}→ {σ′
L
},{σ′

R
}

δ({i, ρ′, σ′
L}, {σ

′
R}|{i, σL}, {σR})

=
∑

{σ}→{σL},{σR}

∑

{σ′}→ {σ′
L
},{σ′

R
}

δ({ρ′, σ′
L}|{σL})δ({σ

′
R}|, {σR}). (A.22)

where we have used the fact that since the splitting of s has element i at the first

position, nonzero contribution requires the splitting of {ρ′} to be {α′} empty.

For the R.H.S. contribution is

∑

s′∈S({ρ′,i,σ′})

∑

{σ}→ {σL},{σR}

δ({i, σL}, {σR}|s
′)

=
∑

{σ′}→{σ′
L
},{σ′

R
}

∑

{σ}→ {σL},{σR}

δ({i, σL}, {σR}|{i, σ
′
L}, {ρ

′, σ′
R})

=
∑

{σ}→{σL},{σR}

∑

{σ′}→ {σ′
L
},{σ′

R
}

δ({ρ′, σ′
L}|{σL})δ({σ

′
R}|, {σR}). (A.23)

where in the second line, to have nonzero result, the splitting of s′ is that {ρ′} and i

belong to different subsets. Thus in this case, the relabeling property is also satisfied.
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• (3) Both {ρ′} and {ρ} are nonempty and they have no element in common: let us

consider the L.H.S. of (A.20) first. Since {ρ} and {ρ′} have no element in common,

to have nonzero contribution, we must have {α′} empty in the splitting of {ρ′} and

{ρ, i} belong to different subsets in the splitting of s. Thus the L.H.S. of (A.20) is

given as

∑

{σ}→{σL},{σR}

∑

{σ′}→{σ′
L
},{σ′

R
}

δ({i, ρ′, σ′
L}, {σ

′
R}|{i, σL}, {ρ, σR})

=
∑

{σ}→{σL},{σR}

∑

{σ′}→{σ′
L
},{σ′

R
}

δ({i, ρ′, σ′
L}|{i, σL})δ({σ

′
R}|{ρ, σR}). (A.24)

For the R.H.S., we need the {α} to be empty in the splitting of {ρ} and {ρ′, i} belong

to different subsets in the splitting of s′, thus we get

∑

{σ′}→{σ′
L
},{σ′

R
}

∑

{σ}→{σL},{σR}

δ({i, ρ, σL}|{i, σ
′
L})δ({σR}|{ρ, σ

′
R}) (A.25)

Thus the relabeling property in this case is satisfied.

• (4) Both {ρ} and {ρ′} are nonempty and they share common elements: this is a most

general case. The L.H.S. of (A.20) is

∑

{ρ}→{α},{β}

∑

{σ}→{σL},{σR}

[
∑

{ρ′}→{α′},{β′}

(−1)nα′

×
∑

{σ′}→ {σ′
L
},{σ′

R
}

δ({α′T , i, β′, σ′
L}, {σ

′
R}|{α, i, σL}, {β, σR})

]

=
∑

{ρ}→{α},{β}

∑

{σ}→{σL},{σR}

∑

{ρ′}→{α′},{β′}

∑

{σ′}→ {σ′
L
},{σ′

R
}

[
(−1)nα′

×δ({α′T }|{α})δ({β′, σ′
L}|{σL})δ({σ

′
R}|{β, σR})

]
, (A.26)

Similarly, the R.H.S. of (A.20) can be written as

∑

{ρ′}→{α′},{β′}

∑

{σ′}→{σ′
L
},{σ′

R
}

∑

{ρ}→{α},{β}

∑

{σ}→ {σL},{σR}

[
(−1)nα

×δ({αT }|{α′})δ({β, σL}|{σ
′
L})δ({σR}|{β

′, σ′
R})

]
. (A.27)

Changing α → α′ etc, and the L.H.S. equals the R.H.S. in this case.

Taking all the above possibilities into account, the property (A.20) is satisfied for all

cases, and we see that the relabeling condition (A.1) is satisfied for permutation P(1, i).
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