
Divergence Detector: A Fine-grained Approach to
Detecting VM-Awareness Malware

Chia-Wei Hsu Fan-SyunShih Chi-WeiWang Shiuhpyng Winston
Shieh

Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan (R.O.C.)
{hsucw, cwwang, ssp}@cs.nctu.edu.tw, jpeanut750908@gmail.com

Abstract—Virtualized execution has become an effective mech-
anism to analyze malware in a dynamic way. To conceal its mali-
cious behaviors, VM-aware malware probes the execution envi-
ronment for analysis-resistance. These malware programs hide
their malicious behaviors if they are launched in a virtual machine
(VM). VM awareness becomes a barrier for malware analysis due
to the concealment of malicious behaviors. In this paper, we dis-
cover that uncertain factors have significant influence on the ef-
fectiveness of malware detection. To cope with the problems, a new
VM-aware detection scheme, namely Divergence Detector, is pro-
posed to address the swindle of the evolved malware. Unlike con-
ventional schemes, the Divergence Detector reduces the uncertain
factors at instruction level, and can detect the divergence of multi-
execution traces across heterogeneous virtual machines. The pro-
posed Divergence Detector is implemented across the three com-
monly used VM platforms, that is, QEMU, Bochs and Xen. It com-
pares the code coverage of the execution traces on various VM
platforms to discover the deviation of behavior, thereby precisely
detecting the VM-awareness. We will formally predict the effec-
tiveness of Divergence Detector by constructing a mathematic
model, which shows the maximum false positive rate is exponen-
tially decreased with respect to the number of multi-executions.
Representative samples utilizing seven types of commonly used
VM-aware techniques were also employed for evaluation. The
evaluation results indicate that the maximum false positive rate
complies with our prediction. The uncertain factors play the ma-
jor role in the VM-awareness detection. To reduce uncertain fac-
tors causing false positives, a method is proposed for VM-aware
detection. The Divergence Detector can also enable the identifica-
tion of new types of malware since the benign programs do not
need to be aware of execution environment.

Keywords—Virtual Mashine; VM-awareness; Malware

I. INTRODUCTION

In recent years, virtual machines (VMs) [24] have been
widely adopted for malware analysis. Due to the nature of VM,
malware behaviors can be monitored, profiled and analyzed in
the well protected and controllable environment. Much research
work has been studied by using VM-based analysis, such as
tracking the data dependency [1][2], recording system calls pat-
terns of malware [3] recovering code obfuscation [4], and un-
packing executable [5]. Moreover, many VM-based analysis
tools [6]-[12] were developed to cope with these cyber-crimes.

To disguise its malicious behavior, a malware program may
be equipped with a new capability to detect the presence of the

virtual machines [13][14]. If they are launched in VM environ-
ments, the malicious behaviors will be concealed by changing
its control flow, thereby pretending to be a benign executable.
According to the study [15], more than 40% of malware pro-
grams contain anti-virtualization or anti-debugging functionali-
ties, and have the ability to distinguish the VM environments
from physical machines. For readability, we refer to these mal-
ware programs as VM-aware malware, and the methodologies
they used as VM checks. In this paper, the programs which equip
VM checks are temporarily regarded as malware since the be-
nign program do not need to be aware of execution environment.

VM checks detect the VM environments by discovering the
differences between the virtual machines and the physical ma-
chines, such as the time cost of execution, the specific identities
of emulated devices, and the instruction-emulation bugs
[13][16]. The VM checks can be classified into the following
three categories:

System Fingerprint Checks: The system fingerprint check
can recognize the specific identities in VM. For instance,
VMware uses the name “Logic BT-958” and “pcnet32” for the
virtual VGA adapter and network adapter [15][17][18], respec-
tively. A program can be VM-aware by checking these hardware
identities. If there is a match, the system fingerprint is recog-
nized.

Unfaithful Execution Checks: This kind of VM checks can
discover the differences of machine states after executing a se-
ries of instructions on both the VMs and the physical machines.
Most of unfaithful executions [12][13][16] are caused by the in-
struction translation bugs (e.g. instruction CMPXCHG8B and
undocumented instruction ICEBP on QEMU). Malware can dif-
ferentiate the VM environments from physical machines if the
execution results are not as expected. The unfaithful execution
checks are hard to be addressed. The emulation or virtualization
bugs are always discovered at time goes on. Even the VM au-
thors cannot know what bugs are exploited by coming malware.

Execution Timing Checks: Execution timing checks meas-
ure the time cost of instructions and compare with the antici-
pated answers. In general, the computation time in VMs is
higher than that in physical machines. In general, an instruction
running on a guest system is usually translated into several in-
structions on the host. Moreover, the VM, which executes the
guest system binaries directly on the host, can be also detected
by using the timing attack [20] due to the hardware limitation

2013 7th International Conference on Software Security and Reliability

978-0-7695-5021-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SERE.2013.23

80

(e.g. TLB access time profiling on Intel VT [19] based virtual-
ization). Worse, the malware can query the remote server for the
time of a serious execution. This kind of VM checks is hard to
address today.

Conventional VM-aware detection schemes mainly investi-
gated the search for the deviation of system call sequences. Only
the system-call information will suffer from the mimicry attack
to cause a false negative. Additionally, the uncertain factor,
which may cause execution divergence, is not addressed so far.
To cope with the problems, a new VM-aware detection scheme
is proposed to address the unfaithful execution checks and the
partially execution timing checks. The proposed VM-aware
malware detection scheme, namely Divergence Detector, aims
to discover VM-aware divergent points (VMDP), thereby de-
tecting VM-aware malware. Contributions of the proposed
scheme are three folds:

VM-aware Divergent Points Discovery: The VM-aware
techniques are used to disguise malicious instruction-level be-
haviors. The code coverage comparison of multi-executions can
explore the divergent points of the traces across VMs. However,
the uncertainty attributed divergent points (UADPs) are caused
by uncertain factors instead of probing the execution environ-
ments. In this paper, the proposed scheme reduces the UADPs
so that the VM-awareness will be accurately identified. These
VMDPs can enable further analysis of VM-aware malware. For
example, the malign VMDPs can be extracted for signature-
based detection.

Uncertainty-Attributed Divergences Reduction: In gen-
eral, a comparison-based VM-aware detection, either system
calls or instructions sequences, suffer false positives easily while
the referenced environment contains uncertain factors. The un-
certainty of execution, usually uncontrollable factors, such as
randomization and interrupts changes control flows even in the
same machine. Comparison-based VM-aware detections will
have a false positive when the uncertainty is regarded as VM-
awareness. Some research eliminates the uncertainty by execu-
tion replay systems. The replay system must be based on prior
knowledge of VM and malware, and may have false negative if
the system replays the data used for VM-awareness. The pro-
posed Divergence Detector distinguishes the uncertainty-at-
tributed divergences from the VM-aware branches by a general
technique. Multiple execution traces are applied to reduce the
uncertainty attributed divergent points effectively.

Comprehensive Detection: Current VM-aware malware is
aware of the commonly used VMs including VMware, QEMU
[22], Bochs [23], and Xen [30]. Except VMware, all of them are
open source VM that can be modified for malware analysis. It is
reasonable to choose these VM platforms for VM-aware detec-
tion. VM checks are applicable on these platforms for analysis-
resistance. By comparing the executed code coverage on each
VM, VMDPs can be found due to the differences of VM imple-
mentation. Emulation VMs such as QEMU and Bochs suffer
from unfaithful execution checks that virtualization VM does
not. However, virtualization VM such as Xen can be detected by
execution timing checks. We leverage the diversity of VMs to
develop the methods for VM awareness.

The rest of the paper is organized as follows. Section II in-
troduces related work, and section III is for the problem defini-
tion and assumptions. In section IV, a new VM-aware detection
scheme, namely Divergence Detector, is proposed. The design
and implementation will be elaborated in section V, and the eval-
uation will be given in section VI. Section VII will conclude the
paper.

II. RELATED WORK

Due to the existence of VM-aware malware, some studies
have attempted to explore the methodology for analysis-re-
sistance. Coarse grain comparison of system calls being invoked
at the kernel level was conducted to show the deviating behav-
iors of suspicious samples in VM as opposed to that in physical
machines [15]. They used BackTracker [25] to record the system
calls (e.g. disk read/write, process fork, etc.). This scheme can
successfully and quickly discover the differences of system call
sequences. However, they cannot know the cause of the execu-
tion differences. The similar work [31] proposed a reliable re-
play system to reveal the VM-awareness. By replaying the sys-
tem calls recorded on a reference system, the stealthy behaviors
of malware can be captured, or their VM-awareness can be dis-
covered. Although both research works investigate the system
call deviations of the processes to recognize their VM-awareness,
system call sequences can be easily fooled by sophisticated at-
tackers. It is possible to invoke the same system call sequences
after the VM checks, but malicious instructions only generate
harmful arguments to the branch passed the VM checks. More-
over, the replay system based on prior knowledge may make
mistake when it replays the data used for VM-awareness.

Due to the VM-check techniques, VM-aware malware can
disguise itself as a benign program. Consequently, the advanced
malware analysis tools [6][12] will produce false negatives. Dis-
crepancy of the instruction traces was analyzed in an attempt to
ensure emulation resistant at instruction-level [21], where suspi-
cious samples were executed in both TEMU [27] and Ether [12]
at the same time. Ether, a Xen-based analysis tool, is the hard-
ware virtualization rather than emulation. Therefore the emula-
tion-resistant malware will reveal their malicious behavior in the
Ether. However, there is a virtualization-resistant technique
which uses TLB access time profiling [20] or system fingerprint-
ing checks for detecting virtualization VM, such as Xen. A cor-
rect VM-based analysis cannot be made until these VM checks
are addressed by a comprehensive analysis. Our approach lever-
ages on different VM implementations to discover the VM-
awareness.

All of studies mentioned above detect the VM-awareness by
dynamically executing the malware. The scope of collected code
coverage is the most important issue on dynamic analysis. Our
approach launches the target executables multiple times to max-
imize the code coverage. However, the execution deviation may
happen even executing the applications which are not VM-aware.
These deviations come from inconsistent execution environment,
which includes the time-related event and memory states, etc.
Some execution replay systems [32][33] are proposed to address
the non-determinism in VM. Previous works record all of non-
deterministic events and replay them in later execution. How-
ever, the instruction-level replay system is not easy to be imple-

81

mented and evaluated in practice. Small timing differences pos-
sibly cause temporary deviations while replaying even on the
same VM environment. Hence, uncertainty is hard to be elimi-
nated across heterogeneous platforms unless we can exploit the
nature of different implementation of VMs.

III. PROBLEM DEFINITIONS AND ASSUMPTIONS

For a fine-grained VM-aware analysis, our approach discov-
ers divergences of executions across heterogeneous platforms by
instruction-level comparison. However, the execution of many
benign applications may be affected by “uncertain factors”. The
uncertain factors, which cause the divergence of traces, are non-
deterministic and may change the control flow. These factors
can be time-related events or external inputs. The experiment re-
sults may be inaccurate unless the uncertain factors are elimi-
nated. For example, CPU clocks may not be synchronized across
heterogeneous platforms. With unsynchronized clocks, the con-
trol flow of a program may diverge. This divergence is not
caused by VM checks. Instead, uncertain factors play a pivotal
role for reducing the false positives of VM-aware detection. Un-
certain factors may include system time, random numbers, net-
work packets, etc. They may lead to the alteration of control flow
though they are irrelevant to VM checks. As a result, the false
positives will be raised due to the divergence caused by the un-
certain factors.

A VM-aware program contains three key components,
namely the malicious binary code, the VM checks, and the di-
vergent points. All VM-aware programs share a common feature,
that is, they need a conditional branch to conceal their malicious
behaviors. A VM check usually contains at least one branch
statement to execute either the malicious code or the camouflage.
Finding the closest conditional branch right before malicious
code is the key for VM-aware detection. At the binary instruc-
tion level, a VM check may consist of a series of branches. We
regard the last branch of a VM check as VM-aware checkpoint
(VC) and the rest of branches of the VM check as status check-
point (SC). In other words, VC is the branch to the VMDPs, and
SC is the branch to the UADPs.

The execution code coverage will be distinct while the mal-
ware program is executed in a VM and in a physical machine,
respectively. The discrepancy of execution can be presented by
the divergence of the instruction traces. Each VC is followed by
two distinct execution paths. The VM-aware divergent points
(VMDP) we name are the binary instructions right after the VC
when two traces run distinct paths. Both the benign and malign
divergent points succeed a VM-aware checkpoint VC which de-
cides the branching. VMDPs are reliable indexes, and can be
used to identify a VM-aware program. Once the VMDP is found,
the hidden malicious code can be discovered. Both the infor-
mation of VMDPs and VCs are very useful for malware analysis.

Next, we will illustrate the difference between uncertain fac-
tors and VM checks. Both of them may affect control flows. In
Figure 1, line 3 is a branch affected by the random input k, and
line 4 is a VC, dependent on the result of detect_QEMU(). k is
an uncertain factor and does not depend on any VM-check.
Without an effective way for differentiation, the program may
be misinterpreted and two VC candidates (branches on lines 3
and 4) will be identified in the sample. In fact, the conditional
branch on line 4 contains a VC using the VM-aware technique

to detect the QEMU environments. The other is a parity check.
The program goes to the true statement when parity k is odd.
The chance of executing the code block on line 3 is 50 percent
possibility regardless of the execution platforms.

Without eliminating the uncertain factors, the comparison-
based VM-aware analysis will fall into misjudgment. Malware
programs can make use of a large number of uncertain factors to
hide its usage of VM-aware techniques. It will incur high cost to
distinguish divergent points of VM-aware from uncertain factors.
Here, we name the branch attributed to uncertain factors as un-
certainty-attributed divergence points (UADPs). In contrast to
VMDP, UADP succeeds an uncertainty branch, rather than a VC.
The UADPs can be reduced by testing their repeatability.

The analysis of a program is very complicated, and can be
treated as the halting problem in computational theory. To sim-
plify the VM-aware detection problem, the studies of this area
usually implicitly made the following two assumptions:

A.1: Target VM-aware malware program will execute
VMchecks while being analyzed. We assume that the VM-aware
malware defined in this paper always check the execution envi-
ronment for analysis-resistance. This assumption implies that a
target VM-aware malware program will execute VM checks
while being analyzed. In other words, a malware program will
eventually execute VM checks. However, there is no guarantee
when the checks will be conducted. Just like the halting problem
in computational theory, it is hard to determine the exact time
the executable will execute the binary of VM checks. That
means complete code coverage cannot be collected unless the
execution is terminated immediately. Without the complete code
coverage, the divergence of execution traces may not appear be-
cause the instructions of VM checks are not executed. To narrow
down the scope of the problem, we make this assumption for the
VM-aware malware.

A.2: A single VM check cannot detect all types of referenced
VMs within an atomic instruction. This assumption implies that
there is always a divergence of execution after VM checking
across heterogeneous VMs. Most of known VM checks are de-
tecting specific artifacts in VMs. Except the elaborate execution
timing checks, it is hard to perform a single instruction to detect
all types of VMs due to their discrepant implementations. A
combinative VM check may detect all types of reference plat-
form at the same time. However, it consists of a series of VM-
aware checkpoints (VCs), which separately probe environment
and diverge control flows. Due to the nature of atomicity at the
instruction level, a branch can only perform a single check, but
cannot combine multiple checks into a branch. The two diver-

1. int k;
2. k= (rand() % 2); //0-1
3. if (k) { /* do something */ };
4. if (detect_QEMU())
5. printf(“QEMU\n”);
6. else
7. printf(“Not QEMU\n”);
8. return 0;
9. }

Figure 1.Sample program containing an uncertainty branch.

82

gent points to be executed in the if-else statements will be deter-
mined by each conjoined VCs. If every VC satisfies the assump-
tion A.2, the combinative VM check must appear divergences of
the execution. Furthermore, a VM check is very likely to return
a unique outcome for each type of VMs. Most types of VMs,
due to their diverse implementations, do not share the same fea-
tures, thereby not returning the same value in response to a VM
check. For example, we discover that two famous types of VM,
namely Xen and QEMU, may return the same identity value to
a VM check although one is the emulation VM and the other is
virtualization VM. This is because Xen used part of the QEMU
code to emulate the hard disk devices, the same implementation.
This shared code will lead to false negative when testing some
malware samples by related works using the two VMs to identify
hard disk devices for VM awareness. Thus, another kind of VMs,
Bochs, has been added to extend the code coverage comparison.
By thoroughly examining Bochs’ code, it has different features
from QEMU and Xen. More VMs can be selected such as
VMware, Parallel Desktop, and Virtual PC as reference environ-
ment. Our approach can be extended to a more comprehensive
system by adding the VM platforms mentioned above.

IV. PROPOSED SCHEME

In this section, the proposed Divergence Detector will be
elaborated. The Divergence Detector aims to detect the VM-
aware malware in a way that new challenging issues such as the
mimicry attack toward system-level comparison, and the uncer-
tainty-caused false positives can be mitigated. VM-aware detec-
tion cannot only rely on the trace in one specific type of VMs.
Instead, it should leverage different varieties of VMs for discov-
ering VCs. Hence, a novel approach is proposed to detect VM-
aware malware with a predicable false positive rate. By compar-
ing the code coverage in different types of VMs, our system can
distinguish the VMDPs from UADPs.

Following is the formal description for VM-aware detection.
A binary executable S can be executed on several different VM
platforms x, y and z, or more. The executable S contains a set of
basic blocks B. We call S is VM-aware when it contains at least
one conditional branch for VM-awareness. According to as-
sumption A.1, the branch must be executed and always jumps to
the same execution path when the platform is the same. Based
on assumptionA.2, some of VM platform will pass the check but
the others will not. The divergence can be regarded as a set of
executed basic block VMDPs={bi | bi ∈ B, where bi is executed
on some platforms every time but never be executed on the oth-
ers}.

We will formalize the target executable running in the VMs,
discovering the UADP, eliminating uncertainty, determining the
VC, and predicting the false positive rate. The target executable
launched in VM x for n times generates the set of instruction
traces Tx = {tx,i | for all i, 1 ≤ i ≤ n}. Each instruction trace tx,i can
be translated into code coverage and denoted as Cx,i, which rep-
resents the collection of executed instructions on VM x in the i-
th execution round for all i, 1 ≤ i ≤ n. The first step of our algo-
rithm, namely code coverage collection, is to unite the code cov-
erage of each execution in VM x to attain an union, Ux = Cx,1

Cx,2 Cx,n , which will be used in the later steps.

For intra-VM uncertainty reduction, the code coverage union
is divided into two subsets of code coverage: the certain code
coverage CCx and the uncertain code coverage UCx. The certain
code coverage, CCx = Cx,1 Cx,2 Cx,n, stands for the col-
lection of instructions which were always executed in each
round of execution. The remainder of code coverage is uncertain
code coverage, UCx = Ux –CCx, which was executed sometimes.
The uncertain code coverage UCx in VM x can be used for inter-
VM uncertainty reduction in other VMs. Suppose that there are
three kinds of VM x, y and z (In our system, x, y and z represent
QEMU, Bochs and Xen, respectively). After the uncertainty re-
duction, the certain code coverage in VM x is denoted as CCx ,
and CCx = CCx (UCy UCz).

In the third step, the comparisons of certain code coverage
are done for extracting the differences of the code coverage
across VMs, and they are marked as Dx, Dy and Dz, respectively.
The code coverage defined as Dx = (CCx CCy) (CCx

CCz) and the rest may be deduced by analogy. The details
will be described later.

Finally, these differences of the code coverage Dx, Dy and Dz
are used to discover the VM-aware checkpoints. This code cov-
erage is aligned back to the original instruction traces Tx, Ty and
Tz. The codes in CCx’, CCy’ and CCz’ can be mapped into their
traces and located in several positions. Then the backward tra-
versal is applied to discover the closest conditional branch. All
of the branches can be marked as Bx, By and Bz, separately. The
branches used in VM checkpoints are denoted as VC where VC
= Bx By Bz.

A. Collection of Code Coverage
Two possible approaches, namely path coverage comparison

and statement coverage comparison can be chosen for code cov-
erage comparison. The path coverage comparison [28] is com-
monly used technique for code comparison. The path coverage
comparison can genuinely discover the divergences of a pro-
gram, but it is time-consuming and it may contain many irrele-
vant divergence points. For instance, the different length of in-
puts will cause the divergences in loops. The path coverage com-
parison takes the difference of looping times into account as a
divergence point. However, our main concern is whether the
code was executed with certainty or not. Therefore, the method-
ology of comparison adopted in our scheme is the statement cov-
erage comparison instead of the path coverage comparison.

For comparison of statement coverage, the executed code
was recorded during the execution time. We logged the trace of
the samples in QEMU, Bochs and Xen, respectively. The design
and implementation will be described later in this paper. By
multi-executions, the sample can generate the instruction trace
Tx = {tx,i | for all 1 ≤ i ≤ n} where x is the VM identity. Each
instruction trace tx,i is translated into code coverage Cx,i by sort-
ing with the EIP (Extended Instruction Pointer). EIP is the pro-
gram counter which refers to an instruction in the memory space.
Therefore, we can collect all executed instructions and the code
coverage Ux of running time where Ux = Cx,1 Cx,2 Cx,n.

B. Uncertainty Reduction
Eliminating the uncertain code coverage can reduce the false

positives. Uncertainty can cause the divergent points which are

83

irrelevant to VM awareness. The uncertainty reduction consists
of two steps: intra-VM uncertainty reduction and inter-VM un-
certainty reduction.

1) Intra-VM Uncertainty Reduction
The branching of VCs will be consistent in the same VM no
matter how many times the malware was executed. Other-
wise, the VM-checks contravene their purposes. Thus, the
code succeeding VCs must appear in every execution round.
In other words, the code should be in the intersection of the
code coverage CCx where CCx = Cx,1 Cx,2 Cx,n. The
certain code coverage CCx is extracted from repeated execu-
tion. The remainder is the uncertain code coverage UCx
where UCx = Ux CCx. As an example in Figure 2, there are
two sets of code coverage for a sample. Both instructions C
and D were executed without certainty, and they succeed the
common conditional branch B. In this case, CCy = {A, B, E}
and UCy = {D, E}. At the beginning, Cy,1 might be {A, B, C,
E, F}. After multi-executions, there will be a CCy,i = {A, B,
D, E, F } where 1 ≤ i≤ n. CCy,i can be used for intra-VM
reduction since the branching of B is uncertain. The step can
be repeated many times for better accuracy.

2) Inter-VM Uncertainty Reduction
After a limited number of execution, some instructions may
belong to the certain code coverage of VM x, but at the same
time belong to the uncertain code coverage of VM y. In Figure
2, the statement C is in certain code coverage of VM x, but it
belongs to uncertain code coverage of VM y. This can for-
mally expressed as C∈CCx and C∈UCy. The scenario would
occur if the uncertainty was not triggered in a limited number
of execution rounds in VM x. The potential UADP C in VM
x should be removed.

At this point, we use the observed UADPs from VM y for re-
duction. The new certain code coverage CCx’ was performed
by subtracting the certain code coverage of other VMs. In our
system, traces of three types of VM were collected, including
TQEMU, TBochs andTXen. The inter-VM reduction can be
written by CCx = CCx (UCy UCz). After the reduction,
we derive the certain code coverage, CCx , CCy and
CCz , which were always launched in VMs for every execu-
tion round.

C. Comparison of Certain Code Coverage
The certain code coverage extracted from VMs contains the

VMDPs which are caused by VM checks. In Figure 2, the certain

code coverage are CCx’= {A, B, E, F} and CCy’= {A, B, E, G}.
Next, the different certain code coverage were computed by the
subtraction of code coverage. The different code coverage Dx =
CCx’ – CCy’, that is, the sets {F} and vice versa. Dx = {F} and
Dy={G} are the instructions which took place depending on the
type of VM platform.

D. Discovery of VM-aware Checkpoints
Even if we found the hidden instructions which were pro-

tected from VM-based analysis tools, the methodologies of VM
check are still not clear. Thus, the reason of the VMDPs should
be understood by investigating the causal branching VCs. Figure
2 shows that the VC is located at statement E. In this step, the Dx
and Dy are used to search for the conditional branch E. First of
all, we separately aligned the instructions in both Dx and Dy back
to the traces Tx and Ty. Then our system traversed backward from
these instructions in Tx and Ty, and stopped at the closest condi-
tional branch. All the branches are denoted as Bx and By, which
are the candidates of VCs. The Bx may not be identical to the By
(in Figure 2, Bx is equal to By that is {E}) due to their different
behaviors; one is part of hidden activities, and the other is cam-
ouflage. Finally, the branches used for VM check decision are
the intersection of Bx and By, and they are represented as VC
where VC = Bx By. The point E was recognized as a VC used
in VM checks. As our observation, the branches applied to VM
checks can be conditional branches, indirect jump and excep-
tions. The first two can be used for string comparison or switch
statement. The exceptions are caused by some emulation bug for
VM awareness. For example, QEMU multi-REP prefix check
always triggers exceptions to behave differently.

E. Prediction of False Positive Rate
The Divergence Detector is able to discover the uncertainty

by multi-executions, thereby lowering false positive rate. The
remaining false positive rate is due to the misjudgment of
branches that are unconcerned with VM checks. The accuracy
of Divergence Detector will be affected by the number of exe-
cution rounds n and the number of types of reference VM k. In
accordance with the prediction of false positives rate, the follow-
ing analysis will prove that it is exponentially decreased with
respect to the number n and k.

We assume that each divergence point has a probability p
branching to the true statement, and a probability of 1 – p to the
false statement, where 0 ≤ p ≤ 1. And the false positives will
occur when the following situation takes place:

The false positive of the comparison of certain code cover-
age in VMs can be divided into two groups. One group contains
the traces of VMs which are always branched into the true state-
ment from the branch caused false positive. Another group al-
ways jumped into the false statement even if the branch is unre-
lated to VM checks.

As mentioned above, we can formulate the probability of
false positives. With k types of VMs, n execution rounds and the
probability p, the formula of false positives rate is elaborated as
follows:

 We divided k types of VMs into two groups; one exe-
cutes true statement with probability p, and the other goes into
false statement with (1 – p). Each chosen VM goes to the specific

Figure 2. Illustrate theVM-aware detection.

Trace of
VM x

Trace of
VM y

Inter-VM
Reduction

Intra-VM
Reduction

A

B

C

E E

I
R

B

A

C D

F GVMDP

UADP
VC

84

statement n times, so the probability of chosen VM traces and
remainder are ��and (1 − �)�, respectively.

 The k-combination can be used for this case. The prob-
ability of false positive rate P can be expressed as follows:

� = �k
1� ��(1 − �)�(�	
) + �k

2� ���(1 − �)�(�	�) + ⋯
+ � k

k − 1� ��(�	
)(1 − �)�

=
 ��
� � ���(1 − �)�(�	�)

�	

��

 (1)

 This formula indicates how the group can be created. When
i = 1, the k VMs is divided into 1 and k – 1. The false probability
is��

���(1 − �)�(�	
). When i =2, the sizes of two groups are 2
and k – 2, and the probability is��

�����(1 − �)�(�	�). The i can-
not be equal to 0 and k because there is only one group. Thus
� = ∑ ��

� ����(1 − �)�(�	�)�	
��
 is induced.

 The P has a maximum while the p is equal to (1 – p), that is,
p = 1/2 . Then, the max false positive rate ����can be calculated
that

���� = ��

���� + ��

����� + ⋯ + � �
�	
���� = ∑ ��

� �����	
��
 (2)

��

� + ��

�� + ⋯ + � �
�	
� = 2� − ��

�� − ��
�� = 2� − 2 (3)

���� = ∑ ��
� �����	
��
 = (2� − 2)��� ≈ �(�	
)� (4)

Therefore, the maximum false positive rate is exponentially
decreased with respect to the number n and the number of VMs
k. This result represents that our scheme can effectively lower
the false positive rate

V. DESIGN AND IMPLEMENTATION

The implementation of our systems is elaborated in this sec-
tion. Figure 3 shows the architecture of the VM-aware detection
system. The Guest System Agents are installed on the guest sys-
tems in QEMU, Bochs and Xen, respectively. The guest system
agent is a startup program and it is responsible for following
tasks.

(1) Setup the samples: To receive the samples outside the
VM and place the samples in the specified directory path.

(2) Launch the samples: To execute the samples on the
guest OS when the VM is ready to record the instruction
traces of the samples.

The VM controllers master the VM’s execution for analysis;
it is responsible for the following tasks.

(1) Restore the VM status: Preventing the influence from
the samples such as modification of the file system, the VM
status needs to be rolled back to the initial status to remove
the influences of the system. In the final execution round, the
controller will shut down the VM and reboot it from the
clean system status.

(2) Export the trace logs: The controller export the trace
logs of the samples to our system for VM-aware detection.

With the collaboration between guest system agent and VM
controller, the traces of the samples in the VMs can be collected
automatically. Next, we will introduce how to recognize the
trace of the launched sample. When running the sample, a new
process identity will be created by the guest system. The process
identity should be memorized for saving its trace. The trace re-
corder monitors the target process and extracts the trace.

A. Process Identification
To record the trace of a specific process, the process identi-

fication is necessary. Each running process in the operating sys-
tem has a unique Page Directory Base (PDB), and the physical
address of the PDB is stored in the CR3 register. Thus we can
make use of the CR3 register to dump the traces belonging to the
monitored process. As the suspicious sample is executed in the
guest system, the guest OS (Windows XP SP2) invokes system
calls (i.e. NtcreateProcessEx) to create a new process. Next,
these system calls used the non-exported kernel function mmcre-
atePeb to allocate a process environment block for the process.
Our system intercepted the kernel function call for the PDB ad-
dress which will be allocated by the operating system. Then the
PDB address of the sample was sent to our trace recorder.

B. Trace Recorder
The trace recorder examines the value of the CR3 register

whether is identical to that of the target sample. If there is a
match, the trace recorder starts to collect the trace of this sample.

Figure 3.The architecture of the VM-aware detection system.

Table 1. The known VM-aware samples

Categories VM-aware Samples

Addresses
of

branches
in a VM

check

Target

Hardware fin-
gerprint
check

QEMU hard disk
check

0x42e8e4
0x42dbd4 QEMU, Xen

Bochs hard disk check 0x42dbd6
0x454a94 Bochs

System fin-
gerprint
check

Bochs BIOS check 0x45e014
0x42ed15 Bochs

Xen CPUID check 0x40132f
0x4013e0 Xen

Unfaithful
Execution

check

multi-rep prefix check 0x4012ff QEMU

QEMU, Bochs opcode
bswap check 0x4014cf QEMU,

Bochs

Execution
Timing check RDTSC timing check 0x401327 QEMU,

Bochs

85

In our system, the trace recorder was implemented in QEMU
and Bochs, which are emulation VMs. It was invoked during the
emulated CPU fetching instructions. In Xen, we use the Ether
[12], a Xen-based analysis tool, to achieve the recording. We
take program counter (EIP) and opcode into account for code
coverage comparison. The record of opcode is used for the self-
modifying malware which obfuscated the instructions resident
in memory. Without the record of opcode, self-modifying mal-
ware can achieve different behaviors by the same code coverage.
Thus, the comparison of certain code coverage will be incom-
plete.

C. Time Cheating Module
The execution timing checks utilize the local time source,

namely real-time clock, to examine the execution environment.
There will be no execution divergence while all of the reference
VMs are failed to pass the timing checks. To address the prob-
lem, we implement a time cheating module in the Bochs, which
is an emulator. In general, the emulators must fetch instructions
and translate them into target machine code, hence the sample
needs the additional time to run. The time cheating module will
store the clock value of CPU before each instruction fetching
and the trace dumping. Then it recovers the clock value recorded
previously when the instruction is being executed. Hence, our
system can partially pass the timing checks and reveals the ma-
licious behavior.

VI. EVALUATION

In this section, a series of experiments were performed to
evaluate the correctness of Divergence Detector. We examined
the known VM checks including system fingerprinting checks
(Bochs hard disk check) and unfaithful execution checks
(QEMU multi-rep prefix check). Then the false positive rate of
uncertainty reduction is evaluated.

The three kinds of most popular VMs used for analysis in-
cluding QEMU-0.9.1, Bochs-2.4.2 and Xen-3.1.0, were chosen
to be part of Divergence Detector. To keep the consistency of
guest system, each of the VMs is equipped with 512MB memory
and an emulated hard drive with 2GB capacity. The guest OS is
Microsoft Windows XP service pack 3. After each execution
round, the hard disk image will be replaced by a clean one,
thereby removing any modification to system status by the sam-
ple.

There is no commonly used benchmark for VM-aware de-
tection, yet the known VM check samples and real VM-aware
malware were collected to evaluate the correctness of detection.
Both the VM-aware techniques and the real malware used herein
were also used in the related work. Two types of VM-aware
packers are detected and two case studies of known VM-aware
techniques are demonstrated to show that Divergence Detector
can correctly identify the VM-awareness.

A. Evaluate Correctness with VM-Check Sample
Seven known types of VM check samples are listed in Table

1. Each sample uses a different kind of checking techniques to
detect the specific virtual machines. The third column shows the
memory address of branches in the VM check. The target plat-
forms of the VM check are listed in the fourth column. The
QEMU hard disk check is aware of the QEMU and Xen simul-
taneously. Since Xen use part of QEMU’s code for hard disk
emulation, they both have the same hard disk identity. The VM
check can be used for both emulation-resistance (QEMU) and
virtualization-resistance (Xen). QEMU and Xen cannot be dif-
ferentiated in this case. Therefore, a third VM Bochs is needed.

We choose two samples as case studies to explain the VC
discovery. The selected samples are Bochs hard disk check and
QEMU multi-rep prefix check, respectively.

1) Sample1: Bochs HardDisk Check: Figure 4 shows the
source code of the sample. It used the function get_hdver() to
get the identity of the hard disk and then compared the returned
string with a string “Generic 1234” which is the default hard disk
identity of Bochs. If the strings are identical, the sample will out-
put “Bochs HD emulation” in the standard out. Otherwise, it
prints “Not Bochs”. The execution traces of this sample are
listed in Figure 5. Figure 5 contains two execution traces, one
for Xen and QEMU, and the other for Bochs. There are two
branches in this binary execution traces. The branch (0x454a94)
underlined on line 7 in Figure 5 is an SC, located inside the func-
tion strcmp(). The divergence occurs because the identities of
the hard disk in Xen and QEMU are not the same as that in

1. int main(intargc, char *argv[]){
2. char hd_str[100];
3. int result;
4. hd_str = get_hdver();
5. result = strcmp (hd_str, “Generic

1234”);
//strcmpentry address 0x454a80

6. If (result==0)
//0x42dbcfcmpresult, 0

 //0x42dbd6jnz 0x42dbe7
7. printf(“Bochs HD emulation\n”);
8. else
9. printf(“Not Bochs\n”);
Figure 4.Source Code of Bochs Hard Disk Check

Figure 5. The branches in the traces of the Bochs hard disk check.

86

Bochs. The second branch (0x42dbd6) on line 13 in Figure 5 is
a VC, located at the branch which decides to print “Bochs HD
emulation” or “Not Bochs”. The EIP 0x42c130 is the address of
function call printf().

2) Sample2: QEMU multi-rep prefix check: This sample
program was collected from the appendix of Ether. It utilizes the
emulation bug in QEMU by placing fifteen rep prefixes before
a single-byte instruction (NOP). This makes the total length of
the opcode to be 16 bytes long which exceeds the maximum in-
struction length of ia-32 instruction set, but it is a valid instruc-
tion format in QEMU. While the sample is executed in Xen and
Bochs, an exception is raised and the handler in the sample was
triggered. In contrast, the sample was executed normally in
QEMU, printing “QEMU Detected”. Figure 6 shows the diver-
gence point discovered by our system.

B. Evaluate Correctness with VM-aware Malware:
We take three real malware packed with tElock and Arma-

dillo, which are regarded as emulation-resistant packers, to eval-
uate our system. Moreover, we collected another suspicious
VM-aware malware which can crash the QEMU emulator. Table
2 shows the results of the experiment. The labels of malware are
achieved from Kaspersky Anti-Virus Database [29]. Column 2
is the memory address of a VC. The first two samples in Table
2 use the VM-aware packer tElock. It can detect QEMU by an
undocumented opcode “icebp,” which is used for hardware-level
debugging. On modern machines, the instruction will raise an
interrupt with the vector of 0x1. Instead, QEMU uses this in-
struction to debug itself. While executing the opcode icebp,
QEMU will stop emulation to wait for user inputs. The malware
can be aware of QEMU environment by trapping the interrupt
thrown by real hardware. The tElock is applied in Trojan-Drop-
per.Win32.Agent.mu and Trojan-Downloader.Win32.VB.ang.

These malware programs only executed 105,839 instructions in
QEMU, but executed more than 2,968,000 instructions in Xen
and in Bochs which implies that the malware programs stopped
unpacking when it was aware of the presence of QEMU. The
malware packed with Armadillo uses an illegal opcode to crash
the QEMU. Divergence Detector discovered the VM-awareness
of these malware programs.

C. Evaluate Uncertainties Reduction
One of our contributions is to reduce uncertainty by the com-

parison of multi-execution code coverage in a generic way. First
of all, we examine the benign programs which do not need to
detect the execution environment, and the result was as expected.
Secondly, the uncertainty generated by random number, which
is not one of the VC checks, was examined to show that our false
positive rate is as expected.

1) Evaluate Irrelevant DPs Reduction with Benign Samples:
This experiment was the examination of five benign applications.
Most of them are multi-thread since they can easily generate dif-
ferent code coverage to produce the UADPs. Moreover, the sam-
ples Microsoft Messenger, Putty and Firefox have the network
communications. Since the time and the value of network inputs
are unpredictable, the timing of packets sent and received is an
uncertainty. To show the effect of uncertainty reduction, we ex-
ecuted the application in both Ether and QEMU, and evaluate
the differences of code coverage for finding VMDPs. Table 3
shows that Firefox, which is more complex than other applica-
tions, has the more divergences which are irrelevant to VM
checks. Note that, the divergences are the branches of the VM-
awareness or the others. However, in our system, these
branches to UADPs can be reduced in 4 execution rounds. The
result of the experiment is as expected that the benign applica-
tions should not have any VC for VM-awareness.

2) Evaluate Irrelevant DPs Reduction with random branch
samples: The evolved VM-aware malware may use many irrel-
evant random branches to produce the false positives against an-
alyzing its VM awareness. We used the sample code in Figure 1,
and inserted 5,000 uncertain branches that repeat lines 2 and 3.
The predicted false positive rate is (2� − 2)���, where k is the
number of VMs, p is the probability of true statement branching
and n is the number of execution rounds. In this experiment, k =
2, p = 0.5 and n = 1 to 10. The expected values are listed in Table

Figure 6. VC of the QEMU multi-rep prefixes check

Table 2. Evaluation Result of Real Malware Samples

Malware labels Address of VC

Trojan-Dropper. Win32.
Agent.mu (tElock packed) 0x4134f7:icebp

Trojan-Downloader. Win32.
VB.ang (tElock packed) 0x4144de:icebp

Backdoor.Win32.Rbot.ahst (Ar-
madillo packed) 0x466945:je0xb013a7: iret

Trojan.Win32.Pakes.bmf 0x40917c:jmp*%edx

Table 3. Uncertainty elimination of Benign Samples

Before
elimination After n execution round

Benign
Samples

Number of False
Positives

Number of
False Positives

Execu-
tion

times n
Notepad 0 0 1
Wordpad 5 0 2
Microsoft
Messen-

ger
6 0 2

Putty 3 0 2
Firefox 22 0 4

87

4, second row. For example, the expected value of only 1 execu-
tion round is 2(1/2)�×
 × 5,000 + 1 = 2,501. The probability
of each uncertain branch is 0.5. There were 5,000 uncertain
branches and one VC which always cause the divergence of
trace. In the first row, the result of execution round n is the av-
erage of 10,000 times execution. As the table shows, the maxi-
mum false positive rate is exponentially decreased with respect
to the number of multi-executions. The result is very close to the
expected value as shown in Table 4. From the result of this ex-
periment, we demonstrate that UADPs can be removed effec-
tively in our system.

VII. CONCLUSION

As virtual machines are widely used for malware analysis in
recent year, a new kind of malware arises for analysis-resistance.
These malware programs can probe the execution environment
so that they can behave harmlessly in VM-based analysis tools.
Some of the VM-aware techniques introduced in this paper are
actually applied to real malware. Conventional schemes are not
suitable to address the VM-aware malware for the following rea-
sons. First, the false negatives will occur because the selected
VM platforms cannot identify some VM checks, such as QEMU
hard disk check. The behaviors of execution in both Xen and
QEMU are identical while the malware examining its execution
environment. The other problem with conventional schemes is
that the uncertainties will incur high false positives because the
branch irrelevant to VM awareness will be also treated as VM
checks. The uncertain divergences of execution frequently occur
in benign applications such as the Firefox, Microsoft Messenger
and Microsoft Office Word. These applications were tested and
verified to demonstrate the results.

To resolve the first problem, we integrated three common
VM platforms, which are QEMU, Bochs and Xen, into our sys-
tem for comprehensive VM-aware detection. We discover that a
single VM check cannot detect all VMs at the same time. Sec-
ondly, the approach for uncertainty reduction was proposed for
decreasing uncertainty-attributed false positives. By multi-exe-
cution rounds, code coverage comparison can filter out the in-
structions not being launched in every round. The reduction is
effective to remove uncertainty factors such as multi-thread pro-
gramming, random branching, and network communication.

Seven kinds of VM-aware techniques and four real malware
programs were investigated and used for evaluation. The pro-
posed Divergence Detector successfully discovered the VM-
aware divergent points in each test case. The traces in different
kinds of VMs were presented to illustrate the discovery of VM
awareness. Moreover, we also evaluated the false positive rate
by inserting 5,000 random branches in the sample. The maxi-
mum of the false positive rate in our experiments was close to
the prediction formula ���� = (2� − 2)��� as expected. With
sufficient execution rounds, the proposed Divergence Detector
can reduce a large amount of uncertainty-attributed false posi-
tives and the maximum false positive rate is exponentially de-
creased with respect to the number of multi-executions.

VIII. ACKNOWLEDGMENT
This work was supported in part by TRUST Center of UC

Berkeley, National Science Council, NCP, ITRI, III, Chung

Shan Institute of Science and Technology, Chunghwa Tele-
comm., Bureau of Investigation, HTC, Promise Inc., D-Link, the
International Collaboration for Advancing Security Technology
(iCAST) and Taiwan Information Security Center (TWISC),
Ministry of Education (R.O.C.), respectively.

IX. REFERENCE

[1] Newsome, J. and Song, D. 2005. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. Network and Distributed System Security Symposium (NDSS)
(2005).

[2] Yin, H., Song, D., Egele, M., Kruegel, C. and Kirda, E. 2007. Panorama:
Capturing system-wide information flow for malware detection and
analysis. Proceedings of the 14th ACM conference on Computer and
communications security (2007), 116–127.

[3] Martignoni, L., Stinson, E., Fredrikson, M., Jha, S. and Mitchell, J. A
layered architecture for detecting malicious behaviors. Recent Advances
in Intrusion Detection 78–97.

[4] Linn, C. and Debray, S. 2003. Obfuscation of executable code to improve
resistance to static disassembly. Proceedings of the 10th ACM conference
on Computer and communications security (2003), 290–299..

[5] Royal, P., Halpin, M., Dagon, D., Edmonds, R. and Lee, W. 2006.
Polyunpack: Automating the hidden-code extraction of unpack-executing
malware. Computer Security Applications Conference, 2006. ACSAC’06.
22nd Annual (2006), 289–300..

[6] Anubis: Analyzing unknown binaries, http://anubis.iseclab.org/.
[7] CWSandbox - an automated malware analysis tool,

http://www.cwsandbox. org/.
[8] Willems, C., Holz, T. and Freiling, F. 2007. Toward automated dynamic

malware analysis using cwsandbox. IEEE Security & Privacy. (2007),
32–39.

[9] Norman sandbox whitepaper,
http://download.norman.no/whitepapers/whitepaper_Norman_SandBox.
pdf.

[10] ThreatExpert - automated threat analysis tool,
http://www.threatexpert.com/.

[11] Bayer, U., Kruegel, C. and Kirda, E. 2006. TTAnalyze: A tool for
analyzing malware. 15th Annual Conference of the European Institute for
Computer Antivirus Research (EICAR) (2006)..

[12] Dinaburg, A., Royal, P., Sharif, M. and Lee, W. 2008. Ether: Malware
analysis via hardware virtualization extensions. Proceedings of the 15th
ACM conference on Computer and communications security (2008), 51–
62.

[13] Ferrie, P. 2007. Attacks on more virtual machine emulators. Symantec
Advanced Threat Research. (2007).

[14] Raffetseder, T., Kruegel, C. and Kirda, E. Detecting system emulators.
Information Security. 1–18.

[15] Chen, X., Andersen, J., Mao, Z.M., Bailey, M. and Nazario, J. 2008.
Towards an understanding of anti-virtualization and anti-debugging
behavior in modern malware. IEEE International Conference on
Dependable Systems and Networks (2008), 177–186.

[16] Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D., di Milano, U.S. and
di Udine, U.S. 2009. A fistful of red-pills: How to automatically generate
procedures to detect CPU emulators. Proceedings of the USENIX
Workshop on Offensive Technologies (WOOT) (2009).

Table 4.The predicted value of uncertainty-attributed branch.

Execu-
tion

round n
1 2 3 4 5 6 7 8 9 10

Diver-
gence

Detector
2,483 620 157 39 13 4 2 1 1 1

Expected
value 2,501 626 157 40 10 2 1 1 1 1

88

[17] Carpenter, M., Liston, T. and others 2007. Hiding virtualization from
attackers and malware. IEEE Security & Privacy. (2007), 62–65.

[18] Rutkowska, J. Red Pill... or how to detect VMM using (almost) one CPU
instruction. Retrieved, from http://invisiblethings. org/papers/redpill.
html.

[19] Neiger, G. 2006. IntelŴVirtualization Technology: Hardware Support for
Efficient Processor Virtualization. Intel Technology Journal. 10, (Aug.
2006).

[20] Rutkowska, J. and Tereshkin, A. 2007. IsGameOver () Anyone. Black Hat,
USA. (2007).

[21] Kang, M.G., Yin, H., Hanna, S., McCamant, S. and Song, D. 2009.
Emulating emulation-resistant malware. Proceedings of the 1st ACM
workshop on Virtual machine security (2009), 11–22.

[22] Open Source QEMU Emulator, http://wiki.qemu.org/.
[23] Bochs: The Open Source IA-32 Emulation Project,

http://bochs.sourceforge.net/
[24] VMware Virtualization Software, http://www.vmware.com/
[25] King, S.T. and Chen, P.M. 2005. Backtracking intrusions. ACM

Transactions on Computer Systems (TOCS). 23, 1 (2005), 51–76.
[26] Wagner, D. and Soto, P. 2002. Mimicry attacks on host-based intrusion

detection systems. Proceedings of the 9th ACM Conference on Computer
and Communications Security (2002), 264.

[27] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M., Liang,
Z., Newsome, J., Poosankam, P. and Saxena, P. 2008. BitBlaze: A new
approach to computer security via binary analysis. Proceedings of the 4th
International Conference on Information Systems Security. (2008), 1-25.

[28] Beizer, B. 2002. Software testing techniques. Dreamtech Press.
[29] Kspersky Anti-Virus. http://www.kspersky.com
[30] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,

Neugebauer, R., Pratt, I. and Warfield, A. 2003. Xen and the art of
virtualization. Proceedings of the nineteenth ACM symposium on
Operating systems principles (New York, NY, USA, 2003), 164–177.

[31] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G. Vigna.
Efficient Detection of Split Personalities in Malware. In Proceedings of
the 17th Annual Network and Distributed System Security Symposium
(2010).

[32] George W. Dunlap , Samuel T. King , Sukru Cinar , Murtaza A. Basrai ,
Peter M. Chen, ReVirt: enabling intrusion analysis through virtual-
machine logging and replay, Proceedings of the 5th symposium on
Operating systems design and implementation, December 09-11, 2002,
Boston, Massachusetts.

[33] Chow, J., Lucchetti, D., Garfinkel, T., Lefebvre, G., Gardner, R., Mason,
J., Small, S., Chen, P.M., Multi-stage replay with crosscut. In:
Proceedings of the 6th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (2010).

89

