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Abstract—
With the increasing popularity of cloud computing, hosting

services on a remote virtual machine becomes a trend due to
its ease of use and cost saving. When migrating services to a
cloud, users need to submit a resource plan to ensure service’s
performance. However, it is difficult to estimate the resources
required by a virtual machine for running arbitrary services.
To address the problem, we propose an estimation model for a
resource plan. The model takes the performance characteristics
of a physical machine as input and estimates virtual machine
configurations. Using the estimated configurations, a user can
obtain a virtual machine having similar performance character-
istics to that of the physical machine. In this paper, we derive
a model to estimate the CPU capability for creating a virtual
machine on Xen. Our experiments show that our model can
provide a resource plan for a virtual machine, which has the
minimum performance difference compared with a designated
physical machine.

I. INTRODUCTION

Cloud computing is a new business model that enables

users to rent computing resources at remote. It provides a

shared pool of configurable computing resources that can

be provisioned on demand and host a variety of services.

According to NIST’s definition [1], three fundamental service

models are defined for cloud computing, which are Software

as a Service (SaaS), Platform as a Service (PaaS) and Infras-

tructure as a Service (IaaS). Among these service models,

IaaS has been widely accepted due to its ease of use and

cost saving. Many service providers, such as Amazon [2]

and Microsoft [3], have deployed a public cloud serving IaaS

model and bill on a virtual computing unit, called virtual

machine.

A virtual machine offers fundamental computing resources

as a physical machine, including CPU, memory, storage and

network. Users are able to run arbitrary OSs and applications

on a virtual machine to provide their services, such as web

servers, virtual desktop [4] and network experiments [5]. In

an IaaS cloud, users rent a virtual machine from the service

provider, install OS and applications on the virtual machine,

move data hosted on their original physical servers to the

new platform and start their services. In order to run services

properly, users are also required to submit a resource plan

to the service provider to establish the computing resources

they need. The service provider parses the resource plan

and allocates resources for virtual machines. To simplify

the resource allocation, most virtualization software provides

interfaces for virtual machine configuration. For example,

Xen [6] provides an interface to configure CPU capability

of a virtual machine. The CPU capability informs CPU

scheduler the amount of CPU cycles a virtual machine

can consume. This helps an IaaS cloud service provider to

allocate CPU resource for virtual machines and meet user’s

resource plan.

To accelerate the deployment of a virtual machine, some

service providers offer physical-to-virtual tools (P2V) [7],

[8] for data migration. The P2V tools decouple OSs, appli-

cations and data of a physical machine and convert them

to a virtual machine hosted on a virtualization platform.

The P2V tools simplify the process of conversion from a

physical machine to a virtual machine; however, neither

the hardware specification of the physical machine nor the

resource requirements of applications are converted during

the migration. Users need to manually set up a resource plan

to ensure applications running on the virtual machine can

obtain a desired performance.

Much recent work [9], [10], [11], [12], [13] addresses

this problem by modeling the performance of applications

running on a virtual machine. These work aims to find

the relationship between resource allocation and the per-

formance of applications such that users can predict the

resource requirements and guarantee execution performance.

Modeling the performance of applications is useful for the

virtual machine running regular services, such as a web

server. But, for the virtual machine assigned to execute

arbitrary applications, such as a virtual desktop, it is hard

to model the performance and set up a resource plan. Hence,

some other research [14], [15] profiles user behaviors on

a physical machine and transforms the profiling results to

a resource plan. Such a transformation helps a user set

up a virtual desktop which has a similar performance to

that of the original platform. Nevertheless, the customized

virtual machine loses its generality when running different

applications or serving other users.

An alternative resource planning method is to make a

virtual machine obtaining similar performance characteristics

to that of a designated physical machine. Performance char-
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acteristics are measured by benchmark tools, which assess the

performance of a particular hardware feature of a computer.

The benchmark results are usually used for performance

comparison or regarded as a reference when estimating the

performance of applications running on a new platform.

When two machines have similar performance characteris-

tics, the applications running on the machines would obtain

similar performance. We apply this concept to set up a

resource plan for a virtual machine by taking a physical

machine as a reference. We allocate resources for a virtual

machine and guarantee its performance characteristics similar

to a designated physical machine. Therefore, both machines

would have similar performance on executing applications.

Such a method enables a user to take his/her physical servers

as a reference to set up a resource plan for a virtual machine.

The virtual machine is able to run arbitrary services, and the

execution performance can be estimated by running same

services on user’s physical machine.

In this paper, we propose an estimation model, called

performance mapping model, to provide a resource plan

suggestion when migrating services from a physical machine

to a virtual machine. The model maps the performance

characteristics of a physical machine to virtual machine

configurations. Using the estimated configurations to create

a virtual machine, the virtual machine can obtain similar

performance characteristics to that of the designated phys-

ical machine; therefore, applications running on the virtual

machine can obtain similar performance as running on the

physical machine. Referring the estimation result to set up a

resource plan, users can provide same service quality in the

virtualized environment as well as in their physical servers.

The contribution of this paper includes the following:

• We propose a performance mapping model to estimate

the relationship between performance characteristics and

virtual machine configurations. We use multiple linear

regression to derive the model and adopt stepwise se-

lection to find statistically significant variables for the

model.

• We derive a model to plan CPU resources for a virtual

machine. The model takes the performance charac-

teristics measured by CPU benchmarks as input and

estimates the CPU capability of a hardware-assisted

virtual machine running on a Xen-based virtualization

platform [6].

• We conduct several experiments to evaluate the accuracy

of our model. The results show that our model helps

find an optimal capability for creating a virtual machine

which has the minimum performance difference com-

pared with a designated physical machine.

• We also demonstrate that our performance mapping

model can be adopted when mapping performance char-

acteristics between virtual machines running on different

virtualization platforms.

The paper is organized as follows. We first review previous

work on resource planning in Section II. We discuss the

challenges and the approach to constructing a performance

mapping model in Section III. We derive the model using

multiple linear regression in Section IV and evaluate the

accuracy of our model in Section V. Section VI compares

our work with other performance mapping methods, and

discusses the scope of application as well as the limitation of

our model. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Previous research on planning resources for a virtual

machine can be classified into two categories: (1) modeling

the performance of virtualized applications, and (2) analyzing

user behaviors for a virtual desktop.

The first category, “modeling the performance of virtu-

alized applications,” aims to find the relationship between

resource allocation and performance of applications running

on a virtual machine. Wood et al. [9] designed a model to

predict the resource usage of an application running in a

virtualized environment. They adopted various benchmark

tools to profile resource usages of applications, and applied

multiple linear regression to derive the model from profiling

results. In 2011, Huber et al. [10] proposed a model to

predict the overheads for services running on a virtualiza-

tion platform. They calculated the relative deviation values

between a virtualization platform and a physical platform

to estimate the computing resource requirements against

virtualization overheads. Sudevalyam et al. [11] proposed a

model to estimate the CPU usage of virtualized applications.

They also considered the co-location problem to avoid virtual

machines running on the same host affecting the performance

of each other. Chan et al. [12] focused on modeling the

relationship between response time and CPU workload. They

collected CPU usage of a virtualization platform to predict

the response times of applications. In 2012, Kundu et al. [13]

used artificial neural network and support vector machine

to derive the relationship between resource allocation and

performance of virtualized applications. In order to handle

non-linear data, they also proposed a sub-modeling technique

to enhance accuracy.

The second category of resource planning methods ana-

lyzes user behaviors on a physical platform to plan resources

for a virtual desktop. Beaty et al. [14] proposed a desktop-

to-cloud transformation planning. They developed a profiling

tool [16] to record the resource utilization of the processes

executed on user’s desktop. The utilization traces are replay

in a virtualized environment to calculate the transformation

ratio for capacity provisioning. Calyam et al. [15] proposed a

model to minimize the resource usage of a cloud serving vir-

tual desktops. They developed a virtual desktop performance

benchmarking toolkit, called VDBench [17], to collect the

resource usage of user’s applications. The profiling results

are then used to decide the creation of user desktop pools

and determine an optimal resource allocation.
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The above methods require users to profile the resource

usage of a particular target in advance. However, for the

use case that a virtual machine is assigned to run arbitrary

services, neither modeling the performance of applications

nor analyzing user behaviors could be done. An alternative

approach is required to determine a resource plan for such

a virtual machine, and provide a reference of application

performance when running on that virtual machine.

III. CHALLENGES AND APPROACH

Given a physical machine, we aim to estimate the virtual

machine configurations to make both machines have similar

performance characteristics. Such an estimation faces two

challenges:

• First, hardware differences between a physical machine

and a virtualization platform may complicate the con-

figuration estimation. Since the hardware features (such

as CPU instruction sets, pipeline depth, and memory

architecture) are diverse, the physical machine and the

virtualization platform may have different performance

on executing an operation. For example, a multiply-

accumulate operation may take two clock cycles for

addition and another one cycle for multiplication on one

processor, where as another processor may complete the

same work in two cycles. It is hard to find a performance

relationship between different hardware features.

• Second, virtualization overheads increase the difficulty

to estimate virtual machine configurations. Virtualiza-

tion overheads are resulted from the implementation

of virtual machine monitor or hypervisor. Some oper-

ations of a virtual machine are modified in order to

run multiple virtual machines on a single host. For

example, some privilege instructions are trapped and

handled specially in the implementation of hardware-

assisted virtualization. These instructions take a more

complex execution path and cause a longer execution

time compared with that on a non-virtualized platform.

Neglecting virtualization overheads during estimation

may cause a virtual machine obtain insufficient re-

sources and result in a downgraded performance.

To counter these challenges, we propose a performance

mapping model to estimate configurations of a virtual ma-

chine. The model takes performance characteristics of a

physical machine as input. Each performance characteristic

represents a particular hardware feature of the physical ma-

chine such that the features of different platforms become

comparable. The output of the model is virtual machine

configurations. Using the estimated configurations to create

a virtual machine, the virtual machine would obtain similar

performance characteristics to that of the designated physical

machine. Users can refer to the estimation results to set up

their resource plan.

We use multiple linear regression to derive the relationship

between performance characteristics and virtual machine

configurations. The data used in derivation are gathered

from the virtual machines in order to consider the effect of

virtualization overheads. The model construction includes the

following steps:

1) On a given virtualization platform, we create several

virtual machines and set each of them with different

configurations. Then, we execute benchmarks on each

virtual machine to measure the performance character-

istics.

2) We collect the result pairs (performance characteristics

versus configurations) as observed data and adopt step-

wise selection to find statistically significant variables

for the performance mapping model.

3) According to the selection result, we remove some

benchmarks in the observed data and apply multiple

linear regression to derive the relationship between

performance characteristics and virtual machine con-

figurations.

After model construction, we use the same set of benchmarks

to measure the performance characteristics of a designated

physical machine. The benchmark results are then applied to

the model to estimate virtual machine configurations.

In this paper, we focus on mapping the CPU performance

characteristics to the CPU configuration of a Xen-based

virtual machine. For simplicity, both the physical machine

and the virtual machine we discussed only have a single-

core processor. The configuration we desired to estimate is

CPU capability, which informs CPU scheduler how many

CPU cycles a virtual machine is able to consume. CPU

capability is expressed in percentage of one CPU core. If

CPU capability is set to 50, a virtual machine can get

half execution cycles of a CPU core. In the next section,

we discuss how to derive the relationship between CPU

performance characteristics and CPU capability.

IV. PERFORMANCE MAPPING MODEL

We derive the performance mapping model using multiple

linear regression. Given a virtualization platform, we run N
benchmarks on a virtual machine to collect M observed data

{ (P 1
1 , P 1

2 , ..., P 1
N , C1), (P 2

1 , P 2
2 , ..., P 2

N , C2), ..., (PM
1 ,

PM
2 , ..., PM

N , CM )}, where Ci denotes the CPU capability

configured in the ith test (1 ≤ i ≤ M ) and P i
j denotes

the result of the jth benchmark (1 ≤ j ≤ N ) in the ith

test. Using the observed data, we can form a set of linear

equations as following:

C1 = b0 + b1 × P 1
1 + b2 × P 1

2 + ...+ bN × P 1
N + ε1

C2 = b0 + b1 × P 2
1 + b2 × P 2

2 + ...+ bN × P 2
N + ε2

... (1)

CM = b0 + b1 × PM
1 + b2 × PM

2 + ...+ bN × PM
N + εM

The coefficient set, b0, b1, ..., bN , describes the estimation

from CPU performance characteristics to CPU capability. The

εi is error term.
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Let β0, β1, ..., βN denote the approximate solution for

Eq. 1. We can solve βj using “Least Square Error” to min-

imize the total sum of squares errors. Hence, the estimated

capability Ĉ can be derived using Eq. 2:

Ĉ = β0 + β1 × P1 + β2 × P2 + ...+ βN × PN

= β0 +
N∑
j=1

βj × Pj (2)

In order to avoid data overfitting, we adopt stepwise

selection to find the statistically significant variables from

the benchmark sets. (The detail steps of stepwise selection

are explained in Section V-B.) Hence, the final performance

mapping model is shown in Eq. 3:

Ĉ = β0 + β1 × P ′
1 + β2 × P ′

2 + ...+ βN × P ′
N ′

= β0 +
N ′∑
j=1

βj × P ′
j (3)

where P̄ ′ = {P ′
1, P

′
2, ..., P

′
N ′} is a subset of P̄ =

{P1, P2, ..., PN} and 0 < N ′ ≤ N . Only the variables chosen

in stepwise selection are included in the final model. Note

that stepwise selection may choose different variables for

different virtualization platform since each platform has its

special hardware features.

V. EXPERIMENTS

In this section, we first introduce the CPU benchmarks

for performance characteristic measurement. We then de-

scribe the virtualization platforms for conducting experiments

and follow the steps described in Section IV to derive a

performance mapping model. To evaluate model accuracy,

we examine the performance difference between a physical

machine and the virtual machine set with an estimated

capability. We also evaluate the effectiveness of our mod-

els on mapping performance characteristics between virtual

machines running on different virtualization platforms.

A. CPU Benchmarks

CPU benchmarks are usually classified into two categories:

integer benchmarks and floating-point benchmarks. The for-

mer performs a variety of processor-intensive operations

to measure integer performance, while the later executes

bunches of floating-point operations to stress-test the floating-

point unit (FPU) of a processor. We choose five integer

benchmarks and two floating-point benchmarks to measure

the CPU performance characteristics of a machine.

The five integer benchmarks are:

• Sysbench [18] (abbreviated as Sys) evaluates the OS

parameters of a system running a database under inten-

sive load. We execute the CPU test mode of Sysbench
to measure the execution time of prime search.

• Blowfish (abbreviated as Blow) benchmark runs the

Blowfish symmetric-key algorithm. It measures the ex-

ecution time for encrypting and decrypting a text file.

• Cryptohash (abbreviated as Crypt) benchmark mea-

sures the performance of running cryptographic hash

functions. It hashes a text file using MD5 and SHA1

algorithms and reports the execution time.

• Fibonacci (abbreviated as Fibo) benchmark measures

the execution time of Fibonacci number calculation. It

calculates the Fibonacci number by executing a recur-

sive function rather than solving the Binet’s Fibonacci

number formula.

• N-Queens (abbreviated as NQ) benchmark reports the

execution time for solving an N-Queen problem. It

adopts a brute-force algorithm to find the solution.

and the two floating-point benchmarks are:

• FFT benchmark solves a linear equation using LUP

decomposition and reports the execution time. The LUP

decomposition executes a lot of basic floating-point

operations, such as addition, multiplication and division.

• Raytracing (abbreviated as Ray) benchmark measures

the execution time for solving optical ray tracing prob-

lem. It tests library performance as well as floating-point

hardware support for trigonometric functions and square

root.

All benchmarks, except Sysbench, are retrieved from the

“hardinfo” benchmark package [19]. None of the benchmarks

perform disk or network I/O during the measurement in order

to isolate the measurement done to just the processor. We

also change benchmarks’ output format to inverse of time

for unification.

B. Model Construction

We adopt two virtualization platforms in our experiments:

• VP1: IBM System X3200 M3 with 1 Intel Xeon X3430

2.40 GHz processor and 12 GB memory

• VP2: IBM System X3200 M3 with 1 Intel Xeon X3450

2.67 GHz processor and 10 GB memory

Both platforms support hardware-assisted virtualization and

are installed with Linux kernel 3.2 and Xen 4.1.2.

To gather performance characteristics, we create a

hardware-assisted virtual machine on VP1 and VP2, and

execute CPU benchmarks on the virtual machine. The virtual

machine is configured with one virtual processor (vcpu) and

1 GB memory, and its OS is Linux kernel 3.2. We set CPU

capability of the virtual machine to 25 in the beginning

and execute the benchmarks. The capability of the virtual

machine is incremented by 1 after executing each benchmark

once until the capability reaches 100.

After collecting performance characteristics, we adopt

stepwise selection to find statistically significant variables for

VP1’s and VP2’s performance mapping models. The stepwise

selection begins with no variables in the model and proceeds

by adding or removing one variable step by step:

1) At the first step, we choose the variable with the

smallest p-value into the model.
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TABLE I
THE EXECUTION STEPS OF STEPWISE SELECTION

Virtualization Total
Execution Steps

Platform Steps 1 2 3 4 5 6 7

VP1 7 +Blow +Sys +FFT +Ray +Crypt +Fibo –Ray

VP2 5 +Sys +FFT +Crypt +Fibo +NQ X X

+: Add variable into the model
–: Remove variable out of the model

2) We calculate the p-value for each variable out of the

model. For variables whose p-value smaller than a

predefined threshold, called Significant Level to Enter

(SLE), we add the variable with the smallest p-value

into the model.

3) Then, we calculate the p-value for each variable in

the model. For variables whose p-value larger than a

predefined threshold, called Significant Level to Stay

(SLS), we remove the variable with the largest p-value

out of the model.

4) Repeat step 2 and step 3 until no variables can be added

or removed.

We set both SLE and SLS to 0.05. The execution steps of

stepwise selection are shown in Table I. We choose five

benchmarks, Blow, Sys, FFT, Crypt and Fibo for VP1’s
model. The Ray benchmark is selected in the 4th step, but

removed at the last step due to its p-value becomes larger

than SLS after adding Fibo benchmark to the model. For

VP2, Sys, FFT, Crypt, Fibo and NQ are adopted to derive

a performance mapping model.

C. Mapping Evaluation: Physical Machine

Now, we evaluate the effectiveness of our model on

mapping CPU performance characteristics of a physical ma-

chine to CPU capability. Two experiments are conducted in

our evaluation: (1) evaluating the effectiveness of stepwise

selection, and (2) evaluating the accuracy of our models. We

conduct the evaluation by comparing the performance differ-

ence between a physical machine and the virtual machine set

with an estimated capability. We adopt two physical machines

for evaluation:

• PM1: 1 Intel Core Solo U1500 1.33 GHz processor and

1 GB memory

• PM2: 1 Intel Pentium M 1.5 GHz processor and 1 GB

memory

Both machines are installed with Linux kernel 3.2. On the

physical machines, we run seven benchmarks mentioned in

previous section to get a set of CPU performance character-

istics, P̃ = {P̃1, P̃2, ..., P̃7}, and apply the benchmark results

to VP1’s and VP2’s models to estimate CPU capability. We

use the estimation results to create a virtual machine on VP1
and VP2, and run benchmarks on the virtual machine to get a

new set of performance characteristics, P̂ = {P̂1, P̂2, ..., P̂7}.

The performance difference between a physical machine and

a virtual machine is expressed using Root Mean Square
Percentage Error, RMSPE, as shown in Eq 4:

RMSPE =
1

7

√√√√ 7∑
i=1

| P̃i − P̂i

P̃i

|2 (4)

All benchmarks are included in the calculation in order to

estimate the worst case of performance difference. A smaller

RMSPE value means that the virtual machine has a smaller

performance difference compared with the physical machine.

1) Effectiveness of Stepwise Selection: We first evaluate

whether stepwise selection chooses the best set of variables

for a performance mapping model. Following the execution

steps shown in Table I, we derive a model for the variable

sets selected in each step and use the models to estimate CPU

capability for PM1 and PM2. Besides, we also execute one

more step when selecting variables for VP1’s model and two

more steps for VP2’s model in order to evaluate the effect

of adding more variables to our models. For VP1’s model,

since stepwise selection removes Ray benchmark at the 7th

step, we add both Ray and NQ benchmarks to the model

at the 8th step. For VP2’s model, we add the variable with

smaller p-value (Blow benchmark) to the model at the 6th

step and choose the rest (Ray benchmark) at the 7th step. We

use the estimated capabilities to create virtual machines and

calculate the performance differences compared with PM1
and PM2. The results are shown in Figure 1 and Figure 2.

From Figure 1, we observed that three models could be

selected as VP1’s model, which are models generated from

2nd step, 3rd step, and 7th step (our model). Using the capa-

bilities estimated by these models to create a virtual machine,

the virtual machine can have the minimum performance

difference compared with the physical machine. In the case of

VP2, however, the virtual machine can obtain the minimum

performance difference only when applying our model. As

shown in Figure 2, using the capabilities estimated by other

models could result in a larger performance difference. Such

a result demonstrates that stepwise selection can effectively

find the statistically significant variables for a performance

mapping model.

2) Model Accuracy: In the second experiment, we exam-

ine the accuracy of our models by evaluating whether the
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(b) Performance difference compared with PM2

Fig. 1. Effectiveness of stepwise selection for VP1’s model

���	��

������

������ ������

������

������
������

����

������

������

������

������

�
����

������

�	����

������

� � � � 
 � 	 �

��
��
��
�	




�������������������

��� �����

(a) Performance difference compared with PM1

������

�	�	��

�
����
���
	�

������

���
	�
������

������

������

�
����

�	����

������

������

������

�
����

� � � � 
 � 	 �

��
��
��
�	




�������������������

��� �����

(b) Performance difference compared with PM2

Fig. 2. Effectiveness of stepwise selection for VP2’s model

estimated capability is an optimal solution. A virtual machine

with the optimal capability has the minimum performance

difference compared with a designated physical machine. In

this experiment, we first create a virtual machine and set its

capability to the estimation result. Secondly, we choose some

capabilities closed to the estimation result and use them to

create virtual machines. Then, we compare the performance

differences of these virtual machines and evaluate the optimal

capability.

Figure 3 illustrates the performance differences of the vir-

tual machines created on VP1. Using the capability estimated

for PM1, the virtual machine created on VP1 has a 10.32%

performance difference compared with PM1. When mapping

PM2’s performance characteristics to VP1, the performance

difference is about 11.10%. The capabilities estimated by

VP1’s model are the optimal solution for both physical

machines.

Investigating the cause of performance difference, we ob-

serve that Ray benchmark contributes the most to such a dif-

ference. Using the capability estimated for PM1, the virtual

machine runs Ray benchmark 1.52 times faster than PM1.

Setting capability to the estimation result, the virtual machine

also runs Ray benchmark 1.36 times faster than PM2. Even

we set the virtual machine with a relative low capability,

e.g. 25, Ray benchmark still obtains a better performance.

We argue that such a performance difference is resulted

from the improvement of FPU design. The new FPU design

accelerates the calculation of trigonometric functions so that

Ray benchmark performs better on the virtual machine.

In fact, without counting Ray benchmark, the performance

differences compared with PM1 and PM2 are decreased to

6.63% and 8.69%. We conclude that VP1’s model can map

CPU performance characteristics of a physical machine to an

optimal CPU capability. The virtual machine with the sug-

gested capability has the minimum performance difference

compared with the physical machine.

The performance difference between the physical machines

and the virtual machines created on VP2 is shown in Fig-

ure 4. Using our model to estimate the capability for PM1,

the performance difference between PM1 and the virtual

machine is the minimum, which is about 10.05%. Same

as the virtual machine created on VP1, the performance

difference is mainly resulted from the improvement of FPU

design. Without counting Ray benchmark, the performance

difference is decreased to 6.42%.

When mapping PM2’s performance characteristics to VP2,
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(b) Performance difference compared with PM2

Fig. 3. Accuracy of VP1’s model
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(a) Performance difference compared with PM1
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(b) Performance difference compared with PM2

Fig. 4. Accuracy of VP2’s model

the estimated capability, nevertheless, is not the optimal

choice. The estimation error is mainly caused by the signif-

icant architecture difference between the processor of PM2
and VP2. The processor of PM2 is launched in 2003, but

the processor of VP2 is launched in 2009. The pipeline

architecture and CPU instruction sets have changed a lot

during these years. Although a large architecture difference

existed between the processors, our model still finds a subop-

timal solution for PM2. The difference of RMSPE between

the virtual machine with the estimated capability and the

virtual machine with the optimal capability is only 0.23%.

Therefore, we still claim that: using VP2’s model to estimate

CPU capability for a physical machine, the virtual machine

can obtain similar performance characteristics to that of the

physical machine.

D. Mapping Evaluation: Virtual Machine

In addition to mapping performance characteristics of a

physical machine, we evaluate the effectiveness of our model

to map the performance characteristics of a virtual machine

to the CPU capability of another virtual machine running

on different virtualization platform. We create one virtual

machine on VP1 (called vm11) and set its capability to

50. Then, we benchmark the performance characteristics of

vm11 and apply the result to VP2’s model to estimate CPU

capability. The estimation result is used to create a virtual

machine on VP2, called vm12. We also create a virtual

machine on VP2 with capability set to 50 (called vm22) and

map vm22
′s performance characteristics to VP1 (the resulting

virtual machine is called vm21).

Figure 5 (a) plots the performance differences compared

with vm11. The results show that vm12 has the minimum per-

formance difference (0.7%). A similar result is also observed

when mapping vm22
′s performance characteristics to VP1.

Figure 5 (b) shows that the performance difference between

vm22 and vm21 is also the minimum (0.58%). We attribute

the small performance difference to the little architecture dif-

ference between the processor of VP1 and VP2. We conclude

that our models are also useful for mapping performance

characteristics between virtual machines running on different

virtualization platforms.

VI. DISCUSSION

In this section, we make a comparison with other perfor-

mance mapping methods to explain the reasons for using

performance characteristics and multiple linear regression to
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(a) Performance difference compared with vm11
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(b) Performance difference compared with vm22

Fig. 5. Accuracy of mapping performance characteristics between virtual machines running on different virtualization platforms
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Fig. 6. Comparison of different performance mapping methods

derive the model. We also discuss the scope of application

as well as the limitation of our model.

We compare our work with two intuitive performance

mapping methods:

• The “meet-performance method” selects a sufficient

capability to create a virtual machine such that all

performance characteristics of the virtual machine can

outperform that of a designated physical machine.

• The “frequency-scaling method” uses the ratio of CPU

clock rate to determine capability. The capability can be

derived by 100× fpm
fvp

, where fpm and fvp are the CPU

clock rates of the physical machine and the virtualization

platform, respectively.

Figure 6 illustrates the performance difference compared

with PM1 and PM2 when creating a virtual machine on

VP1 using our model and the performance mapping methods

mentioned above. Since different benchmarks require differ-

ent capabilities, the meet-performance method has the largest

performance difference compared with the others. Especially

when mapping the performance characteristics of an old

machine, the capability requirements are highly dependent

on the CPU architecture of a virtualization platform. For

example, some benchmarks (e.g. Ray benchmark) running

on a virtual machine with a smaller capability can get better

performance than those running on PM2. However, others,

which get little benefit from the new processor architecture,

require a larger capability to obtain same performance as

those running on PM2. Meeting the highest capability re-

quirement enlarges the performance difference between the

virtual machine and the physical machine.

Using the frequency-scaling method to estimate capability

also results in a larger performance difference compared with

our method. Such an examination demystifies the myth that

one can use the ratio of CPU clock rate to determine capabil-

ity. The CPU clock rate does not dominate the performance

of a processor. The pipeline depth, instruction sets and other

hardware features which hidden from the CPU specification

do actually influence the performance of a processor. Since

the impacts of these hardware features are neglected, it is

hard to find an optimal solution by applying the frequency-

scaling method.

Our method adopts benchmarks to reveal the performance

impacts of these hidden hardware features. The hardware

features are transformed to numeric value so that we can

use multiple linear regression to minimize the performance

difference between a physical machine and a virtual machine.

Although multiple benchmarks may assess the same hard-

ware feature, we can use stepwise selection to eliminate the

effect of duplicate measurement. In addition, virtualization

overheads are considered during model construction. In order

to mitigate the impact of virtualization overheads, the mul-

tiple linear regression uses the performance characteristics

gathered from virtual machines to derive the model.

Our model helps users determine a resource plan when the

goal is to make a virtual machine obtain similar performance

to a physical machine. Such a method saves the time of

virtual machine configuration from a trial-and-error process.

Although our model may have a small estimation error when

physical machine’s processor is several generations earlier

than that of the virtualization platform, our experiments show
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that the estimation results still provide a good suggestion for

users to set up a resource plan. Especially for the use case that

the virtual machine is assigned to run arbitrary applications,

such as a virtual desktop, our estimation can give a reference

of application performance. Applications running on the

virtual machine can obtain a similar performance as running

on a designated physical machine.

For cloud service providers, our model enables a new

service scenario where a user can configure CPU capability

for a virtual machine. Users can leverage the benchmark tools

and the model provided by service provider to determine a

resource plan. Besides, our model is also useful for a cloud

service provider which serves multiple virtual instance types

across heterogeneous virtualization platforms, such as Ama-

zon. Since our model can map performance characteristics

between virtual machines running on different virtualization

platforms, it saves the time from manually estimating the

proper configuration for serving virtual instance types on a

new platform.

Our model has a limitation that capability has a upper

bound on estimation, 100. Setting CPU capability larger

than 100 may cause a virtual machine be scheduled by two

physical cores simultaneously, and make the performance

become unpredictable. We plan to improve our model to

estimate a capability larger than 100 in the future.

VII. CONCLUSION

In this paper, we propose a performance mapping model

to estimate a resource plan when migrating services from

a physical server to a virtualized environment. The model

maps the performance characteristics of a physical machine

to virtual machine configurations. Using the estimated con-

figurations to create a virtual machine, the virtual machine

can obtain similar performance characteristics to that of the

physical machine. Such a method helps a user determine a

resource plan for a virtual machine and provide a reference

of application performance. We use multiple linear regres-

sion to derive a performance mapping model and find the

relationship between CPU performance characteristics and

CPU capability. Although multiple linear regression has been

used in estimating the resource requirements of virtualized

applications, our study extensively uses the regression model

to map the resources of a whole physical system, not just

applications, to the configurations of a virtual machine. Our

experiments show that our model can estimate an optimal

CPU capability so that the virtual machine can obtain a small

performance difference compared with a designated physical

machine. We also demonstrate that our model is applicable

when mapping performance characteristics between virtual

machines running on different virtualization platforms. In our

future work, we plan further consider storage and network

I/O in our model, and provide a more precise resource plan.

We are also working on the capability estimation for a multi-

core machine. By enhancing the support of performance

mapping model, we believe that we can improve the usage

of physical-to-virtual migration.
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