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Frequency modulation (FM) is an important building block of complex sounds that include

speech signals. Exploring the neural mechanisms of FM coding with computer modeling
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could help understand how speech sounds are processed in the brain. Here, we modeled

the single unit responses of auditory neurons recorded from the midbrain of anesthetized

rats. These neurons displayed spectral temporal receptive fields (STRFs) that had multiple-

trigger features, and were more complex than those with single-trigger features. Their

responses have not been modeled satisfactorily with simple artificial neural networks,

unlike neurons with simple-trigger features. To improve model performance, here we

tested an approach with the committee machine. For a given neuron, the peri-stimulus

time histogram (PSTH) was first generated in response to a repeated random FM tone, and

peaks in the PSTH were segregated into groups based on the similarity of their pre-spike

FM trigger features. Each group was then modeled using an artificial neural network with

simple architecture, and, when necessary, by increasing the number of neurons in the

hidden layer. After initial training, the artificial neural networks with their optimized

weighting coefficients were pooled into a committee machine for training. Finally, the

model performance was tested by prediction of the response of the same cell to a novel FM

tone. The results showed improvement over simple artificial neural networks, supporting

that trigger-feature-based modeling can be extended to cells with complex responses.

This article is part of a Special Issue entitled Neural Coding 2012.

This article is part of a Special Issue entitled Neural Coding 2012.
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1. Introduction

Time-varying signal of frequency modulation (FM) is an
important building block of communication signals in both
animals and humans (Lindblom and Studdert-Kennedy, 1967;
Zeng et al., 2005; for review, see Kanwal and Rauschecker
(2007)). Electrophysiological studies in animals showed that
central auditory neurons are selectively sensitive to FM tones
(Atencio et al., 2007; Brown and Harrison, 2009; Eggermont,
1994; Heil et al., 1992; Poon et al., 1991; Qin et al., 2008; Nelson
et al., 1966; Rees and Møller, 1983; Whitfields and Evans, 1965;
for review, see Suta et al. (2008)). The auditory midbrain (or
inferior colliculus) is an important center where the selective
sensitivity to FM first emerges (Felsheim and Ostwald, 1996;
Poon et al., 1991, 1992; Rees and Møller, 1983; for review, see
Rees and Malmierca (2005)). These FM-sensitive neurons
respond mainly to tones of rapidly varying frequency, but
not to tones of fixed frequencies. The neural mechanisms
underlying FM coding remain elusive as critical studies
require challenging techniques like in vivo whole cell patch
clamping and the sample size is often limited (Gittelman
et al., 2009; O'Neill and Brimijoin, 2002; Ye et al., 2010; Zhang
et al., 2003). One approach to understand the neural mechan-
isms of FM coding is the computational modeling of spike
responses to sound. This approach involves modeling the
input–output relationship for a cell using one sound (probe),
and then assessing the model performance using another
sound (test). In modeling responses to complex sounds,
results are more satisfactory at the lower centers, and less
so at the higher centers (Kim and Young, 1994; Lesica and
Grothe, 2008; Reiss et al., 2007; Theunissen et al., 2000). Such
discrepancy in model performance was explained partly by
the nonlinear properties of central circuits (Ahrens et al.,
2008; Bar-Yosef et al., 2002; Christianson et al., 2008; Escabi
and Schreiner, 2002; Young and Calhoun, 2005).

One common modeling strategy makes use of the spectro–
temporal receptive field (STRF; Aertsen and Johannesma,
1981; Depireux et al., 2001; Eggermont et al., 1983; Hermes
et al., 1981; Klein et al., 2000; Miller et al., 2002; Qiu et al., 2003;
for review, see Yu and Young (2010)). The STRF is used to
represent on the time–frequency plane the response prob-
ability of central auditory neurons to complex sounds. Typi-
cally, a probe tone of a randomly varying frequency is used to
evoke spike responses (deCharms et al., 1998; Poon and Yu,
2000; Qiu et al., 2003; Theunissen et al., 2000). Averaging out
the random sound energy preceding each spike in the
spectro–temporal plane generates the STRF. Band-like con-
centrations of energy appear in the STRF of FM-sensitive
cells. These bands are found at pre-spike intervals that are
consistent with the neural transmission time measured from
the auditory periphery to where the cell is recorded. These
band-like structures represent the presumed ‘trigger features’
that determine the spike responses. In the STRFs of auditory
neurons, a variety of trigger features have been reported (e.g.,
a flat orientation representing pure tone sensitivity; or a band
displaying either a rising slope representing a modulation
from low to high frequency, or a falling slope, a modulation
from high to low frequency; Atencio et al., 2007; Chiu and
Poon, 2007). The exact pattern of trigger features also
depends on the kind of sound used for stimulation, with a
choice ranging from random tones to naturally-occurring
sounds (Escabi and Schreiner, 2002; Poon and Yu, 2000;
Theunissen et al., 2000; Valentine and Eggermont, 2004).

In a previous study (Chang et al., 2012) we have modeled
the FM responses of auditory midbrain neurons based on
trigger features derived from their STRFs. The results are
satisfactory provided that (a) the neurons have simple recep-
tive fields (i.e., a single trigger feature in the STRF), and (b) the
spike responses are brief (i.e., phasic as opposed to sus-
tained). Although about 80% of the FM-sensitive neurons in
the midbrain satisfied the above criteria (Chiu and Poon,
2007), the remaining 20% displaying complex receptive fields
(i.e., multiple trigger features in the STRF) yielded poor results
with our model. Here, we hypothesize that neurons with
complex receptive fields can be modeled using a composite
neural network known as the committee machine. This
approach assumes that individual trigger features are related
to spike responses in a grossly linear fashion.
2. Results

A total of five neurons with complex receptive fields were
analyzed. The detailed results of one (unit 43-2-5) are pre-
sented together with the key results of other neurons.

The STRFs of all neurons displayed more than one bands
indicating the presence of complex or multiple trigger fea-
tures (Fig. 1). The time profiles of PSTH peaks typically
showed diverse shapes (single- or multiple-peaks, Fig. 2).
The multiple-peaks appearance was consistent with a sus-
tained response that typically dominated the PSTH. In con-
trast, the phasic responses were less common for these
neurons. The diverse shapes in the PSTH responses sug-
gested the presence of more than one type of FM sensitivities.
The predicted results with finite impulse response neural
networks (FIRNNs) model of simple architecture (1-1-1) were
not satisfactory; even though the approximate time of
response occurrence was grossly correct (Fig. 3). For a given
cell showing complex responses to FM, the majority of the
multiple-peak responses typically dominated the model out-
put, and the minority of single peaks was not predicted or
basically ignored by the model. Increasing the number of
hidden neurons extended the model output to include the
minor group of single peaks. However, the shape-fidelity of
multiple peaks remained poorly modeled (e.g., even with as
many as six neurons in the hidden layer) (Fig. 4, unit 100-3-2).

Comparing FM time profiles preceding the response and
grouping them based on their similarity index had segregated
PSTH peaks successfully into two or more groups (Fig. 2).
Once grouped, each of them was modeled separately with its
own FIRNN. The significant improvement, in terms of per-
centage of hit and the fidelity of multiple peaks, was observed
only after the FIRNNs were pooled into a committee machine
for modeling (Figs. 3 and 4).

Similar improvement of model responses was observed in
four other neurons; Fig. 1 shows their STRFs, Fig. 2, their PSTH
peak-groupings, and Fig. 4 shows the results before and after
the separation of PSTH response-peaks. For the five neurons
we analyzed, the improvement in response prediction with



Fig. 1 – STRFs of four FM-sensitive neurons showing multiple trigger features after extraction with the procedures of spike-
trigger averaging, progressive thresholding and de-jittering (see text for details). In this and other plots of STRFs (Fig. 6), the
number of time-profiles overlapped at each pixel is color-coded to show the concentrated areas of trigger features. Note the
orientations of the red bands representing different frequency modulations (e.g., rising FM, or modulation from low to high
frequency; or falling FM, the reverse). The dashed line marks the time of spike occurrence, and n, the number of stimulus
tracings in the plot.

Fig. 2 – PSTHs of the four FM-sensitive neurons (same units as in Fig. 1) showing the grouping of response peaks according to
the similarity of pre-spike trigger features. The groups of peaks (ranged from 2 to 5) so separated are shown in different colors
and individual peaks numbered. See also Fig. 7D. Note in this and other plots of PSTH (Figs. 3, 4, and 7) the maximal response in
each 2-s long data is normalized to 1. (A) unit 101-3-3, (B) unit 102-3-1, (C) unit 100-3-2 and (D) unit 101-2-2.
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Fig. 3 – Representative results of modeling (unit 43-2-5). (A) with a simple FIRNN (architecture 1-1-1, representing one input
neuron, one hidden neuron, one output neuron); (B) with an FIRNN of more hidden neurons, architecture 1-3-1 (one input
neuron, three hidden neurons, one output neuron); and (C) with a committee machine of architecture 3-1-1 (three input
neurons, one hidden neuron, one output neuron). The comparison is based on the same total number of artificial neurons used
in (B) and (C) (i.e., 1+3+1¼3+1+1). Note the phasic responses at time 500, 1340 ms are better modeled after peak-grouping (see
also Fig. 7D). Gray tracings represent the actual response; red tracings, the trained output; blue tracings, the predicted (test)
output. Half of the PSTH was used for training (upper panels with red tracings) and the remaining half for testing (lower panels
with blue tracings).
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the committee machine over either the simple or extended
FIRNN was statistically significant even for this small sample
of five neurons (Wilcoxon rank sum test, po0.01).
3. Discussion

Our principal finding is that the FM-responses of midbrain
auditory neurons were modeled more satisfactorily after
segregating the spike responses into different groups based
on their pre-spike trigger features, followed by a committee
machine that had individual settings of model parameters.
The advantage of applying different sets of model parameters
is consistent with FM detections that involve different trans-
mission delays and different time window of integration even
for the same cell. Results supported the importance of trigger
features in modeling FM responses, despite their complexity in
STRF. For the same neurons, the poorer performance without
PSTH peak separation is probably not surprising considering
the basic principle of FIRNN modeling (i.e., to simulate the
output of diverse response peaks by optimizing only one set of
model parameters). Evidently, FIRNNs of simple architecture
(e.g., 1-1-1) worked well for neurons displaying simple STRFs
since the response peaks likely shared a common spike-
generating mechanism. However, their performance dropped
in the case of neurons with complex STRFs. By carefully
grouping the response peaks, and by optimizing the time
window and delay time, the committee machine outper-
formed the single FIRNN, even when the total numbers of
neurons in the two models were equal. It is also quite
remarkable that given datasets as short as 1 s (and often with
limited number of response peaks in the PSTH), our present
model was able to predict relatively well the response to a
novel stimulus. In particular, tone-1 and tone-2 were different
in their frequency contents (tone-1 being higher and tone-2
lower in frequency contents). The purpose of tone-1 was to
determine if the cell has a complex receptive field. If yes, tone-
2 was used to generate data for training and testing of the
model. We speculate that given a longer training dataset,
the grouping of response peaks would be more precise and



Fig. 4 – Results from another four neurons shown before and after peak-grouping (same units in Fig. 2). Captions are otherwise
similar to that of Fig. 3. (A) 1-3-1, (B) 3-1-1, (C) 1-3-1, (D) 3-1-1, (E) 1-6-1, (F) 6-1-1, (G) 1-5-1 and (H) 5-1-1.
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the performance of the model would be better. Since longer
datasets will have more chance of training the model with
minor trigger features that are not present in short datasets.
Furthermore, increasing the group number, obtaining better
parameter values will also improve model performance.

The multiple features shown in the STRF are used to
demonstrate that the cell has a complex receptive field. The
multiple groups of PSTH peaks obtained from the same cell
should be consistent with the complex receptive field, if the
same sound stimuli were used. However, in this study, STRF
was derived from a fast FM, and PSTH from a slow FM. Hence
the two stimuli had different FM features. Despite a differ-
ence in the FM stimuli for generating the STRF and PSTH, our
approach does not depend on using the same sound stimuli.
In fact, on an FM cell, given only the prior knowledge of a
complex receptive field, our model would perform satisfacto-
rily. This suggested that our model will work for cells with
complex receptive fields in general, and it does not rely on
the knowledge of the precise trigger feature.

A number of studies, both empirical and theoretical, have
demonstrated nonlinear behaviors of the central circuitry in
response to complex sounds (Christianson et al., 2008; Yu and
Young, 2010). While our model does not rely heavily on non-
linearity, this does not mean that non-linearity is not impor-
tant at all. Our results simply showed that, at the level of the
midbrain, auditory neurons can still be considered to behave
relatively linearly, provided that the stimulus is a random FM
tone of a single frequency. Such stimulation with a single
tone is apparently more manageable by our model. Should
the FM stimulus be replaced by FM tones of multiple fre-
quencies (e.g., like formants in speech signals), nonlinearity
likely becomes more important. That is because the response
of auditory neurons to two-tone stimulation is known not to
be fully predicted by their responses to a single tone. The
phenomenon of two-tone inhibition (i.e., the response to one
tone is inhibited when another tone slightly off its character-
istic frequency is presented simultaneously), has been known
to occur at the level of the auditory nerve fibers which reflects
the cochlear nonlinearity (Sachs and Kiang, 1968). In parallel
with our committee machine approach, other investigators
have used a multilinear model to improve the prediction of
responses of auditory neurons to complex sounds (Ahrens
et al., 2008). However the comparison of the results between
their approach and ours is not straightforward as they did not
use a single tone for stimulation. These multilinear or
composite models are superior to simple neural networks.

Although the sampled neurons had characteristic fre-
quencies covering a wide range from 500 to 50 kHz, those
with complex receptive fields fell within the mid-frequency
range that also overlapped with the most sensitive part of the
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rat's audiogram. What biological implications this finding has
is not clear.

In summary, our present approach, based on multiple
trigger features in the STRF, improves model performance
to FM tones including cells with complex receptive fields. It
would be most interesting to extend the present approach
by modeling the responses to naturally-occurring complex
sounds.
4. Experimental procedures

Detailed experimental protocols have been reported before
(Chiu and Poon, 2000; Chang et al., 2010a, 2012), and they
were approved by the Animal Ethics Committee of NCKU
Medical College, Taiwan. In brief, using KCl-filled glass
micropipettes, the single unit responses of auditory midbrain
neurons to FM sounds were recorded extracellularly in
anesthetized rats (Sprague Dawley strain, 250–350 g body
weight, urethane, 2 g/kg, intra-peritoneal). Two sets of FM
sounds were presented: (a) random FM (tone-1) that was
different across trials, and (b) random FM (tone-2) that was
identical across trials. The FM stimuli were obtained by low-
pass-filtering white noise (125 Hz for tone-1, 25 Hz for tone-2)
and the output signal was used to control the instantaneous
frequency of a sine wave generator. During data collection,
stimuli were delivered in the free-field to the animal, at
∼30 dB suprathreshold, 7∼1 octave across the best frequency
of the cell. For each cell, FM tone-1 was used to generate the
STRF, the first part of FM tone-2 (1 s long) for model training,
and the remaining part (1 s long) for model testing. The peaks
in the PSTH are the responses to be modeled (Fig. 5).
Fig. 5 – Responses of a representative FM neuron (unit 43-2-5): (A
stimulus (tone-2), (B) the corresponding spike responses to 60 repe
an action potential), and (C) spike responses in (B) plotted as peri-
Note the peaks represent presumed activation by the trigger featu
training, and the remaining half for testing.
To generate an STRF, the instantaneous frequency time-
profiles of the FM stimulus within a 40 ms pre-spike time
window were added according to the conventional procedure.
Specifically, on the spectro–temporal plane formed by a
minimum of 126�201 pixels, the count of all the stimulus
frequency time-profile passing through each pixel was regis-
tered to show the concentration of peri-spike sound energy
(Poon and Yu, 2000). To better reveal the trigger features in
the STRF, we applied a preprocessing procedure called ‘pro-
gressive thresholding’ (Chang et al., 2010b) followed by
‘de-jittering’ (Chang et al., 2005). In brief, for each STRF, pixels
with counts greater than a preset level (e.g., 55% of max-
imum) were identified as a ‘supra-threshold area’ and its
boundary extracted. In the case of detecting more than one
area, the one larger in size was processed first. Those pre-
spike time tracings of modulating waveforms passing
through the supra-threshold area were removed from the
population and grouped under one trigger feature. This
procedure was repeated iteratively at progressively higher
threshold levels (+5% for each iteration) until all tracings
were pooled into separate groups. For each group of tracings,
a procedure of de-jittering was applied to correct for the
response jitter that was transferred erroneously to the
stimulus tracings due to the limitations of spike-trigger
averaging. This procedure involved first matching individual
modulating waveforms to their mean at a systematically
varied time window to reach an optimal variance time profile.
At this optimal window length, the delay of each tracing was
then adjusted systematically to minimize the disparity with
respect to the population mean. The purpose was to reveal
individual trigger features in the blurred raw STRF. After
processing, individual trigger features typically appear in the
) instantaneous frequency time-profile of a random FM
ated stimulus trials, shown in dot-raster (each dot represents
stimulus time histogram (PSTH), before the Gaussian filtering.
res in the stimulus. Half of the 2-s dataset is used for model
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form of a single band-like structure (i.e., simple receptive
field), or as multiple band-like structures (complex receptive
field; Fig. 6). We analyzed only those neurons displaying
complex receptive fields. Due to the complex response pattern,
Fig. 7 – Model performance plotted as the results of systematic va
Figs. 5 and 6). The model performance is color-coded to represen
colors, better performance). Training performances based on all p
group-2 peaks (C). The two groups of peaks so separated are sho
reference (D). Arrows in (A)–(C) indicate the optimal combinations
simplicity of illustration, results here were based on the analysis
performance, please see text.

Fig. 6 – Representative STRF showing complex receptive field
(same unit as in Fig. 5). Captions are otherwise similar to that
of Fig. 1.
peaks in the PSTH that had exceeded a baseline level (10% of
maximum response) were extracted and grouped according to
their similarity of pre-spike FM time profiles based on an
algorithm of minimal disparity (for details please see
Supplementary material 1). For each group of peaks, the
temporal information of the trigger feature (i.e., its start and
end times; and the delay between the end of the trigger feature
and the onset of spike response, i.e., the central transmission
delay) were optimized before setting the parameters of the
artificial neural networks. The optimizing procedure involved
a systematic scanning across the pre-spike time range for the
optimal combination of time window and delay that gave the
maximal model performance (Fig. 7). The optimal combina-
tion, according to our previous study (Chang et al., 2012), was
taken near the tip of a triangular area forming a plateau-like
structure, or at the peak of an island-like structure in the scan-
result plots (arrows in Fig. 7). To assess model performance,
we used the percentage of overlap in the PSTH as the index:
here we compute the area of positive hit (‘intercept’) and
divide it by the total area (‘union’) of actual and predicted
responses. Hence we consider only the areas of PSTH with
spike responses and ignore those without (Chang et al., 2012).
This performance index represents what the artificial neural
network was trained to maximize.
rying the time-window width and delay time (same unit as in
t its percentage overlap with PSTH responsive areas (warm
eaks in the PSTH (A), and the separated group-1 peaks (B), and
wn in the PSTH with different colors and numbered for
of time window and delay time for each set of peaks. For the
of 2-s data segments. For the calculation of model



Fig. 8 – Schematic architecture of a committee machine that
contains a number of finite impulse response neural networks
(FIRNNs or expert systems). Each expert or FIRNN was trained
to model an individual peak-group in the PSTH. The combiner
of FIRNNs is a back propagation neural network (BPNN).
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In essence, the artificial neural network was trained to
generate the spike response probability based on the instan-
taneous frequency time-profiles of the FM stimulus using the
optimized pre-spike time window and central transmission
delay. Because of response grouping, different settings of the
model parameters were allowed for different groups. The
number of neurons in the hidden layer was free to increase
from the default 1 to a maximum of 5 in order to improve the
fidelity of modeling the PSTH response time profile. To
simulate synaptic activation of the cell and to facilitate
modeling the response probability profile a multi-scale Gaus-
sian function was convolved with the PSTH. In more techni-
cal terms, a finite impulse response neural network (FIRNN)
which modeled synaptic interactions as FIR linear filters was
constructed in the form of an autoregressive time series (for
technical details please see Chang et al. (2012)). After success-
ful modeling of individual groups, the FIRNNs were pooled
into a committee machine, which further incorporated the
input FM stimulus time profile that was required for adjusting
the relative weighting of the FIRNNs (Fig. 8). A committee
machine has a parallel architecture that produces an output
from combining the results of individual experts (Dietterich,
2000). In this study, we used an ensemble-based committee
machine with a number of empirical formulae. To include the
contribution of individual formulae, the output of each
weighted member (FIRNN) and the input FM stimulus time
profile are computed according to the weights (coefficients) of
the weighted average. The optimal combination of weights
for prediction is processed using a back propagation neural
network (BPNN; for more technical details on committee
machine and BPNN please see Supplementary material 2).

Finally, the performance of the committee machine was
accessed with an FM tone (the novel part of tone-2).
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