
Light-Weight CSRF Protection by Labeling User-
Created Contents

Yin-Chang Sung, Michael Cheng Yi Cho, Chi-Wei Wang, Chia-Wei Hsu, Shiuhpyng Winston Shieh
Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan (R.O.C.)
{simonsin, michcho}@dsns.cs.nctu.edu.tw, cwwangabc@gmail.com, {hsucw, ssp}@cs.nctu.edu.tw

Abstract – Cross-site request forgery (CSRF/XSRF) is a serious
vulnerability in Web 2.0 environment. With CSRF, an adversary
can spoof the payload of an HTTP request and entice the victim’s
browser to transmit an HTTP request to the web server.
Consequently, the server cannot determine legitimacy of the
HTTP request. This paper presents a light-weight CSRF
prevention method by introducing a quarantine system to inspect
suspicious scripts on the server-side. Instead of using script
filtering and rewriting approach, this scheme is based on a new
labeling mechanism (we called it Content Box) which enables the
web server to distinguish the malicious requests from the
harmless requests without the need to modify the user created
contents (UCCs). Consequently, a malicious request can be
blocked when it attempts to access critical web services that was
defined by the web administrator. To demonstrate the
effectiveness of the proposed scheme, the proposed scheme was
implemented and the performance was evaluated.

Keywords - cross-site request forgery, light-weight, Web 2.0, user-
created contents

I. INTRODUCTION

Cross-Site Request Forgery (CSRF/XSRF) is listed among
the top 10 web vulnerabilities [1]. Although cross-site
scripting (XSS) came before CSRF/XSRF in the top 10 web
vulnerability list, CSRF/XSRF is gaining attention in Web 2.0
environment [2][3]. In XSS, one of the severe cases is that the
attacker could steal victim’s session cookie to hijack victim’s
session and take over victim’s account. To cope with the XSS
cookie stealing problem, research work [15][25][33][36][44]
has delivered promising results to counter against the cookie
stealing problem. To overcome these defense techniques,
cyber-criminals will have to switch to a different attack other
than stealing user cookies, namely CSRF. In the cookie-based
management, when a user logs in to a server and the session
key has not expired, the client browser will embed user cookie
into HTTP request header automatically. Instead of stealing
user cookie, attackers can take advantage of this browser
feature to achieve an attack called “Session Riding” or CSRF
where an attacker can spoof the payload of an HTTP request
and entice the victim’s browser to transmit an HTTP request
to the web server [28]. With session riding/CSRF, the server
cannot determine legitimacy of the HTTP request. The forged
HTTP request can cause a major problem since the request
service may include important services, such as sending email,
posting article, modifying profile, transferring money from the
victim’s account. That means CSRF attack can imitate user’s

identity to request for the services that are provided by web
servers without stealing victim’s cookie.

CSRF attack can be classified into two types. One is
launched from a malicious website to an honest website. In
this type, an attacker can only send an HTTP request to an
honest website but no secret information can be obtained from
the honest website. The Same Origin Policy (SOP) was design
to prevent any cross-site HTTP request action that is caused
by XSS. However, SOP is only effective against JavaScript,
and HTTP request can be generated via HTML also. Therefore,
a forged HTTP request generated by HTML can bypass the
SOP. In an attack scenario, an adversary can pre-craft a
HTML that sends an HTTP request to invoke a bank account
transfer, and lure a rightful bank client to click on the link of
the pre-crafted HTML. Thus the bank server cannot
distinguish the rightfulness of the request, CSRF attack is
achieved.

To cope with this type of CSRF attacks, a website
administrator may break web services apart into several steps
and each step requires the client browser to send an HTTP
request. Using this method, the CSRF attack will fail since
HTML can generate only one HTTP request at a time. An
alternative approach is to use additional information, e.g. a
secret token. The additional information is generated
dynamically and it cannot be obtained in advance. Therefore,
the pre-crafted HTML cannot send an HTTP request without
knowing the additional information.

The other type of CSRF attack is based on JavaScript and
AJAX (Asynchronous JavaScript and XML). It is called the
“Multi-stage CSRF attack”, which it involves a malicious
script that generates multiple HTTP requests and secretly
sends the generated HTTP requests asynchronously in the
background. It can also customize parts of HTTP request
header and read the HTTP request response. AJAX acts like a
tiny browser which can it obtain all secret information from
the HTTP request response headers and the payloads. With a
well-designed malicious script, an attacker can pretend to be
an authorized victim, accessing web services without
restriction on the targeted website [27][29][39][41].
Furthermore, once the malicious script is stored in the
database of a webserver, CSRF can also acquire self-
propagation ability.

At present, JavaScript filtering or rewriting is the best
solution to prevent the multi-stage CSRF attacks. AJAX is
JavaScript based, and JavaScript restriction implies limiting
the ability of AJAX. Filtering and rewriting JavaScript

2013 7th International Conference on Software Security and Reliability

978-0-7695-5021-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SERE.2013.22

60

2013 7th International Conference on Software Security and Reliability

978-0-7695-5021-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SERE.2013.22

60

approach transforms the original JavaScript to a safer
JavaScript with high overhead cost. This indicates that this
approach reduces the functionality of the original JavaScript.

Web 2.0 is well adopted by social network websites, and
social network website is one of the popular web services that
are made available to the general public. For a social network
website, the interaction between users and the web server adds
complication to website design. One of the key features of a
social network website is the UCC (user created content), in
which users could contribute contents to the website. However,
the identification of the user who provided the content can be
vague or forged; and the client browser on the user-side
cannot distinguish the UCC from the content that is provided
by the administrator of the website. Other than identity of the
UCC problem, user can also improve the content by adding
JavaScript as part of the UCC to create DHTML (Dynamic
HyperText Markup Language). JavaScript not only enables
users to enrich the visual effects of their web contents, it also
improves the communication ability between the users.
Despite the benefits of JavaScript, it may also lead to an
unauthorized script injection attack where CSRF is achieved.
In order to ensure the safety of web pages, the web
administrator has to filter user input and eliminate any
suspicious strings. As a result, identifying the filter policies is
a crucial task. Otherwise, members cannot contribute contents
based on the advantages of Web 2.0.

A social network website often consolidates many web
services together, services such as photo album, blog,
guestbook, online shop, and money transaction service. Since
these services can be integrated into one website, attackers can
invade all services if one of the provided service is vulnerable
[40][42]. Consequently, attackers take advantage of this to
inject malicious scripts as part of a UCC into victim’s website
and wait for visitors to browse the malicious scripts. This
malicious act means that the vulnerability is no longer a
“cross-site” problem. Thus, the cross-site detection
mechanism in the past is not a suitable solution for social
network websites. It is also important to understand that
JavaScript of a UCC is not always malicious. JavaScripts can
be used to provide a better browsing experience for user
interaction. Despite that these JavaScripts are harmless,
current solutions may block or filter these JavaScripts due to
the potential threat.

We observed that the existing websites do not adopt the idea
of filtering or rewriting UCC since the parsing behavior can be
unpredictable or unexpected. For this reason, we propose an
effective and flexible protection scheme without sanitizing the
JavaScripts. We ensure that the HTTP requests from a UCC
are isolated and the web administrator can decide the access
right of these HTTP requests generated by UCCs. To be
compatible with the original JavaScript defined by
ECMAScript [18], the proposed labeling mechanism, called
Content Box, allows JavaScript syntax with small limitation
instead of filtering or rewriting the JavaScript. Since fine-
grained protection policies are enforced, the Content Box can
also eliminate CSRF attack from accessing sensitive
data/services. For integrity examination, we formalize the
Content Box using RBAC (Role-Based Access Control) model
[22].

The rest of the paper is organized as follows. Section II
gives introduction to the related work. In section III, we
propose the labeling mechanism for CSRF prevention and
analyze the integrity of our scheme. The detail of security
analysis is given in Section IV. Section V presents the
implementation details. Evaluation and conclusion are given
in sections VI and VII, respectively.

II. RELATED WORK

Various schemes have been proposed recently to prevent the
CSRF attack [32][38]. The CSRF is an attack that tricks
victims into browsing a web page that contains malicious
scripts which can forge HTTP requests to pretend as the act of
the victim. From the perspective of a web server, establishing
a well-defined access control mechanism to a service is an
important task to prevent CSRF attack. From the given
information, the CSRF prevention scheme can be
implemented on the server-side and/or the client-side. Based
on the methodology of the schemes we categorized the related
work into four categories.

A. No Script Policy

A website usually does not trust any scripts that are
composed by the end-users. Therefore, any UCC contains
scripts are considered as suspicious and web administrators do
not allow end-users to upload any scripts. Posting plain text is
the only permission that is allowed for the end-users.
Whenever a script upload is detected by the web server, the
web server eliminates or blocks the script by sanitizing the
uploaded strings [15]. On the basis of this approach, any
client-side script language will be blocked. These scripts may
include HTML, JavaScript, and AJAX. Hence, it is an
effective defense approach against client-side script attacks. In
addition, there are web browser plugins available for disabling
scripts of websites [45]. This is a client-side solution that
enforces the client browser to comply with customized
policies on website script execution.

The disadvantages of no script policy are that client-side
script upload is totally disabled and/or the client browser on
the client-side cannot view the effect of scripts. In Web 2.0,
user interaction and experience are the key features to a social
network website. With many restrictions on client-side script
languages, users cannot enrich their web contents; moreover,
the benefits of Web 2.0 features are not embraced.

B. HTTP Header Modification

Based on the behavior of “cross-site”, the CSRF attack is
launched from a malicious website to intrude a targeted
website. Hence, the solution lies in how to detect the “cross-
site” behavior. Without modifying both the client and the
server, the server can rely on HTTP referrer header which it
stands for the previous visited URL of client’s browser. Hence,
the cross-site HTTP request can be detected using the HTTP
referrer header. However, the potential problem is that the
HTTP referrer header may leak the sensitive information that
impinges on the privacy of the end-users. For example, an
URL sometimes contains GET parameters like the following,

http://www.google.com.tw/search?hl=zh-TW&q=secret

6161

From the provided URL, it reveals that the end-user had just
searched keyword “secret” in google.com.tw.

Fig. 1. Customized HTTP Header

Related work has proposed a customized HTTP header (see
Fig. 1. for customized HTTP header example) to resolve the
CSRF and privacy leakage problem [31][37]. “Origin Header”
prevents the CSRF by modifying the client browser and the
web server. This header will only appear when a client sends
an HTTP request with POST method. In the content of the
origin header, sensitive data is excluded for privacy
preservation, e.g., the GET parameters, and the path after the
domain name. A web server can use this header to identify the
cross-site behavior. The disadvantage of this approach is that
it failed to prevent the CSRF attack launched from the same
website, since the cross-site behavior does not exist.
Furthermore, it is not convenient for the end-users to install
extra add-on or plug-in in order to browse a specific website.

C. Secret Validation Token

As an alternative of the HTTP request header modification
methodology, some research works implement a secret token
mechanism to verify the legality of an HTTP request [5][6][7].
When a client connects to a web server, the web server
dispatches a secret token to the client browser dynamically.
The secret token is transmitted from the client-side whenever
the client is making HTTP requests to the web server. The
transmitted secret token is verified by the web server to ensure
the legitimacy of the HTTP request. Since the secret token is
generated in real time, it is a useful scheme to defend against
CSRF attack. However, the placement of the secret token is a
severe problem. The placement of a client browser on the
client-side embeds the secret token in one of the HTML tags
as follows:

• <a>
• <form>
• <iframe>
• <button>
• <meta http-equiv=”refresh” >
Some problem exists upon modification of these tags. First

of all, it is difficult to cooperate with DHTML where the
content of a web page can change at the runtime. If a HTML
form is generated at the runtime, a web server cannot generate
a secret token and send it to the client browser in real time. As
a result, the secret token on the client-side and the server-side
are asynchronous. Secondly, the secret token will be
embedded into “src” attribute which is equivalent to an URL.

Unfortunately, attacker can obtain the full URL by setting up a
malicious website or using the document .URL property in
JavaScript. Lastly, all of the mentioned HTML tags are part of
DOM elements [4]. In DHTML, JavaScript can access all
DOM elements in a web page. Thus, JavaScript must be
disallowed whenever a secret token is used.

D. JavaScript Restriction

As aforementioned, a UCC that contains JavaScript is the
root cause of the CSRF problem in Web 2.0. This leads to the
research of building a safer JavaScript (See Fig. 2). This
approach depends on filtering or rewriting the vulnerable
functions or properties of the original JavaScript [35].

Fig. 2. A safer subset of JavaScript

Adopting this concept, the research defines a much safer
subset of the original JavaScript. However, there are some
disadvantages in the filtering or rewriting approach. First, the
end-user can only use the functions that are provided by
server’s API. Customized user function is prohibited using the
filtering/rewriting approach. As a result, the freedom of
JavaScript is restricted. Secondly, despite the fact that
researches use formalism to prove the safeness of the safer
subset of JavaScript, the safer subset of JavaScript is still
vulnerable against attacks. Maffeis et al. [8] found
vulnerabilities in research works [9][10].

Furthermore, rewriting is a difficult task based on the
properties of JavaScript. The most severe problem is the
overhead of JavaScript translation. In a client-server
communication environment, response time is a critical factor.
However, the filtering/rewriting approach is a time-consuming
matter.

III. PROPOSED SCHEME

To prevent the CSRF attack, we propose a labeling
mechanism called Content Box; the Content Box consists of a
labeling function and UCC quarantine policies. The labeling
function is used to isolate the UCCs, while the UCC
quarantine policy enforces propagation rules for the labeled
UCCs. The CSRF attack can be prevented using the Content
Box when an untrusted UCC is trying to access a service that
contains sensitive/private information. Furthermore, integrity
of the Content Box is formalized and proved by using the
RBAC model.

6262

A. Main Idea

The contents of a web page can be divided into two different
types. One is called the “trusted contents”; these contents are
created by the web server administrator or the current
viewer/user. Since these contents are created by the rightful
owner, it is reasonable that the scripts within the contents are
free from the CSRF attack. The other type is called the
“untrusted contents” which are created by other users. Since
these contents are provided by users other than the rightful
owner, the scripts within these contents may cause the CSRF
attack.

It is important to differentiate the contents of a web page
since the client browser always trusts the contents of a web
page provided by a web server even if the authors of the
contents are not trusted by the client. In the Content Box, we
intend to distinguish the untrusted contents from the trusted
contents by labeling the contents and prohibiting the untrusted
contents from accessing web services that contain sensitive
data, as shown in Fig.3.

Fig. 3. An overview of the Content Box

When a client logs in to a website, a cookie is assigned to
the current client browser. If the client wishes to make an
HTTP request to the web site, the client browser will embed
the assigned cookie into the HTTP request automatically, as
shown in Fig.4. The content label relies on the embedded
cookie to separate trusted and untrusted contents of the UCCs.
In the present social network web server design, a social
network web server records the author of messages, articles, or
files. This feature can be used to identify the label of the
UCCs.

Fig. 4. The relation of the user cookies and the client browser

B. Labeling

In Web 2.0, the UCC is the source of the CSRF attack
problem. However, most UCCs are harmless providing that if
it is created by the current client. This kind of UCC should be

classified into trusted contents since the CSRF attack rarely
happens when both of the attacker and the victim are identical.

Labeling is used to differentiate the contents and ensure that
every HTTP request is labeled, provide that the label cannot
be disrupted by the client browser. However, a non-labeled
HTTP request may appear under some conditions, e.g., user
log in request, opening a new window, and cross-site request.
For these non-labeled HTTP requests, the web server should
assist these HTTP requests to obtain cookies for identification
purpose. Inspired by Kerschbaum [11], we proposed a simple
but effective method to block non-labeled HTTP requests.
Whenever a non-labeled HTTP request is encountered, the
server redirects the HTTP request to a non-UCC web page that
takes no parameters (GET or POST). Therefore, the web page
will not suffer the CSRF attack from unpredictable user input;
the server can also assign new cookie and label to the client
browser.

Fig. 5. A web page with labels

In addition to labeling the contents of a web page, an access
control mechanism is required to patrol the accesses of web
services. In a web page, it is common to have many trusted
and untrusted labels, as shown in Fig.5. If the content of the
trusted labels can be interfered by the untrusted labels, then
the attacker can inject malicious script into benign content. As
a result, a forged HTTP request with trusted label can be
issued by an injected malicious script. In order to prevent this
incident, labels have to comply with the following rules:

� Trusted label has the freedom to access the contents
with trusted or untrusted label.

� Untrusted label can only access the contents with
untrusted label.

� Once the contents with trusted label are contaminated
by untrusted label, its label becomes untrusted.

The described access control scheme is simple and straight
forward. However, many challenges exist during the
implementation of access control scheme. With only server-
side modification, we must use JavaScript and built-in
functionalities to comply with the access control scheme.
These implementation challenges will be discussed in section
IV with details.

6363

C. Extending Labels

For the multi-stage CSRF attacks, the labeling function is
insufficient and hence stronger defense mechanisms are
required. Since both the attacker and the victim have the same
access right in the targeted website, the web server cannot rely
on the SOP or source information embedded in the HTTP
request to detect the multi-stage CSRF attacks. By observation,
a multi-stage service requires a sequence of HTTP requests, as
shown in Fig.6. We refer to this process as “transition path”. A
labeled transition path can assist a web server to distinguish
between the multi-stage CSRF attack and the benign HTTP
requests.

Fig. 6. A multi-stage service requires 3 HTTP requests

A minimized transition path can be constructed if two
HTTP requests share the same session. To build a complete
transition path, a web server connects these minimum
transition paths based on shared sessions.

Once the transition path is built, the new challenge is to
determine the multi-stage CSRF attack from the constructed
transition paths. From our observation, attackers usually inject
malicious script into untrusted contents and wait for a victim
to browse the content. Therefore, the transition path triggered
by an HTTP requests with untrusted label is considered as a
multi-stage CSRF attack.

D. Determine CSRF Attack

To prevent the CSRF attack, the administrator of a website
should define a set of services called the “critical services”
which contain sensitive data and privacy information about
users. When an HTTP request is received, the web server
checks the label of the HTTP request to guarantee the integrity
of the critical services. As described in section III, part B,
labeling quarantines the UCCs and separates the untrusted
UCCs. This methodology does not rely on filtering/modifying
the UCCs and the CSRF attack can be blocked effectively
provided that the label of an HTTP request is untrusted and the
transition path involves a critical service.

IV. SECURITY ANALYSIS

As discussed in the previous section, the Content Box
ensures the integrity of a website cannot be broken by the
CSRF attack. To formally prove the integrity of the Content
Box, we use the RBAC model to verify the integrity. Although
there are many information flow access control models
available [12][13][26][34][42], the Content Box is a simple
model in comparison with system level access control models.
The Content Box determines trusted content, untrusted
content, and the services that can be accessed by untrusted
contents. Based on the characteristics of the Content Box, we
choose the RBAC model to formalize the Content Box.

A. Notation of RBAC

The RBAC model is a well-known access control model
[30], and it ensures the integrity and the confidentiality of a
system. In this section, we will introduce the symbols of the
RBAC model in Table. 1.

Table 1. Notation of RBAC

There are three basic components in the RBAC model:
Subject, Roles, and Objects. A Subject represents a user, a
program, a basic unit, or a network computer. In the Content
Box, Subjects are the contents in a web page and the contents
can be classified by the identity of the author. An Role is a
collection of job functions and it grants permissions to each
Subject. We divide the contents into two Roles, trusted and
untrusted, by the identity of authors and current viewer. The
procedure of separating the Subjects is written as AR(s).
RA(s) means that a Subject can play one or more Roles, but it
can only be one Role at a time. An Object stands for the target
of a program or the destination of an execution path. Web
services can be considered as Objects since the contents can
access service resources on a website.

Transaction is a transformation procedure of a set of
associated data items. Transaction path exists when a Subject
reaches an Object. Each Role may be authorized to perform
one or more transactions, TA(r). In addition, roles can be
composed of Roles. In other words, a higher level Role can
control all transactions of lower Roles. The most important
symbol is the “exec” which describes whether a Subject can
execute a transaction under basic rules or not. The overview of
the Content Box symbols can be drawn as Fig.7.

Fig. 7. Labeling mechanism using the RBAC model notation

6464

B. Properties Analysis

In information security, there are three security goals:
confidentiality, integrity, and availability. We will discuss the
relationship between the three properties using RBAC model
in the Content Box. Inspired by Ferraiolo et al.[22], three
basic rules are formulated to restrict the transaction of an
Subject:

1) Role assignment:

�s: subject, t: transaction,(exec(s,t)�AR(s) �).
Role assignment rule complete the confidentiality property.

Confidentiality ensures that the secret information cannot be
accessed by unauthorized individuals or systems. In the RBAC
model, each subject must be assigned to a role or roles. That is,
the contents cannot access web services if the client browser
does not have a session with the website.

2) Role authorization:

�s: subject, (AR(s) � RA(s)).
Role authorization rule makes the system flexible. In a real

world environment, the active Role of an Subject changes
frequently and this rule guarantees the change of active Role is
within the scope. For the Content Box, the Role of an UCC
depends on the identity of the current viewer and the identity
of authors. The change of current viewer’s identity affects the
result of dispatching Role for contents.

3) Transaction authorization:

�s: subject, t: transaction,(exec(s,t)� t � TA(AR(s)).
Transaction authorization rule ensures the integrity property.

Integrity is the term used to prevent authorized Roles from
executing improper transactions. As an example, a CSRF
attack disrupts a victim’s session with a website and mimics
victim’s identity to access the web services. In the RBAC
model, transaction authorization rule ensures that all
transactions must be executed with proper authorized Role.

Availability assures that the resources on a website should
be available whenever needed. The web administrator should
assure the correctness of web service operations under
different circumstances, such as power outages, hardware
failures, and system upgrades. However, this property is not
described in the RBAC model and the CSRF attack does not
corrupt availability. Therefore, we will not introduce the
availability property for the Content Box.

In a CSRF attack, malicious script will force the client
browser of a victim to send forge HTTP requests to the
targeted website, as if the requests were part of the victim’s
interaction with the website. The client browser leverages the
session, such as cookies, and malicious scripts disrupt the
integrity of the victim’s session with website. The CSRF
attack can be formalized by the RBAC model as follows:

CSRF:= exec(s,t) is true only if t � TA(AR(s)), where

s�subjects, t�transaction
Evidently, the CSRF attack violates the transaction

authorization rule. Referring back to the Content Box, the
untrusted content will be tagged with untrusted label and such
content has no access to the critical services. For the client, the

malicious scripts that can invoke the CSRF attack are always
embedded in untrusted contents. As long as we can ensure that
a malicious script cannot escape from the regulation of the
Content Box, the CSRF attack will be blocked.

V. IMPLEMENTATION

The Content Box implementation can be divided into two
components, the labeling function and the quarantine policies.
Fig.8 shows the placement of the components in a standard
scenario. Note that the labeling function and the labels are
generated from the server side.

Fig. 8. Overview of the Content Box

A. Labeling Function

The labeling function has three functional requirements.
The first requirement is to distinguish the untrusted contents
from the trusted contents. In the present design of a website, a
web server records the identity of authors, the upload time,
and other information in a database whenever a user uploads
data. We can use these recorded information to classify the
UCCs into ‘trusted’ and ‘untrusted’ labels whereas the ‘trusted’
contents are the UCC provided by the web administrator or the
current viewer. The rest of the UCCs belong to ‘untrusted’
label. For the untrusted UCC, the web server isolates the
untrusted contents by using HTML iframe tag. That is,
untrusted contents are placed into iframe and the iframe is
embedded into the original web page. The properties of
HTML iframe tag ensure that the internal and external
communications of iframe stays available and all requests will
be affixed with the same HTTP referrer header from the
internal iframe. Even if untrusted contents generate elements
dynamically, the HTTP referrer header will not be affected.

The second requirement is to ensure that the relationship of
the labels will not be broken by the untrusted contents. The
iframe can communicate with the parent node under the same
website without restrictions. Therefore, we must restrict the
communication ability of the child untrusted contents. Without
client browser modification, we make use of the properties of
JavaScript and browser built-in function to enforce this
restriction. Function overriding and property redefine are the
two functions that are available in JavaScript. We use these
features to reconfigure functions and properties. Table 2
contains the functions and the properties that require
reconfiguration. To achieve functions and properties
reconfiguration, we assign a new object to override it.
Unfortunately, non-configurable properties still exist. Phung et
al. [14] used __defineGetter__, __defineSetter__, and
Function.apply to change the behavior of function and

6565

property. Redefining the getter and the setter is a useful skill
for hiding non-configurable property, e.g. “document.referer”.

Functions

XMLHttpRequest.open Function override

XMLHttpRequest.send Function override

Property

document.cookie Hide property

document.referrer Hide property

window.parent Assign new object

window.top Assign new object

window.opener Assign new object

window.self Assign new object

document.parentNode Return null by default

Table 2. Modified functions and properties

There are four elements related to window (see Table 2)
that require reconfiguration. These elements allow iframe to
access the resource of the parent node. If a trusted label is the
parent of an untrusted label, then the untrusted label will have
the potential of accessing the trusted label using these four
elements. To ensure that the untrusted UCC is restricted by the
Content Box, we create a JavaScript policy rule.js file which is
placed at the <head> section [14][15] and place other UCC in
the <body> section. Although the JavaScript policy rule file
might be loaded many times, a client browser has the cache
mechanism to reduce the overhead of loading the same file
rapidly.

Despite the fact that the aforementioned method eliminates
the access of a child untrusted label to a parent trusted label,
this introduces another problem – untrusted label includes a
frame which contains trusted label. In this situation, the
untrusted label can access the trusted label which is a child
node of untrusted label. As a matter of fact, untrusted labels
can create another window object, an iframe tag, and include
trusted label contents without any restriction. Making use of
the HTTP referrer header and function overriding can simply
resolve this problem. To include a trusted label window, a
browser has to send HTTP request and retrieve data with
trusted label. Once an HTTP request is issued, the browser
will automatically embed current URL as HTTP referrer
header and the web server can identify that the HTTP request
belongs to an untrusted label by reading the HTTP referrer
header. Popular web browsers, as shown in Table 3, support
HTTP referrer header, but it cannot be modified by AJAX [16].
However, the HTTP referrer header contains user privacy data.
To protect user privacy, we setup a rule for disabling
JavaScript access to document.referer. To avoid other
potential threats, a web server can make use of HTTP only
[16][17] for cookie protection. HTTP only disallows
JavaScript access to the cookie.

Table 3. Browsers support HTTP only

The third requirement is to enforce that every HTTP request
is tagged with the corresponding label. We must identify every
method that can send HTTP requests to a web server. With
HTML, every tag that contains URL can be treated as an
HTTP request, e.g., <a>, , <meta>, and <form>. These
are tags that will send HTTP requests with HTTP referrer
header. Hence, we can use the HTTP referrer header to verify
the corresponding label. By changing the path of the URL, a
web server can effortlessly identify the label of the HTTP
requests. Apache modules support “AliasMatch Directive”
which can map URL-path to a local file. Using this module,
the web administrator does not need to change the paths in the
web server.

AJAX has the ability of HTTP request header customization.
Thus, we can override XMLHttpRequest function and attach a
label to AJAX HTTP request. Overriding XMLHttpRequest
function guarantees that the label cannot be overridden.
Although using the HTTP referrer header can achieve the
same goal, customized header can ease off the overhead of
server-side processing.

JavaScript defined “delete” operator that can erase a
function or property. When a built-in function or property is
deleted, the function overriding loses its efficacy and the built-
in function or property returns back to the origin design. To
prevent this situation, ECMAScript 5th edition [18] introduced
“strict mode” [19] that can disable delete operator.

B. Quarantine Policies

The HTTP process flow of the web server is shown as Fig.
9. When an HTTP request is received by the web server, the
embedded cookie can be used to identify the identity of the
requester. However, most of the recent browsers provide tab
functionality where each tab stands for a window and tabs do
not interfere with each other. A web server only recognizes
HTTP requests without information regarding to the tabs. If
we identify the session without considering the browser tabs,
requests coming from different tabs will increase the false
positive rate. To avoid misjudgment, the path field in a cookie
can be used to resolve this problem. Different paths can setup
different cookies and we dispatch different paths for different
tabs. Alias Match Directive can fulfill this requirement and
this method is compatible with the 3rd requirement of our
labeling mechanism using the path of the HTTP referrer
header.

6666

Fig.9. The HTTP request process flow of the web server

On the server-side, the web administrator should define
policies which describe the final web pages of the critical
services. If an HTTP request invoked by an untrusted content,
the request will be affixed with untrusted label. Extending
labels guarantee the correctness of label’s propagation. A
policy format sketches as Table 4.

Table 4. The format of critical policies

Once an untrusted label HTTP request is about to access
one of the web pages in critical database, the HTTP request
should be blocked immediately. When a CSRF attack is
detected, the result of detection is forwarded to the web server.
The web administrator can acquire the result by calling
“begin_check()” function implemented in the labeling
mechanism. Therefore, this scheme can be deployed easily by
adding three lines to each web page with PHP and construct
untrusted iframe elements.

VI. EVALUATION

We conducted experiments to evaluate the performance and
the overhead of the Content Box. The results of the
evaluations fall into three categories: time overhead, memory
usage overhead and defense effectiveness. Table.5 shows the
environment of the evaluations. Each tested web page includes
a “check.php” 8.8KB file without compression. The untrusted
iframe includes a JavaScript policy file, rule.js. The size of
rule.js is 4.4KB, the line of code is 146 lines, and it is
uncompressed.

Server-side:

CPU Intel(R) Xeon(R) 3050 @ 2.13GHz

Memory 1024 MB

Operating system FreeBSD 8.0-RELEASE #1

Web server Apache 2.2

PHP 5.2.12 + MySQL 5.2

Client-side

CPU AMD Athlon 64 X2 4200 @ 2.2 GHz

Memory 2048 MB

Operating system Windows XP SP3

Browser Firefox 3.6.3

Table 5. The environment of the experiments

A. Page Generation Overhead

To evaluate page generation overhead, we use web pages of
popular social network websites, Facebook [20] and MySpace
[21], as reference samples and modify the sample web pages
according to our proposed scheme. We create a service which
contains four essential web pages, and make a client browser
surf the service over one thousand times. The page generation
overhead of the modified Facebook service ranges from 1.3%
to 2.0%, but averaging a modest 1.6%. The modified MySpace
service cost 1.8% on average (see Fig. 10). The
communication between the client browser and the server is
affected by the status of network connections. Therefore, we
eliminate some irrational data which is less than 0.1% of result.

Fig.10. Page generation overhead

We also measure the latency of each access between the
labels and the services. The execution time is very short and
the client will not notice the latency as described in Table. 6.
The execution time consists of enforcing JavaScript rule file,
PHP execution on the server side, and database query.
However, the database query time depends on the architecture
and the size of the website. The database size of a popular
social network website can be enormous and data querying
could be time consuming. However, database cluster system
[23] and cloud computing technology [24] can reduce the
execution time effectively and perform database query in real
time.

10500

11000

11500

12000

12500

Facebook MySpace

Original

Proposed
Scheme

ms

6767

Table.6. Processing time of each access situation

B. Memory Consumption

To calculate the memory usage, PHP provides
memory_get_usage function for obtaining the amount of
memory allocated to PHP. We use the provided function to
calculate the memory consumption of the policy-enforced
architecture in Table. 7.

Table.7. Memory consumption of accessing services

HTML iframe tag is another resource that consumes
memory. In our proposed scheme, an iframe is used to
quarantine the untrusted labels. Thus, many iframe tags may
exist using our proposed scheme. Owning to this information,
we calculate the memory consumption of an iframe in Fig. 11.
Each iframe costs 0.15MB on average according to the
calculation. Although the iframe number of current websites is
closed to 10 at most according to our observation, we conduct
our experiment based on many iframes to study the curve of
memory consumption.

Fig.11. Memory consumption of iframe

Although we made our best effort to calculate the memory
usage, part of memory consumption is also occasionally
affected by the content of the web pages and the structure of
the website. These attributes varies in social network websites.
Taking out these unpredictable attributes, the memory
consumption on both the server side and the client side are

acceptable in the current environment.

C. Defense Effectiveness

The goal of the Content Box is to effectively fight against a
variety of CSRF attacks. This section will discuss two
situations about CSRF attack prevention.

1) CSRF attack in different websites
For a traditional CSRF attack, the victims must visit a

malicious website first in order to form a CSRF attack.
Consequently, the malicious script in the malicious website
forges an HTTP request and the client browser of the victim is
forced to send the forged HTTP request. In the Content Box,
we can detect this kind of CSRF by examining the HTTP
referrer header. In modern client browsers, the HTTP referrer
header cannot be modified via JavaScript or HTML. Therefore,
the HTTP referrer header is a reliable source to detect all
forged HTTP requests originated from different websites. As
an example, the flaw of Ebay was attacked as described by
Prince [43]. In this scenario, the Content Box can easily block
the forged HTTP requests by checking the HTTP referrer
header.

There is another similar CSRF attack called the “Login
CSRF attack [31].” The concept is to override the cookie of
the victims. By our observation, the log-in page is often the
most vulnerable page of a website since lack of protection is
the main problem. However, the HTTP referrer header is a
built-in header, thus the log-in page is protected as well.

2) CSRF attack on the same website
This kind of CSRF attack often cooperates with XSS, and

the attacker does not need to set up a website. The attacker can
upload malicious scripts to the database of honest websites.
When a victim surfs the polluted web page, the client browser
of the victim will execute the inserted malicious scripts
automatically. The attacker takes advantages of AJAX which
can create HTTP requests and customize the HTTP request
headers to forge HTTP requests. To prevent multi-stage CSRF
attack, the Content Box ensures that UCC is isolated and every
HTTP request is tagged with the corresponding label. Once a
forged HTTP request is captured, and the multi-stage CSRF
attacks can be blocked, respectively.

VII. CONCLUSION

In this paper, we pointed out the fundamental problems of
the CSRF attacks and introduced the severity of the CSRF
attack on the current social network websites. To cope with
the problems, we proposed a novel scheme, Content Box,
which can prevent standard and multi-stage CSRF attacks
effectively. This approach takes advantage of the built-in
methods and the built-in properties to reduce the computation
overhead rather than filtering or rewriting the suspicious
strings. The web administrator will only need to establish
policies for critical services and inserts suspicious contents
into iframe tag. This approach also fully utilizes the benefits of
Web 2.0; it maximizes the usability of JavaScript and AJAX
with minor restriction. The original JavaScript and AJAX

0
50

100
150
200

1 39 77 11
5

15
3

19
1

22
9

26
7

30
5

34
3

38
1

41
9

45
7

49
5

53
3

57
1

60
9

64
7

68
5

M
em

or
y

U
sa

ge
(M

B)

Number of iFrame

6868

syntaxes and semantics are preserved under the Content Box.
For the end users, we proposed a novel design of robust and
secure website without the need of altering client browsers. In
the design, the users do not need to install additional plug-in
or add-on for a specific website. Consequently, the Content
Box can prevent CSRF attacks without blocking the
interactive content of website.

VIII. ACKNOWLEDGMENT

This work is supported in part by TRUST of UC Berkeley,
National Science Council, TWISC, ITRI, III, NCP, iCAST,
Chungshan Institute of Science and Technology, Bureau of
Investigation, HTC, TrendMicro, Promise Inc., and Chunghwa
Telecomm.

REFERENCE

[1] OWASP, “OWASP Top Ten Project,”
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project,
2010.

[2] Petko D. Petkov, “Google GMail E-mail Hijack Technique,”
http://www.gnucitizen.org/blog/google-gmail-e-mail-hijack-technique/,
2007.

[3] S. Kamkar, “I’m popular,” description and technical explanation of the
JS.Spacehero (a.k.a. “Samy”) MySpace worm, http://namb.la/popular,
2005.

[4] World Wide Web Consortium, “Document object model (DOM) level 2
core specification,” http://www.w3.org/TR/DOM-Level-2-Core/, 2000.

[5] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site request
forgery attacks,” Securecomm and Workshops, pp. 1-10, 2006.

[6] Mario Heiderich. CSRFx, http://php-ids.org/category/csrfx/, 2007.
[7] Eric Sheridan. OWASP CSRFGuard Project,

http://www.owasp.org/index.php/CSRF_Guard, 2008.
[8] S. Maffeis and A. Taly, “Language-based isolation of untrusted

Javascript,” IEEE Computer Security Foundations Symposium, pp. 77-
91, 2009.

[9] Facebook, “Facebook JavaScript.”
http://wiki.developers.facebook.com/index.php/FBJS

[10] D. Crockford, “ADsafe: Making JavaScript safe for advertising,”
http://www.adsafe.org/, 2008.

[11] F. Kerschbaum, “Simple cross-site attack prevention,” International
ICST Conference on Security and Privacy in Communication Networks,
pp. 464-472, 2007.

[12] S.P. Shieh and V.D. Gligor, “On a pattern-oriented model for intrusion
detection,” IEEE Transactions on Knowledge and Data Engineering,
vol. 9, pp. 661-667, 1997.

[13] S.P. Shieh, “A pattern-oriented intrusion-detection model and its
applications,” Research in Security and Privacy,pp. 327 -342,1991.

[14] P.H. Phung, D. Sands, and A. Chudnov, “Lightweight self-protecting
JavaScript,” Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security, pp. 47-60, 2009,.

[15] V.N. Mike TerLouw, “Blueprint: Robust prevention of cross-site
scripting attacks for existing browsers,” IEEE Symposium on Security
and Privacy, pp. 331–346, 2009.

[16] World Wide Web Consortium, “XMLHttpRequest,”
http://www.w3.org/TR/XMLHttpRequest/, 2009.

[17] OWASP, “HttpOnly - OWASP,”
http://www.owasp.org.tw/index.php/HttpOnly, 2002.

[18] Ecma International, “Fifth Edition of ECMA-262, ECMAScript,”
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
262.pdf, 2009.

[19] John Resig, “ECMAScript 5 Strict Mode, JSON, and More,”
http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/, 2009.

[20] Facebook, “Facebook,” http://www.facebook.com/.
[21] MySpace, “MySpace,” http://www.myspace.com/.
[22] D. Ferraiolo, DR. Kuhn, and R. Chandramouli, “Role-Based Access

Controls,” In Proceedings of the 15th Annual Conference on National
Computer Security, pp. 554-563, 1992.

[23] Oracle Corporation, “MySQL Cluster,”
http://www.mysql.com/products/database/cluster/.

[24] The apache software foundation, “Apache Hadoop,”
http://hadoop.apache.org/.

[25] P. Bisht and V. Venkatakrishnan, “XSS-GUARD: precise dynamic
prevention of cross-site scripting attacks,” Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 23–43, 2008,.

[26] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog, “Threat Modeling for
CSRF Attacks,” Proceedings of the 2009 International Conference on
Computational Science and Engineering, vol. 03, pp. 486–491, 2009.

[27] A.A. Al-Tameem, “The Impact of AJAX Vulnerability in Web 2.0
Applications,” Journal of Information Assurance and Security, pp. 240–
244, 2008.

[28] D. Ahmad, “the Confused deputy and the domain hijacker,” IEEE
Security and Privacy, 2008.

[29] H. Volos and H. Teonadi, “Study of security vulnerabilities in Web
2.0,” 2007.

[30] S Ravi, JC Edward, LF Hal, and EY Charles, “Role-based access
control models,” IEEE Computer, 1996.

[31] A. Barth, C. Jackson, and J.C. Mitchell, “Robust defenses for cross-site
request forgery,” Proceedings of the 15th ACM conference on Computer
and communications security, pp. 75-88, 2008.

[32] M. Johns and J. Winter, “RequestRodeo: Client side protection against
session riding,” Proceedings of the OWASP Europe 2006 Conference,
refereed papers track, Report CW448, pp. 5-17, 2006.

[33] A. Yip, N. Narula, M. Krohn, and R. Morris, “Privacy-preserving
browser-side scripting with bflow,” Proceedings of the 4th ACM
European conference on Computer systems, pp. 233–246, 2009.

[34] J. Conallen, “Modeling Web application architectures with UML,”
Communications of the ACM, vol. 42, p. 70, 1999.

[35] S. Maffeis, J. Mitchell, and A. Taly, “Isolating JavaScript with filters,
rewriting, and wrappers,” Computer Security–ESORICS, pp. 505-522,
2009.

[36] C. Karlof, U. Shankar, J.D. Tygar, and D. Wagner, “Dynamic pharming
attacks and locked same-origin policies for web browsers,” Proceedings
of the 14th ACM conference on Computer and communications security,
2007.

[37] Z. Mao, N. Li, and I. Molloy, “Defeating Cross-Site Request Forgery
Attacks with Browser-Enforced Authenticity Protection,” Financial
Cryptography and Data Security, pp. 238–255, 2009.

[38] W. Zeller and E.W. Felten, “Cross-site request forgeries: Exploitation
and Prevention”, Technical report, 2008.

[39] C. Jackson and A. Barth, “Beware of finer-grained origins,” Web 2.0
Security and Privacy, 2008.

[40] A. Barth, C. Jackson, and W. Li, “Attacks on JavaScript Mashup
Communication,” In Proc. of Web 2.0 Security and Privacy, 2009.

[41] B. Hoffman, “Ajax security,”
http://www.spidynamics.com/assets/documents/AJAXdangers.pdf, 2006.

[42] J. Magazinius, A. Askarov, and A. Sabelfeld, “A Lattice-based
Approach to Mashup Security,” ASIAN ACM Symposium on
Information, Computer and Communications Security, 2010.

[43] Brian Prince, “eBay Security Vulnerabilities Found by Researcher,”
http://www.eweek.com/c/a/Security/Researcher-Uncovers-eBay-
Security-Vulnerabilities-684970/, 2010.

[44] R. Pelizzi, and R. Sekar, “Protection, Usability and Improvements in
Reflected XSS Filters,” The 7th ACM Symposium on Information,
Computer and Communications Security, 2012.

[45] G. Maone, “NoScript,” http://noscript.net , 2012.

6969

