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Abstract—Conventional virtual machine (VM) migration 
focuses on transferring a VM’s memory and CPU states across 
host machines. The VM’s disk image has to remain accessible 
to both the source and destination host machines through 
shared storage during the migration. As a result, conventional 
virtual machine migration is limited to host machines on the 
same local area network (LAN) since sharing storage across 
wide-area network (WAN) is inefficient. As datacenters are 
being constructed around the globe, we envision the need for 
VM migration across datacenter boundaries. We thus propose 
a system aiming to achieve efficient VM migration over wide 
area network. The system exploits similarity in the storage 
data of neighboring VMs by first indexing the VM storage 
images and then using the index to locate storage data blocks 
from neighboring VMs, as opposed to pulling all data from the 
remote source VM across WAN. The experiment result shows 
that the system can achieve an average 66% reduction in the 
amount of data transmission and an average 59% reduction in 
the total migration time. 

Keywords—Live migration, Storage de-duplication, Wide-
area network, Virtualization, Datacenter 

I. INTRODUCTION 
Virtualization has been widely adopted in recent 

datacenter constructions to allow for multiple virtual 
machines (VMs) running on a single host machine and 
achieve cost-effective resource utilization. Virtualization also 
enables dynamic resource allocation through the migration of 
virtual machines among host machines. For instance, VMs 
with heavy workload can be spread onto different host 
machines for load shedding. Conversely, VMs with light 
workload can be aggregated together onto a few host 
machines so the other host machines can be powered off for 
energy saving. VM migration also provides new possibilities 
for fault tolerance in the sense that VMs can be migrated 
away from a failing host machine.  

Conventional virtual machine migration transfers the 
memory and CPU states of a VM from a source host 
machine to a destination host machine. The VM’s disk 
storage has to be placed on a shared storage server, which is 
attached to both of the host machines. As the shared storage 
cannot be efficiently implemented across wide-area-network 
(WAN), conventional virtual machine migration is primarily 
used within local-area network (LAN) environment.  

The widespread construction of datacenters around the 
globe has provided a new opportunity for further improving 
resource utilization and fault tolerance in cloud computing 
through VM migration. For instance, different geographic 

regions have different times for peak workloads. We can thus 
improve resource utilization through load balancing across 
datacenters in different geographic regions. And, for the 
purpose of fault tolerance, the ability of VM migration across 
geographic regions can improve resilience against 
geographic region related failures. For instance, if a region is 
expecting a hurricane, we can migrate the VMs away from 
the region to a datacenter that is not on the path of the 
hurricane.  

However, it is not feasible to apply existing VM 
migration mechanisms in a wide-area network environment. 
A shared storage across WAN would be rather inefficient 
due to the limited bandwidth and the long transmission 
latency of WAN. Without a shared storage, VM migration in 
the WAN environment will have to copy the VM storage 
image over to the destination sever in addition to copying the 
CPU and the memory states of the VM. A challenge is that in 
most cases, the size of a VM storage image is too large to be 
efficiently transmitted across the WAN. For instance, A 
small instance of Amazon EC2 VM is equipped with a 
160GB storage image[1]. It will take considerable amount of 
time to migrate just one single VM across the WAN, and the 
approach is certainly not scalable for migrating a large 
number of VMs around the same time. 

In this work, we propose a novel approach for VM 
migration in WAN environment. The approach is based on 
the insight that a large-scale datacenter is a de facto 
warehouse of data. It is likely that some of data in a VM 
storage to be migrated may be present in the destination 
datacenter. There are many reasons to this phenomenon 
beyond pure coincidence. For example, most VMs use stock 
system software such as standard Linux distributions or 
Windows. The application software running on the VMs also 
possess typical compositions. Some may be running a 
database server, some may be running a web server, and etc. 
Aside from the software, the application data are likely to 
have similarity as well. For instance, some of the data may 
be collected from a common source, or an earlier version of 
the VM might have had been migrated to the datacenter. 
Based on the insight, the proposed approach employs an 
indexing mechanism to identify data similarity in the VM 
storage images kept on a storage server. During migration, 
the portions of VM storage data that are found in the index 
will be pulled locally from the neighboring VM instead of 
being pulled from the source VM across WAN. The 
approach reduces a significant amount of network data 
transmission and makes it feasible to migrate a VM across 
WAN. A prototype system is built on a Linux host based on 
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Xen hypervisor[2]. The prototype uses an iSCSI-based[3] 
storage server.  

The rest of the work is organized as follows. Section II 
gives a brief introduction of conventional virtual machine 
migration and a survey of related work. Section IV describes 
the proposed approach for VM migration in WAN 
environment. Section V describes the prototype 
implementation. Section VI presents the experiment results. 
Section VII concludes this work with discussion on potential 
future work. 

II. BACKGROUND 
The concept of migration can be traced back to cluster 

computing systems, where processes on a busy server can be 
moved to a less busy server for load balancing [4]. However, 
migrating a process between servers is complicated by the 
inter-dependencies between the process and the underlying 
OS kernel states. In general, the migration is non-transparent 
to the upper layer application, and, as a result, process 
migration only finds limited use in real-world systems.  

Platform virtualization (i.e. the use of virtual machines) 
enables the migration of a full system stack encapsulated in a 
virtual machine (VM) between host machines. This is 
commonly referred to as a virtual machine migration[5]. 
Conventional VM migration is designed to operate in LAN 
environment, where a shared disk storage is assumed to be 
attached to both host machines involved in a migration. 
There is no need to migrate the storage data, so a VM 
migration typically begins with copying the CPU and the 
memory states of a VM running on a source host machine to 
a new VM on a destination host machine. At a suitable time 
point, the source VM will be suspended, and the new VM 
will take over the execution and start running. The time point 
for the execution transfer differentiates two approaches to  
VM migration: pre-copy vs. post-copy. 

Under the pre-copy approach, the execution transfer is 
initiated after a large portion of the VM states have been 
copied to the destination host machine. The original VM will 
keep running on the source host machine during the copying 
of VM states, so some of the states that had been copied can 
become dirty (updated by the running VM) and will have to 
be copied again. If the generation of dirty states  is too 
frequent, there will be a lot of re-copying. When this occurs, 
the original VM will be suspended to prevent the generation 
of dirty states. The migration process will then complete the 
transfer of VM states, and start the new VM. The time period 
during which neither VM is running is referred as the 
migration downtime.  

Under the post-copy approach, the transfer of execution 
takes place right after the CPU states (and a minimum 
amount of memory states) are transferred to the destination 
host machine. The new VM on the host machine will begin 
execution with incomplete memory states. The memory 
states will be copied on demand from the original VM, 
which had been suspended at the moment of the execution 
transfer.  

Both approaches have their pros and cons. post-copy 
tends to have a shorter migration downtime than pre-copy as 
the downtime corresponds to the copy of the CPU and a 
minimum amount of the memory states of the original MV. 

On the other hand, pre-copy has the advantage that the 
migration process can be cancelled and rolled back at any 
moment before the transfer of execution. Cancellation of 
migration process is much more difficult with post-copy, as 
neither the original VM nor the new VM is guaranteed to 
have consistent states at time of a cancellation. Under post-
copy approach, the new VM may run slowly until the full 
states have been completely copied from the source. Most 
hypervisors adopt pre-copy as their default mechanism for 
VM migration [5-7]. 

Storage migration moves the storage image of a VM 
from the source storage server to the destination storage 
server. It also consists of two stages similar to conventional 
VM migration with a shared storage, which are the copying 
of storage states and the switch of active storage target (i.e. 
the transfer of execution). Similarly, depending on the time 
point of the switch of storage target with respect to the 
copying of storage states, there is also a distinction of pre-
copy vs. post-copy storage migration mechanisms.  

The discussion on VM migration above is centered on 
moving a VM from one host machine to another host 
machine. Conventional VM migration assumes a shared 
storage is attached to both host machines and moves only the 
CPU and memory states of a VM. Moving the storage states 
of a VM across wide-area-network is very time consuming 
and not used in practice. Another issue we have not 
addressed is that when migrating a production VM, the VM 
may have active network connections. In order to keep the 
connections from being disrupted by the migration, the 
network routes used by the VM will have to dynamically 
reprogrammed. Solutions such as mobile IP [8] and network 
virtualization techniques [9] can be used to deal with this.  

III. RELATED WORK 
Conventional VM migration involves the transfer of VM 

CPU and memory states. Techniques such as compression 
[10] and de-duplication [11] have been used to exploit data 
similarity in the memory states of a VM to reduce network 
data transmission and migration time. There has also the 
attempt [12] that prioritizes the transfer of cold memory 
pages to further reduce the migration downtime. 

For VM storage migration, the barrier imposed by 
storage area network was addressed in the system [13] by K. 
Haselhorst et al., where DRBD [14] was used to synchronize 
the destination storage with the source storage. The xNBD 
system [15] by T. Hirofuchi et al. supports post-copy storage 
migration by extending the Linux network block device 
(NBD). VMware also supports storage migration with their 
vMotion [16] technology. While the above storage migration 
systems can be used in WAN environment, the high amount 
of network data transmission as required for migrating the 
storage data is still not addressed. The system [17] by 
Akoush et al. delays the transmission of hot sectors and 
achieved a considerable bandwidth reduction. The system 
[18] by Travostino et al. involves the use of fiber-optic 
network to speed up the transmission of VM storage and 
memory states. The CloudNet [19] applies de-duplication 
and compression on single VM’s storage image (and 
memory) to reduce the amount of data transmission during 
WAN migration.   
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Our work is distinct from existing VM storage migration 
systems in that we are the first to exploit data redundancy 
across multiple VM storage images. The proposed approach 
is complementary to existing techniques that are centered on 
the de-duplication, compression, and adaptive transmission 
of data within a single VM storage image. 

IV. EXPLOITING NEIGOBORHOOD SIMILARITY FOR 
VIRTUAL MACHINE MIGRATION OVER WIDE-AREA 

NETWORK 
We propose a system to support efficient VM migration 

in WAN environment. A high-level overview of the system 
architecture is shown in Fig. 1. Our system transfers the CPU 
and memory states of a VM directly to the destination host 
machine. We adopt the pre-copy approach, so the VM will 
kept running on the source host machine till a significant 
amount of memory pages have been copied over to the 
destination. The running VM may modify some of the 
memory pages that had been copied in a previous round. 
These pages will be marked as dirty and will need to be 
copied again. If the dirty page generation rate is too high, the 
VM will have to be paused to prevent the generation of dirty 
pages. Remaining dirty memory pages will be copied to the 
destination host machine in a last round. Finally, the VM will 
resume execution on the destination host machine.  

Migrating a VM over WAN requires not only moving the 
memory states of the VM but also moving its disk storage 
states. The size of a VM storage image is typically in the  
range of a few hundred gigabytes, which makes migrating 
the storage over wide-area network a very expensive process. 
However, we noticed that in a large-scale datacenter, it is 
very likely to find VMs with software setup similar to the 
VM being migrated. For instance, VMs running web-based 
services typically employ one of the popular web stacks (e.g. 
J2EE, .NET, or LAMP), and most VMs will use well-
established server operating systems (e.g. Linux, BSD, 
Windows, Solaris, etc.). Besides, data kept on the VMs may 
also possess some degree of similarity. For instance, the data 
may originally come from the same sources (e.g. music files 
from the same albums). It is also possible that an old version 
of the VM being migrated pre-exists in the destination 
datacenter, possibly due to a previous migration. If we can 
identify the common data among neighboring VMs in a 
datacenter and use the data to help reconstruct the storage of 
the VM being migrated, we may significantly reduce the 
amount of data transmission across the bandwidth-limited 
wide-area network and make it feasible to use VM migration 
in WAN environment. 

 
Fig. 1. Overview of migration over WAN 

We built an index mechanism to index the data in the 
VM storage images (Sec. IV.A). The migration  process will 
leverage the index to identify neighboring VMs at the 
destination datacenter from which common data are available.  

We support the pre-copy approach of VM migration by 
adding the bitmap mechanism on the storage server for 
tracking dirty blocks (Sec. IV.C). For the switch of active 
storage targets, as part of the VM execution transfer, we use 
an indirection layer implemented by the combination of a 
virtual block device and the block device remapping 
mechanism (Sec. V.B).  

A. Indexing Virtual Machine Disk Storage States 
Disk storage sizes are relatively large compared to 

memory sizes. It is quite typical for a VM storage to have at 
least a few hundred gigabytes of data on it. A straightforward 
approach for VM storage migration is to transfer all the 
storage blocks over to the destination. The approach would 
probably work well on the LAN but will definitely not work 
on the WAN. On the bandwidth-limited WAN, the migration 
will take a very long time to finish, and the huge amount of 
data transmission will likely incur some hefty network usage 
fees. 

 To improve the efficiency of VM storage migration, we 
exploit data similarities among VM disk storages by building 
an index of the storage blocks of neighboring VMs. The 
index is a hash table that stores the hash values (fingerprints) 
of storage blocks. Each entry in the index points to a block 
index. A block index records the fingerprint (fp) and the 
signature (sig) of the corresponding storage block. The 
signature is a small piece of data sampled from the storage 
block. In our implementation, a storage block has a size of 
512 bytes, and the signature is a sample of the 9th through the 
16th bytes of the storage block. The signature is used for 
resolving hash value (fingerprint) collisions. A block 
reference (br) that can be used to locate the corresponding 
storage block on the storage server is also kept in the block 
index. Through the index and the block indexes, we can 
quickly check if the storage blocks of the VM being migrated 
exist in neighboring VMs at the destination. We can then 
transfer the storage blocks from neighboring VMs instead 
from the source across the WAN. 

Fig. 2 gives an example of the index for a disk storage of 
five blocks. When we index a disk storage, we first allocate a 
block reference array with length equal to the number of 
blocks in the disk storage. The block reference array stores 
the link to the block reference for each of the storage blocks. 
Storage blocks with identical data content will be linked to 
the same block reference. In Fig. 2, we can see that block 1, 
2, and 5 have identical data, as they are all linked to the same 
block reference.  

Given the hash value (fingerprint) of a storage block, we 
can check the index at the destination. If a block index is 
matched, we can follow the block reference to retrieve the 
block data from a neighboring VM at the destination and 
avoid the costly transmission of the block data across the 
WAN. 
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Fig. 2. Example of index data structures 

Table 1. Source storage server migration process flow 
1 // Block interval (I, N) := the blocks start from the Ith block and end at the (I+N-1)th 
block 
 2 // Bit interval (I, N) := the bits start from the Ith bit and end at the (I+N-1)th bit 
 3 // D := the block device that is to be migrated 
 4 // D[I] := the Ith block of D 
 5 // D.block_nr := the number of blocks of D 
 6 // D.bitmap := the bitmap of D 
 7 // D.bitmap[I] := the Ith bit of the bitmap of D 
 8 // D.br := the block references of D 
 9 // D.br[I] := the block reference of the Ith block of D 
10 // D.br[I].index := the block index of the block reference D.br[I] 
11 // BI := block index 
12 // BI.fingerprint := the fingerprint of the block index 
13 // BI.signature := the signature of the block index 
14 // ZBI := the block index of zero block 
15 
16 // Clear bitmap of block device D 
17 For (I = 0; I < D.block_nr; I++) { 
18     D.bitmap[I] = 0 
19 } 
20 PHASE1: 
21 For (I = 0; I < D.block_nr; I++) { 
22     If (D.br[I] != NULL) { 
23         If (D.br[I].index != ZBI) { 
24             FP = D.br[I].index.fingerprint 
25             SIG = D.br[I].index.signature 
26             Send INDEX_TYPE = BLOCK to destination storage server 
27             Send index information (I, FP, SIG) to destination storage server 
28         } Else { 
29             N = 0 
30             Do { 

31                 I++ 
32                 N++ 
33             } While (D.br[I].index == ZBI) 
34             Send INDEX_TYPE = ZERO to destination storage server 
35             Send block interval (I, N) to destination storage server 
36         } 
37     } 
38 } 
39 // End of PHASE1 
40 Send INDEX_TYPE = ZERO to destination storage server 
41 Send block interval (0, 0) to destination storage server 
42 PHASE2: 
43 For each received block interval (I, N) from destination storage server { 
44     If (N != 0) { 
45         For (J = I; J < I+N; J++) { 
46             D.bitmap[J] = 1 
47         } 
48     } Else { 
49         Break   // block interval with length zero means the request is over 
50     } 
51 } 
52 PHASE3: 
53 I = 0 
54 While (number of dirty blocks on D > dirty threshold and I < iterate threshold) { 
55     For each dirty bit interval (I, N) in D.bitmap { 
56         For (J = I; J < I+N; J++) { 
57             Send OPCODE = TRANSFER_DATA to destination storage server 
58             Send (I, D[I]) to destination storage server 
59             D.bitmap[J] = 0 
60         } 
61     } 
62     I++ 
63 } 
64 Send pause VM message to VM host machine 
65 Send switch target message to VM host machine 
66 PHASE4: 
67 For each dirty bit interval (I, N) in D.bitmap { 
68     For (J = I; J < I+N; J++) { 
69         Send OPCODE = TRANSFER_DATA to destination storage server 
70         Send block information (I, D[I]) to destination storage server 
71     } 
72 } 
73 Send OPCODE = COMPLETE to destination storage server 
74 Send resume VM message to VM host machine 

 
Table 2. Destination storage server migration process flow 

1 // Block interval (I, N) := the blocks start from the Ith block and end at the (I+N-1)th 
block 
 2 // Bit interval (I, N) := the bits start from the Ith bit and end at the (I+N-1)th bit 
 3 // D' := the new block device that would be synchronized with the migrated block 
device 
 4 // D'[I] := the Ith block of D' 
 5 // D'.block_nr := the number of blocks of D' 
 6 // D'.bitmap := the bitmap of D'  
 7 // D'.bitmap[I] := the Ith bit of the bitmap of D' 
 8 
 9 Create new block device D’ 
10 For (I = 0; I < D'.block_nr; I++) { 
11     D'[I] = 0;  D’.bitmap[I] = 0; 
12 } 
13 PHASE1: 
14 Do { 
15     Receive INDEX_TYPE from source storage server 
16     Switch (INDEX_TYPE) { 
17         Case BLOCK: 
18             Receive index information (I, FP, SIG) from source storage server 
19             Find block index BI by FP on local index 
20             If (BI != NULL) { 
21                 Retrieve block data BD through the block reference of BI 
22                 If (SIG match the signature part of BD) { 
23                     D'[I] = BD 
24                 } 
25             } 
26             Break 
27         Case ZERO: 
28             Receive block interval (I, N) from source storage server 
29             If (N == 0) {   // block interval with length zero means the index transfer is 
over 
30                 COMPLETE = True 
31             } 
32             For (J = I; J < I+N; J++) { 
33                 D'.bitmap[J] = 1 
34             } 

1 2 3 4 5

Index

1fed4b5b

14e1d758

14e1d760

Block index

fp: 1fed4b5b

sig: 00000000

br

Block index

fp: 14e1d758

sig: 12345678

br

Block index

fp: 14e1d760

sig: ABCDEF90

br

Block reference

dev_nr: 0

block_nr: 2

bi

NULL

Block reference

dev_nr: 0

block_nr: 1

bi

NULL

Block reference

dev_nr: 0

block_nr: 4

bi

NULL

Block reference array of device 0

dev_nr: device number block_nr: block reference 
bi: block index                  fp: fingerprint   
sig: signature                    br: block reference
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35             Break 
36     } 
37 } While (COMPLETE == False) 
38 PHASE2: 
39 For each clean bit interval (I, N) in D'.bitmap { 
40     Send block data request of block interval (I, N) to source storage server 
41 } 
42 // End of PHASE2 
43 Send block data request of block interval (0, 0) to source storage server 
44 PHASE3 and PHASE4: 
45 Receive OPCODE from source storage server 
46 While (OPCODE != COMPLETE) { 
47     Receive block information (I, BD) from source storage server 
48     D’[I] = BD 
49     Receive OPCODE from source storage server 
50 } 

B. Virtual Machine Storage Migration over WAN 
The migration system leverages the indexing mechanism 

to exploit neighborhood similarity to reduce  the amount of 
network data transmission in VM storage migration. Table 1 
and Table 2 present the pseudo-code of the storage migration 
process involved by the source storage server and the 
destination storage server respectively. We adopt the pre-
copy approach in the storage migration process and employ a 
bitmap mechanism at the source storage server to track the 
dirty blocks. Prior to a migration, the bitmaps will be reset 
with zeros (line 17~19 in Table 1 and line 10~12 in Table 2). 
On the destination storage server, an empty storage image of 
the same size as the source storage image will be created and 
initialized with zeros (line 9~12 in Table 2).  

The core migration process consists of four phases. In 
PHASE1, the source storage server transmits the index 
information (the fingerprints and signatures) of the storage 
blocks to be migrated to the destination storage server (line 
22~38 in Table 1). The destination storage server receives 
the index information and will search in its index to look for 
a storage block matching the index information (line 17~26 
in Table 2). The migration process will skip those disk 
blocks whose contents are all zeroes (i.e. the zero blocks) in 
the index transfer phase (line 28~36 in Table 1 and line 
27~35 in Table 2). The bitmap at the destination storage 
server will be used to track which blocks have been located 
through the index. If a bit in the bitmap on the destination 
storage server has the value 0, it means that the 
corresponding block cannot be found in the index. In this 
case, the block data will have to be transferred directly from 
the source storage server in PHASE2.  

In PHASE2, the destination storage server will send 
requests to the source storage server to retrieve the remaining 
blocks (line 39~41 in Table 2). The remaining blocks are 
those which could not be located through the index and 
retrieved locally from a neighboring VM at the destination in 
PHASE1. Based on the requests, the source storage server 
will set the corresponding bits in the bitmap for the 
remaining blocks to 1. The transmission of the blocks will be 
carried out in PHASE3 (line 43~51 in Table 1) of the 
migration process.  

In PHASE3, the source storage server will transmit the 
blocks requested by the destination storage server from 
PHASE2. The source storage server will also transmit the 
dirty blocks to the destination storage server (Not the VM is 
still running, and transmitted storage blocks can get modified 
and become dirty). The running VM may still keep 
generating dirty blocks during the transmission, so the 

migration process will repeat the transmission of dirty blocks 
(line 53~63 in Table 1) until one of the following two 
conditions is met: when the number of dirty blocks is below a 
given threshold or when the number of the retransmission 
iteration has reached an upper limit. With either condition 
met, the storage migration process will move into PHASE4.  

In PHASE4, we must first ensure that no more dirty 
blocks will be generated by the running VM. So, in fact we 
will have to suspend the VM and switch the storage target to 
the destination storage for the VM (line 64~65 in Table 1). 
After that, we will carry out the final round of dirty block 
transmission. Finally, the VM storage image at the 
destination storage server will have identical content as the 
original VM storage image at the source storage server. The 
virtual machine will then be resumed after the source storage 
server send a RESMUE message to the VM host machine 
(line 74 in Table 1). The whole storage migration process is 
now complete. 

C. Live Migration and VM State Consistency 
As VM migration is a time consuming process, it is 

desirable to allow the VM to keep running during the 
migration process and also minimize the downtime during 
the execution transfer. The migration model is often referred 
to as live migration.  

The proposed storage migration system supports live 
migration and has to allow the running VM to keep writing 
new data to the storage being migrated. Importantly, the 
migration system will have to ensure that the destination 
storage will be consistent with the source storage for the VM  
at the time of its execution transfer. We use the bitmap to 
track dirty blocks in the source storage to detect and correct 
data inconsistencies. Each storage block has a corresponding 
dirty bit, and when the bit is set to 1, it means that the block 
has been modified since it being copied to the destination 
storage server. The block has to be copied again to the 
destination for consistency.  

At the time of execution transfer, the storage of the VM 
will have to be switched to the destination storage server. For 
live migration, we are not allowed to un-mount an active 
storage from the VM and then re-mount it. As a result, we 
created a virtual block device layer to hide the switch of 
storage servers. More details about the implementation of the 
virtual block device layer are given in Section V.B. 

V. IMPLEMENTATION 
The prototype system is implemented on x86_64 Fedora 

Linux 16 and Xen hypervisor 4.1.2. The prototype can be 
easily ported to other Linux virtualization platforms such as 
KVM as well. The storage server exports storage targets via 
the iSCSI protocol[3]. The VM host machine runs an iSCSI 
initiator to connect to exported iSCSI targets. 

Fig. 3 shows the architecture of the prototype system. 
The components encircled by dotted lines are newly 
developed components while the other components are 
adapted from existing software packages. The iSCSI server 
function is natively supported by Linux since kernel 3.1 
through the LIO module [20]. We use Open-iSCSI [3] as the 
iSCSI initiator for the VM host machines. We developed the 
migration daemon that runs on the storage server. The 
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migration daemon manages the storage server through the 
LIO and ConfigFS [21]. At the beginning of a storage 
migration, the migration daemon on the destination storage 
server will create a new iSCSI target for the storage image to 
be migrated. When a migration is completed, the migration 
daemon on the source storage server will delete the iSCSI 
target of the source storage image. 

 The migration daemon includes the indexer sub-module 
for indexing the VM storage images (Sec. IV.A). To 
maintain the data consistency of a storage image, the 
indexer’s access to the storage image is also carried through 
the Open-iSCSI initiator, which connects locally to the 
storage image. 

 
Fig. 3. System Architecture 

A. iSCSI target dirty block bitmap 
During live migration of a VM, the VM may keep 

writing to the storage. It is likely that a migrated storage 
block gets overwritten again in the migration process. The 
overwritten block is referred to as a dirty block, which 
should be retransmitted to the destination. We use a bitmap 
to track the dirty blocks in a storage image being migrated. 
The bitmap is implemented in the LIO kernel module. 

Fig. 4 shows how LIO module handles SCSI read/write 
commands. The SCSI commands are sent via iSCSI protocol 
and are received by the iSCSI portal of the LIO module. The 
iSCSI portal translates the SCSI commands to a se_task 
structure and appends it to the command queue of the 
corresponding block device. A worker thread will continue to 
fetch tasks from the queue using the do_task function and 
carry out the tasks. Of interest to the tracking of dirty blocks 
are the write tasks. A write task will be carried out through 
the do_writev() function, where we have made modifications 
to set the corresponding dirty bits in the bitmap for each 
storage block that get overwritten by the running VM during 
the migration. Since the migration daemon runs in user space, 
we export a handle to the bitmap (/proc/target) at the user 
space using the proc filesystem [22, 23]. The migration 
daemon can then access the content of the bitmap through 
memory mapping [24] and also manipulate the bitmap (e.g. 
clearing the bitmap, setting or resetting bits in the bitmap) 
through ioctl [25, 26] on the bitmap handle. 

B. Switching iSCSI targets for Live Migration 
As part of the execution transfer, we need to detach the 

VM from the source storage server and attach it to the 
destination storage sever. With live migration, the VM will 
keep running throughout the migration process, and the 
switching of storage servers (i.e. the iSCSI targets) will have 
to be hidden from the VM. We implement a virtual block 
device to isolate the VM from the SCSI block devices 
exported by the iSCSI targets. The virtual block device is 
implemented through the LVM2 device mapper [27, 28]. We 
then use multipath [29] to connect both the source and 
destination SCSI block devices to the virtual device as shown 
in Fig. 5. The multipath module allows the switch from the 
source SCSI block device to the destination SCSI block 
device. During the switching, the multipath module will 
queue up the pending accesses to the detached source block 
device and apply them to the destination block device after 
the destination block device is attached. From the perspective 
of the running VM, its storage is always the virtual device 
mapper block device.  

 

 
Fig. 4. LIO module 

 
Fig. 5. Switching iSCSI targets 

 

VI. EXPERIMENT RESULTS 
As the proposed WAN migration system relies on 

exploiting similarity in the VM storage images, we first 
conduct an experiment in Sec. VI.A to observe the similarity 
in real-world VM storage images. A similarity level based on 
the percentage of common storage blocks is defined for a 
pair of VM storage images. The similarity level will be 
affected by the indexing block size, so in Sec. VI.B, we 
observe how different block sizes affect the similarity levels. 
The CPU usage and memory usage of the system is 
evaluated in Sec. VI.C. The effectiveness on the reduction of 
network traffic and migration time reduction is evaluated in 
Sec. VI.D. In Sec. VI.E, we evaluate the migration downtime 
with three representative benchmark programs. The 
hardware of the storage servers are standard x86 server 
machines, each of which is equipped with two Intel Xeon 
E5520 processors, 16GB RAM and 1TB hard disk. 
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A. Similarity analysis of VM storage images 
If the VM storage images possess a high level of 

similarity (i.e. having a lot of data in common), the indexing 
mechanism should be very effective on reducing the amount 
of network data transmission during WAN migration. In this 
experiment, we first look at the real-world VM storage 
images and observe the similarity levels between each pair of 
the storage images. The composition of the storage images 
include systems such as CentOS, Fedora and Ubuntu, which 
are popularly used in real-world VM deployments. We 
allocated a 32GB storage for each VM and installed the 
standard LAMP stack [30] on each of the systems. The 
partition layout follows the default settings of each 
distribution. We also installed development tools and 
libraries on the VMs. In addition, we also include the storage 
images of two production systems Sense and Better in the 
composition. Both Sense and Better have been in operation 
for about three years. Sense is a web server running Apache 
2.2 on CentOS 5.8. Better is an online judge system for 
undergraduate programming courses running Fedora Core 14. 
Overall, we have a total of 10 VM system storages. The 
experiment looks at the pairwise similarity of the storage 
images. For each pair, we first use the indexing mechanism 
to build up the index with one of the images (the base image), 
and then we will check the other image (the target image) 
against the index and count the number of storage blocks in 
the target image that can be located in the index (i.e. the base 
image also possess the same storage blocks). The similarity 
between a base image and a target image is then defined as 
the percentage of (number of target image storage blocks that 
can be located in the index) / (total number of storage blocks 
in the target image) * 100 %. For this experiment, each 
storage block has the size of 512 bytes. 

 
Table 3. VM storage image similarity 

 
Table 3 presents the result on the similarity experiment.  

Assuming we were to migrate a target image from a source 
storage server to a destination server, where its 
corresponding base image is present, each similarity value in 
the table would indicate the percentage of storage data that 
would not need to be transmitted across the WAN from the 
source server to the destination server. We noticed that VM 
images based on CentOS have the lowest average similarity 
values between each other when compared with VMs based 
other distributions.  This is because CentOS has a longer 
release cycle and each new version of CentOS tends to have 
more significant changes over the previous versions, while 
other types  of systems tend to have a  relatively shorter 
release cycles. For instance, we can see in the table that the 
similarity values between different versions of Fedora 
systems or different versions of Ubuntu systems are all above 

15 percent. The similarity values between a Fedora base 
image and an Ubuntu target image are all above 10 percent.  

B. Indexing block size and storage image similarity 
The indexing mechanism views each storage as a 

collection of storage blocks and creates an index of the 
storage blocks (Sec. IV.A). The size of a storage block, as 
used by the indexing mechanism, is a configurable parameter, 
which would affect the index size and the effectiveness of 
the indexing mechanism on locating common storage blocks. 
A small storage block size will result in creating a huge 
number of block indexes. On the other hand, a big storage 
block size will make it harder to locate blocks with identical 
data contents.  

In this experiment, we vary the block size from 512 bytes 
to 16384 bytes. For each chosen block size, we calculate the 
storage image similarity  between the Ubuntu 11.04 system 
(used as the base image) and the Ubuntu 11.10 system (used 
as the target image).  The result is plotted in Fig. 6.  

From Fig. 6, we can see that the storage image similarity 
does decrease as the block size increases.  A large block size 
makes it more difficult for two blocks to have identical data 
and will cause the storage image similarity to drop. We 
noticed that there is a significant drop between block size 
4096 bytes and block size 8192 bytes. This is because the 
native block size used by the file systems on the storage 
images is 4096 bytes. When the indexing block size goes 
beyond 4096 bytes,  the indexing block will start to cover 
data that may not be logically grouped and will cause the 
similarity to drop. 

 
C. Indexing overhead 

It takes time for the indexing mechanism to build the 
index for a storage, and it also takes memory space to keep 
the index. In this experiment, we index the 8 system storage 
images from Sec. VI.A consecutively without clearing up the 
index (i.e. at the end of the indexing process, the index will 
include the block indices of all the storage images). We 
measure the time and the memory consumed when indexing 
each of the 8 system images.  

Fig. 7 shows the time for building the index for each of 
the storage images. Fig. 8 shows the memory size of the 
index as each of the 8 system images is added to the index. 
The average time for indexing a storage is about 140 seconds. 
The memory usage grows linearly with respect to the 
addition of storage images to the index. This is expected as 

Base\Target CentOS
5.8

CentOS
6.3

Fedora
15

Fedora
16

Fedora
17

Ubuntu
11.04

Ubuntu
11.10

Ubuntu
12.04 Sense Better Average

CentOS5.8 n/a 5.36% 3.61% 3.40% 3.10% 3.85% 4.12% 3.96% 9.51% 0.39% 4.14%
CentOS6.3 7.26% n/a 11.57% 8.58% 7.24% 7.18% 7.42% 7.35% 1.90% 1.21% 6.63%
Fedora15 6.68% 15.70% n/a 34.34% 20.63% 13.25% 14.01% 11.39% 1.71% 2.04% 13.31%
Fedora16 6.25% 12.00% 35.33% n/a 28.25% 11.23% 14.05% 14.95% 1.60% 1.65% 13.92%
Fedora17 5.79% 10.89% 24.27% 33.72% n/a 9.08% 11.75% 15.27% 1.46% 1.38% 12.62%

Ubuntu11.04 2.65% 4.53% 6.79% 5.64% 4.35% n/a 63.39% 21.09% 0.73% 1.13% 12.26%
Ubuntu11.10 2.09% 3.28% 4.97% 4.83% 3.91% 40.23% n/a 23.04% 0.62% 1.02% 9.33%
Ubuntu12.04 1.79% 3.05% 3.90% 4.86% 5.35% 15.72% 22.70% n/a 0.54% 0.80% 6.52%

Sense 41.75% 6.26% 4.66% 4.40% 3.71% 3.95% 4.26% 3.86% n/a 1.22% 8.23%
Better 5.79% 14.20% 24.16% 19.08% 13.43% 13.65% 15.97% 11.33% 2.15% n/a 13.31%

 
Fig. 6. Storage image similarity for different block sizes 
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the similarity between any two system storage images are on 
average 10%~20% according to Table 3, so an average 
80~90% of new data will have to be added to the index for 
each system image. In practice, if the size of the index is a 
concern, one can limit the size of the index at the expense of 
sacrificing similarity and a potentially longer migration time. 

 

 
Fig. 7. Indexing time for VM storage images 

 

 
Fig. 8. Index size with respect to the addition of storage images 

 
 

 
Fig. 9. Migration time with and without index 

 

 
Fig. 10. Amount of data sent by the source storage server 

D. Migration time and amount of data transmission 
In this experiment, we look at the migration time and the 

amount of data transmission. The results are compared 
against a baseline system, which transmits all the storage 
blocks directly from the source server to the destination 
server. We use the two production systems Sense and Better 
for the experiment. We setup two iSCSI storage servers and 
use a 100Mbps network to emulate the WAN. The index is 
populated with two freshly installed systems, which run the 
same operating systems as Sense and Better. The freshly 
installed systems have neither the application programs (i.e. 
the web server and the online judge system) nor the 
application data as Sense and Better. We migrate the two 
system systems respectively over the emulated WAN and 
measure the migration time and the amount of network data 
transmission. 

Fig. 9 shows the result on the migration time, and Fig. 10 
shows the amount of data sent by the source storage server. 
Our system reduces about 59% of the migration time for 
Sense and about 82% of the migration time for Better. In 
terms of network data sent by the source storage server, our 
system reduces about 66% of data transmission for Sense 
and about 86% of data transmission for Better. The 
percentage of reduction is roughly the same for the migration 
time and for the network data transmission. This indicates 
that most of the migration time is due to data transmission 
during migration.  

 

 
Fig. 11. Migration time when migrating over WAN 

We also conduct an experiment in real-world WAN 
environment. We migrate Sense from the NCTU campus 
network to a remote site, which is connected through 
50Mbps ADSL to the Internet. The network route consisted 
of 14 hops and had an end-to-end latency of 13.7ms. Fig. 11 
shows the result of the experiment. Our system reduced 
about 69% of the migration time and took only about half an 
hour to complete the migration. From the experiment, we can 
clearly see that our system is practical for supporting VM 
migration in WAN environment. 

E. Downtime evaluation 
The WAN migration system employs the pre-copy 

approach for VM migration and supports live migration. 
However, the VM would still need to be paused briefly 
during the transfer of execution. Remaining dirty memory 
pages and dirty storage blocks  will all have to be transferred 
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to the destination host machine and storage server. The 
applications running on the VM will become temporarily 
unavailable. The time period is referred to as the migration 
downtime. This downtime can vary depending on the loading 
of the VM (i.e. a heavily-loaded VM is likely to create more  
dirty pages / blocks) and also depending on the bandwidth of 
the network. In this experiment, we evaluate the downtime of 
the WAN migration system by running I/O intensive  
benchmarks including dbench [31] and kcbench [32] on the 
VM to be migrated.  

 
Fig. 12. Comparison of migration time and network transmission 

with and without indexing mechanism 

Fig. 12 shows the result from the experiment. The 
average downtime for migrating an idle VM is about 539 
milliseconds. It’s short enough for most services to operate 
continuously without interruption. The downtime increases 
when there is workload on the VM. For instance, the 
downtime with dbench running on the VM is 2.627 seconds 
and the downtime with kcbench running on the VM is 1.048 
seconds. Overall, the average downtime is less than 3 
seconds even under heavy I/O workload. This is good 
enough for non-realtime applications to be migrated without 
much impact on the user experience. Overall, our system 
performs well with respect to the downtime evaluation. 

VII. CONCLUSION AND FUTURE WORK 
Conventional virtual machine migration is limited to 

LAN environment, because both the sharing and the 
migration of VM storage across wide-area network (WAN) 
are expensive due to the amount of data in the VM storage 
and the limited bandwidth of WAN. On the other hand, the 
adoption of cloud computing has caused active construction 
of datacenters around the globe. Being able to carry out VM 
migration across datacenter boundaries and across WAN 
environment would open up new possibilities for more 
powerful resource utilization and fault tolerance in cloud 
computing.  

We propose a system to facilitate VM storage migration 
in WAN environment, thereby enabling VM migration 
across datacenter boundaries. The key technique is to exploit 
data similarity in the storage images of neighboring VMs on 
a storage server. The system builds an index of the VM 
storage images on each storage server and uses the index to 
assist the reconstruction of the storage image of the VM to be 
migrated. The technique reduces the amount of data 
transmission involved in VM migration significantly and 
brings the overall WAN migration time down to an level that 

is acceptable for practical use. The system adopts the pre-
copy approach and supports live migration. 

The evaluation of the prototype system confirms that 
neighboring VMs do present considerable amount of 
duplicate data. Through the proposed system, the migration 
time of a production VM across real-world WAN 
environment was shown to be reduced by 70%. With respect 
to live migration, the system was able to keep the downtime 
below 3 secs for all the benchmarks used in the evaluation.  

The evaluation also identified some deficiencies of the 
prototype system. One deficiency is the memory usage by 
the indexing mechanism is still a little bit too high. The 
indexing mechanism maintains an index data entry for each  
512 bytes storage block. While we can reduce the number of 
index data entries by using a large block size, it will cause 
the similarity of storage blocks to drop (Sec. VI.B). For 
future work, we can leverage upper-layer filesystem 
information to address the issue. The other deficiency of the 
current prototype is that the downtime may not be short 
enough for live migration of real-time applications. For 
future work, we are considering to integrate post-copy 
mechanism [15] to reduce the downtime. 
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