

Exploiting Neigborhood Similarity for Virtual Machine
Migration over Wide-Area Network

Hsu-Fang Lai, Yu-Sung Wu*, and Yu-Jui Cheng
Department of Computer Science

National Chiao Tung University, Taiwan
blackxwhite@gmail.com, hankwu@g2.nctu.edu.tw, chengyj@cs.nctu.edu.tw

Abstract—Conventional virtual machine (VM) migration
focuses on transferring a VM’s memory and CPU states across
host machines. The VM’s disk image has to remain accessible
to both the source and destination host machines through
shared storage during the migration. As a result, conventional
virtual machine migration is limited to host machines on the
same local area network (LAN) since sharing storage across
wide-area network (WAN) is inefficient. As datacenters are
being constructed around the globe, we envision the need for
VM migration across datacenter boundaries. We thus propose
a system aiming to achieve efficient VM migration over wide
area network. The system exploits similarity in the storage
data of neighboring VMs by first indexing the VM storage
images and then using the index to locate storage data blocks
from neighboring VMs, as opposed to pulling all data from the
remote source VM across WAN. The experiment result shows
that the system can achieve an average 66% reduction in the
amount of data transmission and an average 59% reduction in
the total migration time.

Keywords—Live migration, Storage de-duplication, Wide-
area network, Virtualization, Datacenter

I. INTRODUCTION
Virtualization has been widely adopted in recent

datacenter constructions to allow for multiple virtual
machines (VMs) running on a single host machine and
achieve cost-effective resource utilization. Virtualization also
enables dynamic resource allocation through the migration of
virtual machines among host machines. For instance, VMs
with heavy workload can be spread onto different host
machines for load shedding. Conversely, VMs with light
workload can be aggregated together onto a few host
machines so the other host machines can be powered off for
energy saving. VM migration also provides new possibilities
for fault tolerance in the sense that VMs can be migrated
away from a failing host machine.

Conventional virtual machine migration transfers the
memory and CPU states of a VM from a source host
machine to a destination host machine. The VM’s disk
storage has to be placed on a shared storage server, which is
attached to both of the host machines. As the shared storage
cannot be efficiently implemented across wide-area-network
(WAN), conventional virtual machine migration is primarily
used within local-area network (LAN) environment.

The widespread construction of datacenters around the
globe has provided a new opportunity for further improving
resource utilization and fault tolerance in cloud computing
through VM migration. For instance, different geographic

regions have different times for peak workloads. We can thus
improve resource utilization through load balancing across
datacenters in different geographic regions. And, for the
purpose of fault tolerance, the ability of VM migration across
geographic regions can improve resilience against
geographic region related failures. For instance, if a region is
expecting a hurricane, we can migrate the VMs away from
the region to a datacenter that is not on the path of the
hurricane.

However, it is not feasible to apply existing VM
migration mechanisms in a wide-area network environment.
A shared storage across WAN would be rather inefficient
due to the limited bandwidth and the long transmission
latency of WAN. Without a shared storage, VM migration in
the WAN environment will have to copy the VM storage
image over to the destination sever in addition to copying the
CPU and the memory states of the VM. A challenge is that in
most cases, the size of a VM storage image is too large to be
efficiently transmitted across the WAN. For instance, A
small instance of Amazon EC2 VM is equipped with a
160GB storage image[1]. It will take considerable amount of
time to migrate just one single VM across the WAN, and the
approach is certainly not scalable for migrating a large
number of VMs around the same time.

In this work, we propose a novel approach for VM
migration in WAN environment. The approach is based on
the insight that a large-scale datacenter is a de facto
warehouse of data. It is likely that some of data in a VM
storage to be migrated may be present in the destination
datacenter. There are many reasons to this phenomenon
beyond pure coincidence. For example, most VMs use stock
system software such as standard Linux distributions or
Windows. The application software running on the VMs also
possess typical compositions. Some may be running a
database server, some may be running a web server, and etc.
Aside from the software, the application data are likely to
have similarity as well. For instance, some of the data may
be collected from a common source, or an earlier version of
the VM might have had been migrated to the datacenter.
Based on the insight, the proposed approach employs an
indexing mechanism to identify data similarity in the VM
storage images kept on a storage server. During migration,
the portions of VM storage data that are found in the index
will be pulled locally from the neighboring VM instead of
being pulled from the source VM across WAN. The
approach reduces a significant amount of network data
transmission and makes it feasible to migrate a VM across
WAN. A prototype system is built on a Linux host based on

2013 7th International Conference on Software Security and Reliability

978-0-7695-5021-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SERE.2013.21

149

2013 7th International Conference on Software Security and Reliability

978-0-7695-5021-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SERE.2013.21

149

Xen hypervisor[2]. The prototype uses an iSCSI-based[3]
storage server.

The rest of the work is organized as follows. Section II
gives a brief introduction of conventional virtual machine
migration and a survey of related work. Section IV describes
the proposed approach for VM migration in WAN
environment. Section V describes the prototype
implementation. Section VI presents the experiment results.
Section VII concludes this work with discussion on potential
future work.

II. BACKGROUND
The concept of migration can be traced back to cluster

computing systems, where processes on a busy server can be
moved to a less busy server for load balancing [4]. However,
migrating a process between servers is complicated by the
inter-dependencies between the process and the underlying
OS kernel states. In general, the migration is non-transparent
to the upper layer application, and, as a result, process
migration only finds limited use in real-world systems.

Platform virtualization (i.e. the use of virtual machines)
enables the migration of a full system stack encapsulated in a
virtual machine (VM) between host machines. This is
commonly referred to as a virtual machine migration[5].
Conventional VM migration is designed to operate in LAN
environment, where a shared disk storage is assumed to be
attached to both host machines involved in a migration.
There is no need to migrate the storage data, so a VM
migration typically begins with copying the CPU and the
memory states of a VM running on a source host machine to
a new VM on a destination host machine. At a suitable time
point, the source VM will be suspended, and the new VM
will take over the execution and start running. The time point
for the execution transfer differentiates two approaches to
VM migration: pre-copy vs. post-copy.

Under the pre-copy approach, the execution transfer is
initiated after a large portion of the VM states have been
copied to the destination host machine. The original VM will
keep running on the source host machine during the copying
of VM states, so some of the states that had been copied can
become dirty (updated by the running VM) and will have to
be copied again. If the generation of dirty states is too
frequent, there will be a lot of re-copying. When this occurs,
the original VM will be suspended to prevent the generation
of dirty states. The migration process will then complete the
transfer of VM states, and start the new VM. The time period
during which neither VM is running is referred as the
migration downtime.

Under the post-copy approach, the transfer of execution
takes place right after the CPU states (and a minimum
amount of memory states) are transferred to the destination
host machine. The new VM on the host machine will begin
execution with incomplete memory states. The memory
states will be copied on demand from the original VM,
which had been suspended at the moment of the execution
transfer.

Both approaches have their pros and cons. post-copy
tends to have a shorter migration downtime than pre-copy as
the downtime corresponds to the copy of the CPU and a
minimum amount of the memory states of the original MV.

On the other hand, pre-copy has the advantage that the
migration process can be cancelled and rolled back at any
moment before the transfer of execution. Cancellation of
migration process is much more difficult with post-copy, as
neither the original VM nor the new VM is guaranteed to
have consistent states at time of a cancellation. Under post-
copy approach, the new VM may run slowly until the full
states have been completely copied from the source. Most
hypervisors adopt pre-copy as their default mechanism for
VM migration [5-7].

Storage migration moves the storage image of a VM
from the source storage server to the destination storage
server. It also consists of two stages similar to conventional
VM migration with a shared storage, which are the copying
of storage states and the switch of active storage target (i.e.
the transfer of execution). Similarly, depending on the time
point of the switch of storage target with respect to the
copying of storage states, there is also a distinction of pre-
copy vs. post-copy storage migration mechanisms.

The discussion on VM migration above is centered on
moving a VM from one host machine to another host
machine. Conventional VM migration assumes a shared
storage is attached to both host machines and moves only the
CPU and memory states of a VM. Moving the storage states
of a VM across wide-area-network is very time consuming
and not used in practice. Another issue we have not
addressed is that when migrating a production VM, the VM
may have active network connections. In order to keep the
connections from being disrupted by the migration, the
network routes used by the VM will have to dynamically
reprogrammed. Solutions such as mobile IP [8] and network
virtualization techniques [9] can be used to deal with this.

III. RELATED WORK
Conventional VM migration involves the transfer of VM

CPU and memory states. Techniques such as compression
[10] and de-duplication [11] have been used to exploit data
similarity in the memory states of a VM to reduce network
data transmission and migration time. There has also the
attempt [12] that prioritizes the transfer of cold memory
pages to further reduce the migration downtime.

For VM storage migration, the barrier imposed by
storage area network was addressed in the system [13] by K.
Haselhorst et al., where DRBD [14] was used to synchronize
the destination storage with the source storage. The xNBD
system [15] by T. Hirofuchi et al. supports post-copy storage
migration by extending the Linux network block device
(NBD). VMware also supports storage migration with their
vMotion [16] technology. While the above storage migration
systems can be used in WAN environment, the high amount
of network data transmission as required for migrating the
storage data is still not addressed. The system [17] by
Akoush et al. delays the transmission of hot sectors and
achieved a considerable bandwidth reduction. The system
[18] by Travostino et al. involves the use of fiber-optic
network to speed up the transmission of VM storage and
memory states. The CloudNet [19] applies de-duplication
and compression on single VM’s storage image (and
memory) to reduce the amount of data transmission during
WAN migration.

150150

Our work is distinct from existing VM storage migration
systems in that we are the first to exploit data redundancy
across multiple VM storage images. The proposed approach
is complementary to existing techniques that are centered on
the de-duplication, compression, and adaptive transmission
of data within a single VM storage image.

IV. EXPLOITING NEIGOBORHOOD SIMILARITY FOR
VIRTUAL MACHINE MIGRATION OVER WIDE-AREA

NETWORK
We propose a system to support efficient VM migration

in WAN environment. A high-level overview of the system
architecture is shown in Fig. 1. Our system transfers the CPU
and memory states of a VM directly to the destination host
machine. We adopt the pre-copy approach, so the VM will
kept running on the source host machine till a significant
amount of memory pages have been copied over to the
destination. The running VM may modify some of the
memory pages that had been copied in a previous round.
These pages will be marked as dirty and will need to be
copied again. If the dirty page generation rate is too high, the
VM will have to be paused to prevent the generation of dirty
pages. Remaining dirty memory pages will be copied to the
destination host machine in a last round. Finally, the VM will
resume execution on the destination host machine.

Migrating a VM over WAN requires not only moving the
memory states of the VM but also moving its disk storage
states. The size of a VM storage image is typically in the
range of a few hundred gigabytes, which makes migrating
the storage over wide-area network a very expensive process.
However, we noticed that in a large-scale datacenter, it is
very likely to find VMs with software setup similar to the
VM being migrated. For instance, VMs running web-based
services typically employ one of the popular web stacks (e.g.
J2EE, .NET, or LAMP), and most VMs will use well-
established server operating systems (e.g. Linux, BSD,
Windows, Solaris, etc.). Besides, data kept on the VMs may
also possess some degree of similarity. For instance, the data
may originally come from the same sources (e.g. music files
from the same albums). It is also possible that an old version
of the VM being migrated pre-exists in the destination
datacenter, possibly due to a previous migration. If we can
identify the common data among neighboring VMs in a
datacenter and use the data to help reconstruct the storage of
the VM being migrated, we may significantly reduce the
amount of data transmission across the bandwidth-limited
wide-area network and make it feasible to use VM migration
in WAN environment.

Fig. 1. Overview of migration over WAN

We built an index mechanism to index the data in the
VM storage images (Sec. IV.A). The migration process will
leverage the index to identify neighboring VMs at the
destination datacenter from which common data are available.

We support the pre-copy approach of VM migration by
adding the bitmap mechanism on the storage server for
tracking dirty blocks (Sec. IV.C). For the switch of active
storage targets, as part of the VM execution transfer, we use
an indirection layer implemented by the combination of a
virtual block device and the block device remapping
mechanism (Sec. V.B).

A. Indexing Virtual Machine Disk Storage States
Disk storage sizes are relatively large compared to

memory sizes. It is quite typical for a VM storage to have at
least a few hundred gigabytes of data on it. A straightforward
approach for VM storage migration is to transfer all the
storage blocks over to the destination. The approach would
probably work well on the LAN but will definitely not work
on the WAN. On the bandwidth-limited WAN, the migration
will take a very long time to finish, and the huge amount of
data transmission will likely incur some hefty network usage
fees.

 To improve the efficiency of VM storage migration, we
exploit data similarities among VM disk storages by building
an index of the storage blocks of neighboring VMs. The
index is a hash table that stores the hash values (fingerprints)
of storage blocks. Each entry in the index points to a block
index. A block index records the fingerprint (fp) and the
signature (sig) of the corresponding storage block. The
signature is a small piece of data sampled from the storage
block. In our implementation, a storage block has a size of
512 bytes, and the signature is a sample of the 9th through the
16th bytes of the storage block. The signature is used for
resolving hash value (fingerprint) collisions. A block
reference (br) that can be used to locate the corresponding
storage block on the storage server is also kept in the block
index. Through the index and the block indexes, we can
quickly check if the storage blocks of the VM being migrated
exist in neighboring VMs at the destination. We can then
transfer the storage blocks from neighboring VMs instead
from the source across the WAN.

Fig. 2 gives an example of the index for a disk storage of
five blocks. When we index a disk storage, we first allocate a
block reference array with length equal to the number of
blocks in the disk storage. The block reference array stores
the link to the block reference for each of the storage blocks.
Storage blocks with identical data content will be linked to
the same block reference. In Fig. 2, we can see that block 1,
2, and 5 have identical data, as they are all linked to the same
block reference.

Given the hash value (fingerprint) of a storage block, we
can check the index at the destination. If a block index is
matched, we can follow the block reference to retrieve the
block data from a neighboring VM at the destination and
avoid the costly transmission of the block data across the
WAN.

VM Host

Storage Server

VM Host

Storage Server

VM Host

Storage Server

Data center A Data center B

Storage Server

M
em

ory

Storage

W
AN

151151

Fig. 2. Example of index data structures

Table 1. Source storage server migration process flow
1 // Block interval (I, N) := the blocks start from the Ith block and end at the (I+N-1)th
block
 2 // Bit interval (I, N) := the bits start from the Ith bit and end at the (I+N-1)th bit
 3 // D := the block device that is to be migrated
 4 // D[I] := the Ith block of D
 5 // D.block_nr := the number of blocks of D
 6 // D.bitmap := the bitmap of D
 7 // D.bitmap[I] := the Ith bit of the bitmap of D
 8 // D.br := the block references of D
 9 // D.br[I] := the block reference of the Ith block of D
10 // D.br[I].index := the block index of the block reference D.br[I]
11 // BI := block index
12 // BI.fingerprint := the fingerprint of the block index
13 // BI.signature := the signature of the block index
14 // ZBI := the block index of zero block
15
16 // Clear bitmap of block device D
17 For (I = 0; I < D.block_nr; I++) {
18 D.bitmap[I] = 0
19 }
20 PHASE1:
21 For (I = 0; I < D.block_nr; I++) {
22 If (D.br[I] != NULL) {
23 If (D.br[I].index != ZBI) {
24 FP = D.br[I].index.fingerprint
25 SIG = D.br[I].index.signature
26 Send INDEX_TYPE = BLOCK to destination storage server
27 Send index information (I, FP, SIG) to destination storage server
28 } Else {
29 N = 0
30 Do {

31 I++
32 N++
33 } While (D.br[I].index == ZBI)
34 Send INDEX_TYPE = ZERO to destination storage server
35 Send block interval (I, N) to destination storage server
36 }
37 }
38 }
39 // End of PHASE1
40 Send INDEX_TYPE = ZERO to destination storage server
41 Send block interval (0, 0) to destination storage server
42 PHASE2:
43 For each received block interval (I, N) from destination storage server {
44 If (N != 0) {
45 For (J = I; J < I+N; J++) {
46 D.bitmap[J] = 1
47 }
48 } Else {
49 Break // block interval with length zero means the request is over
50 }
51 }
52 PHASE3:
53 I = 0
54 While (number of dirty blocks on D > dirty threshold and I < iterate threshold) {
55 For each dirty bit interval (I, N) in D.bitmap {
56 For (J = I; J < I+N; J++) {
57 Send OPCODE = TRANSFER_DATA to destination storage server
58 Send (I, D[I]) to destination storage server
59 D.bitmap[J] = 0
60 }
61 }
62 I++
63 }
64 Send pause VM message to VM host machine
65 Send switch target message to VM host machine
66 PHASE4:
67 For each dirty bit interval (I, N) in D.bitmap {
68 For (J = I; J < I+N; J++) {
69 Send OPCODE = TRANSFER_DATA to destination storage server
70 Send block information (I, D[I]) to destination storage server
71 }
72 }
73 Send OPCODE = COMPLETE to destination storage server
74 Send resume VM message to VM host machine

Table 2. Destination storage server migration process flow

1 // Block interval (I, N) := the blocks start from the Ith block and end at the (I+N-1)th
block
 2 // Bit interval (I, N) := the bits start from the Ith bit and end at the (I+N-1)th bit
 3 // D' := the new block device that would be synchronized with the migrated block
device
 4 // D'[I] := the Ith block of D'
 5 // D'.block_nr := the number of blocks of D'
 6 // D'.bitmap := the bitmap of D'
 7 // D'.bitmap[I] := the Ith bit of the bitmap of D'
 8
 9 Create new block device D’
10 For (I = 0; I < D'.block_nr; I++) {
11 D'[I] = 0; D’.bitmap[I] = 0;
12 }
13 PHASE1:
14 Do {
15 Receive INDEX_TYPE from source storage server
16 Switch (INDEX_TYPE) {
17 Case BLOCK:
18 Receive index information (I, FP, SIG) from source storage server
19 Find block index BI by FP on local index
20 If (BI != NULL) {
21 Retrieve block data BD through the block reference of BI
22 If (SIG match the signature part of BD) {
23 D'[I] = BD
24 }
25 }
26 Break
27 Case ZERO:
28 Receive block interval (I, N) from source storage server
29 If (N == 0) { // block interval with length zero means the index transfer is
over
30 COMPLETE = True
31 }
32 For (J = I; J < I+N; J++) {
33 D'.bitmap[J] = 1
34 }

1 2 3 4 5

Index

1fed4b5b

14e1d758

14e1d760

Block index

fp: 1fed4b5b

sig: 00000000

br

Block index

fp: 14e1d758

sig: 12345678

br

Block index

fp: 14e1d760

sig: ABCDEF90

br

Block reference

dev_nr: 0

block_nr: 2

bi

NULL

Block reference

dev_nr: 0

block_nr: 1

bi

NULL

Block reference

dev_nr: 0

block_nr: 4

bi

NULL

Block reference array of device 0

dev_nr: device number block_nr: block reference
bi: block index fp: fingerprint
sig: signature br: block reference

152152

35 Break
36 }
37 } While (COMPLETE == False)
38 PHASE2:
39 For each clean bit interval (I, N) in D'.bitmap {
40 Send block data request of block interval (I, N) to source storage server
41 }
42 // End of PHASE2
43 Send block data request of block interval (0, 0) to source storage server
44 PHASE3 and PHASE4:
45 Receive OPCODE from source storage server
46 While (OPCODE != COMPLETE) {
47 Receive block information (I, BD) from source storage server
48 D’[I] = BD
49 Receive OPCODE from source storage server
50 }

B. Virtual Machine Storage Migration over WAN
The migration system leverages the indexing mechanism

to exploit neighborhood similarity to reduce the amount of
network data transmission in VM storage migration. Table 1
and Table 2 present the pseudo-code of the storage migration
process involved by the source storage server and the
destination storage server respectively. We adopt the pre-
copy approach in the storage migration process and employ a
bitmap mechanism at the source storage server to track the
dirty blocks. Prior to a migration, the bitmaps will be reset
with zeros (line 17~19 in Table 1 and line 10~12 in Table 2).
On the destination storage server, an empty storage image of
the same size as the source storage image will be created and
initialized with zeros (line 9~12 in Table 2).

The core migration process consists of four phases. In
PHASE1, the source storage server transmits the index
information (the fingerprints and signatures) of the storage
blocks to be migrated to the destination storage server (line
22~38 in Table 1). The destination storage server receives
the index information and will search in its index to look for
a storage block matching the index information (line 17~26
in Table 2). The migration process will skip those disk
blocks whose contents are all zeroes (i.e. the zero blocks) in
the index transfer phase (line 28~36 in Table 1 and line
27~35 in Table 2). The bitmap at the destination storage
server will be used to track which blocks have been located
through the index. If a bit in the bitmap on the destination
storage server has the value 0, it means that the
corresponding block cannot be found in the index. In this
case, the block data will have to be transferred directly from
the source storage server in PHASE2.

In PHASE2, the destination storage server will send
requests to the source storage server to retrieve the remaining
blocks (line 39~41 in Table 2). The remaining blocks are
those which could not be located through the index and
retrieved locally from a neighboring VM at the destination in
PHASE1. Based on the requests, the source storage server
will set the corresponding bits in the bitmap for the
remaining blocks to 1. The transmission of the blocks will be
carried out in PHASE3 (line 43~51 in Table 1) of the
migration process.

In PHASE3, the source storage server will transmit the
blocks requested by the destination storage server from
PHASE2. The source storage server will also transmit the
dirty blocks to the destination storage server (Not the VM is
still running, and transmitted storage blocks can get modified
and become dirty). The running VM may still keep
generating dirty blocks during the transmission, so the

migration process will repeat the transmission of dirty blocks
(line 53~63 in Table 1) until one of the following two
conditions is met: when the number of dirty blocks is below a
given threshold or when the number of the retransmission
iteration has reached an upper limit. With either condition
met, the storage migration process will move into PHASE4.

In PHASE4, we must first ensure that no more dirty
blocks will be generated by the running VM. So, in fact we
will have to suspend the VM and switch the storage target to
the destination storage for the VM (line 64~65 in Table 1).
After that, we will carry out the final round of dirty block
transmission. Finally, the VM storage image at the
destination storage server will have identical content as the
original VM storage image at the source storage server. The
virtual machine will then be resumed after the source storage
server send a RESMUE message to the VM host machine
(line 74 in Table 1). The whole storage migration process is
now complete.

C. Live Migration and VM State Consistency
As VM migration is a time consuming process, it is

desirable to allow the VM to keep running during the
migration process and also minimize the downtime during
the execution transfer. The migration model is often referred
to as live migration.

The proposed storage migration system supports live
migration and has to allow the running VM to keep writing
new data to the storage being migrated. Importantly, the
migration system will have to ensure that the destination
storage will be consistent with the source storage for the VM
at the time of its execution transfer. We use the bitmap to
track dirty blocks in the source storage to detect and correct
data inconsistencies. Each storage block has a corresponding
dirty bit, and when the bit is set to 1, it means that the block
has been modified since it being copied to the destination
storage server. The block has to be copied again to the
destination for consistency.

At the time of execution transfer, the storage of the VM
will have to be switched to the destination storage server. For
live migration, we are not allowed to un-mount an active
storage from the VM and then re-mount it. As a result, we
created a virtual block device layer to hide the switch of
storage servers. More details about the implementation of the
virtual block device layer are given in Section V.B.

V. IMPLEMENTATION
The prototype system is implemented on x86_64 Fedora

Linux 16 and Xen hypervisor 4.1.2. The prototype can be
easily ported to other Linux virtualization platforms such as
KVM as well. The storage server exports storage targets via
the iSCSI protocol[3]. The VM host machine runs an iSCSI
initiator to connect to exported iSCSI targets.

Fig. 3 shows the architecture of the prototype system.
The components encircled by dotted lines are newly
developed components while the other components are
adapted from existing software packages. The iSCSI server
function is natively supported by Linux since kernel 3.1
through the LIO module [20]. We use Open-iSCSI [3] as the
iSCSI initiator for the VM host machines. We developed the
migration daemon that runs on the storage server. The

153153

migration daemon manages the storage server through the
LIO and ConfigFS [21]. At the beginning of a storage
migration, the migration daemon on the destination storage
server will create a new iSCSI target for the storage image to
be migrated. When a migration is completed, the migration
daemon on the source storage server will delete the iSCSI
target of the source storage image.

 The migration daemon includes the indexer sub-module
for indexing the VM storage images (Sec. IV.A). To
maintain the data consistency of a storage image, the
indexer’s access to the storage image is also carried through
the Open-iSCSI initiator, which connects locally to the
storage image.

Fig. 3. System Architecture

A. iSCSI target dirty block bitmap
During live migration of a VM, the VM may keep

writing to the storage. It is likely that a migrated storage
block gets overwritten again in the migration process. The
overwritten block is referred to as a dirty block, which
should be retransmitted to the destination. We use a bitmap
to track the dirty blocks in a storage image being migrated.
The bitmap is implemented in the LIO kernel module.

Fig. 4 shows how LIO module handles SCSI read/write
commands. The SCSI commands are sent via iSCSI protocol
and are received by the iSCSI portal of the LIO module. The
iSCSI portal translates the SCSI commands to a se_task
structure and appends it to the command queue of the
corresponding block device. A worker thread will continue to
fetch tasks from the queue using the do_task function and
carry out the tasks. Of interest to the tracking of dirty blocks
are the write tasks. A write task will be carried out through
the do_writev() function, where we have made modifications
to set the corresponding dirty bits in the bitmap for each
storage block that get overwritten by the running VM during
the migration. Since the migration daemon runs in user space,
we export a handle to the bitmap (/proc/target) at the user
space using the proc filesystem [22, 23]. The migration
daemon can then access the content of the bitmap through
memory mapping [24] and also manipulate the bitmap (e.g.
clearing the bitmap, setting or resetting bits in the bitmap)
through ioctl [25, 26] on the bitmap handle.

B. Switching iSCSI targets for Live Migration
As part of the execution transfer, we need to detach the

VM from the source storage server and attach it to the
destination storage sever. With live migration, the VM will
keep running throughout the migration process, and the
switching of storage servers (i.e. the iSCSI targets) will have
to be hidden from the VM. We implement a virtual block
device to isolate the VM from the SCSI block devices
exported by the iSCSI targets. The virtual block device is
implemented through the LVM2 device mapper [27, 28]. We
then use multipath [29] to connect both the source and
destination SCSI block devices to the virtual device as shown
in Fig. 5. The multipath module allows the switch from the
source SCSI block device to the destination SCSI block
device. During the switching, the multipath module will
queue up the pending accesses to the detached source block
device and apply them to the destination block device after
the destination block device is attached. From the perspective
of the running VM, its storage is always the virtual device
mapper block device.

Fig. 4. LIO module

Fig. 5. Switching iSCSI targets

VI. EXPERIMENT RESULTS
As the proposed WAN migration system relies on

exploiting similarity in the VM storage images, we first
conduct an experiment in Sec. VI.A to observe the similarity
in real-world VM storage images. A similarity level based on
the percentage of common storage blocks is defined for a
pair of VM storage images. The similarity level will be
affected by the indexing block size, so in Sec. VI.B, we
observe how different block sizes affect the similarity levels.
The CPU usage and memory usage of the system is
evaluated in Sec. VI.C. The effectiveness on the reduction of
network traffic and migration time reduction is evaluated in
Sec. VI.D. In Sec. VI.E, we evaluate the migration downtime
with three representative benchmark programs. The
hardware of the storage servers are standard x86 server
machines, each of which is equipped with two Intel Xeon
E5520 processors, 16GB RAM and 1TB hard disk.

Storage server

Linux kernel

iSCSI
migration
daemon

Open-iSCSI

LIO module

bitmapIndexer

VM Host

Virtual machines

Open-iSCSI

iSCSI
migration

control
program

Multipath device mapper

export

attachcontrol

control

communicate

control

I/O
VM Images

R/W

Data Center A

Storage
Server

VM Host VM Host

Storage
Server

Data Center B

W
AN

154154

A. Similarity analysis of VM storage images
If the VM storage images possess a high level of

similarity (i.e. having a lot of data in common), the indexing
mechanism should be very effective on reducing the amount
of network data transmission during WAN migration. In this
experiment, we first look at the real-world VM storage
images and observe the similarity levels between each pair of
the storage images. The composition of the storage images
include systems such as CentOS, Fedora and Ubuntu, which
are popularly used in real-world VM deployments. We
allocated a 32GB storage for each VM and installed the
standard LAMP stack [30] on each of the systems. The
partition layout follows the default settings of each
distribution. We also installed development tools and
libraries on the VMs. In addition, we also include the storage
images of two production systems Sense and Better in the
composition. Both Sense and Better have been in operation
for about three years. Sense is a web server running Apache
2.2 on CentOS 5.8. Better is an online judge system for
undergraduate programming courses running Fedora Core 14.
Overall, we have a total of 10 VM system storages. The
experiment looks at the pairwise similarity of the storage
images. For each pair, we first use the indexing mechanism
to build up the index with one of the images (the base image),
and then we will check the other image (the target image)
against the index and count the number of storage blocks in
the target image that can be located in the index (i.e. the base
image also possess the same storage blocks). The similarity
between a base image and a target image is then defined as
the percentage of (number of target image storage blocks that
can be located in the index) / (total number of storage blocks
in the target image) * 100 %. For this experiment, each
storage block has the size of 512 bytes.

Table 3. VM storage image similarity

Table 3 presents the result on the similarity experiment.

Assuming we were to migrate a target image from a source
storage server to a destination server, where its
corresponding base image is present, each similarity value in
the table would indicate the percentage of storage data that
would not need to be transmitted across the WAN from the
source server to the destination server. We noticed that VM
images based on CentOS have the lowest average similarity
values between each other when compared with VMs based
other distributions. This is because CentOS has a longer
release cycle and each new version of CentOS tends to have
more significant changes over the previous versions, while
other types of systems tend to have a relatively shorter
release cycles. For instance, we can see in the table that the
similarity values between different versions of Fedora
systems or different versions of Ubuntu systems are all above

15 percent. The similarity values between a Fedora base
image and an Ubuntu target image are all above 10 percent.

B. Indexing block size and storage image similarity
The indexing mechanism views each storage as a

collection of storage blocks and creates an index of the
storage blocks (Sec. IV.A). The size of a storage block, as
used by the indexing mechanism, is a configurable parameter,
which would affect the index size and the effectiveness of
the indexing mechanism on locating common storage blocks.
A small storage block size will result in creating a huge
number of block indexes. On the other hand, a big storage
block size will make it harder to locate blocks with identical
data contents.

In this experiment, we vary the block size from 512 bytes
to 16384 bytes. For each chosen block size, we calculate the
storage image similarity between the Ubuntu 11.04 system
(used as the base image) and the Ubuntu 11.10 system (used
as the target image). The result is plotted in Fig. 6.

From Fig. 6, we can see that the storage image similarity
does decrease as the block size increases. A large block size
makes it more difficult for two blocks to have identical data
and will cause the storage image similarity to drop. We
noticed that there is a significant drop between block size
4096 bytes and block size 8192 bytes. This is because the
native block size used by the file systems on the storage
images is 4096 bytes. When the indexing block size goes
beyond 4096 bytes, the indexing block will start to cover
data that may not be logically grouped and will cause the
similarity to drop.

C. Indexing overhead

It takes time for the indexing mechanism to build the
index for a storage, and it also takes memory space to keep
the index. In this experiment, we index the 8 system storage
images from Sec. VI.A consecutively without clearing up the
index (i.e. at the end of the indexing process, the index will
include the block indices of all the storage images). We
measure the time and the memory consumed when indexing
each of the 8 system images.

Fig. 7 shows the time for building the index for each of
the storage images. Fig. 8 shows the memory size of the
index as each of the 8 system images is added to the index.
The average time for indexing a storage is about 140 seconds.
The memory usage grows linearly with respect to the
addition of storage images to the index. This is expected as

Base\Target CentOS
5.8

CentOS
6.3

Fedora
15

Fedora
16

Fedora
17

Ubuntu
11.04

Ubuntu
11.10

Ubuntu
12.04 Sense Better Average

CentOS5.8 n/a 5.36% 3.61% 3.40% 3.10% 3.85% 4.12% 3.96% 9.51% 0.39% 4.14%
CentOS6.3 7.26% n/a 11.57% 8.58% 7.24% 7.18% 7.42% 7.35% 1.90% 1.21% 6.63%
Fedora15 6.68% 15.70% n/a 34.34% 20.63% 13.25% 14.01% 11.39% 1.71% 2.04% 13.31%
Fedora16 6.25% 12.00% 35.33% n/a 28.25% 11.23% 14.05% 14.95% 1.60% 1.65% 13.92%
Fedora17 5.79% 10.89% 24.27% 33.72% n/a 9.08% 11.75% 15.27% 1.46% 1.38% 12.62%

Ubuntu11.04 2.65% 4.53% 6.79% 5.64% 4.35% n/a 63.39% 21.09% 0.73% 1.13% 12.26%
Ubuntu11.10 2.09% 3.28% 4.97% 4.83% 3.91% 40.23% n/a 23.04% 0.62% 1.02% 9.33%
Ubuntu12.04 1.79% 3.05% 3.90% 4.86% 5.35% 15.72% 22.70% n/a 0.54% 0.80% 6.52%

Sense 41.75% 6.26% 4.66% 4.40% 3.71% 3.95% 4.26% 3.86% n/a 1.22% 8.23%
Better 5.79% 14.20% 24.16% 19.08% 13.43% 13.65% 15.97% 11.33% 2.15% n/a 13.31%

Fig. 6. Storage image similarity for different block sizes

155155

the similarity between any two system storage images are on
average 10%~20% according to Table 3, so an average
80~90% of new data will have to be added to the index for
each system image. In practice, if the size of the index is a
concern, one can limit the size of the index at the expense of
sacrificing similarity and a potentially longer migration time.

Fig. 7. Indexing time for VM storage images

Fig. 8. Index size with respect to the addition of storage images

Fig. 9. Migration time with and without index

Fig. 10. Amount of data sent by the source storage server

D. Migration time and amount of data transmission
In this experiment, we look at the migration time and the

amount of data transmission. The results are compared
against a baseline system, which transmits all the storage
blocks directly from the source server to the destination
server. We use the two production systems Sense and Better
for the experiment. We setup two iSCSI storage servers and
use a 100Mbps network to emulate the WAN. The index is
populated with two freshly installed systems, which run the
same operating systems as Sense and Better. The freshly
installed systems have neither the application programs (i.e.
the web server and the online judge system) nor the
application data as Sense and Better. We migrate the two
system systems respectively over the emulated WAN and
measure the migration time and the amount of network data
transmission.

Fig. 9 shows the result on the migration time, and Fig. 10
shows the amount of data sent by the source storage server.
Our system reduces about 59% of the migration time for
Sense and about 82% of the migration time for Better. In
terms of network data sent by the source storage server, our
system reduces about 66% of data transmission for Sense
and about 86% of data transmission for Better. The
percentage of reduction is roughly the same for the migration
time and for the network data transmission. This indicates
that most of the migration time is due to data transmission
during migration.

Fig. 11. Migration time when migrating over WAN

We also conduct an experiment in real-world WAN
environment. We migrate Sense from the NCTU campus
network to a remote site, which is connected through
50Mbps ADSL to the Internet. The network route consisted
of 14 hops and had an end-to-end latency of 13.7ms. Fig. 11
shows the result of the experiment. Our system reduced
about 69% of the migration time and took only about half an
hour to complete the migration. From the experiment, we can
clearly see that our system is practical for supporting VM
migration in WAN environment.

E. Downtime evaluation
The WAN migration system employs the pre-copy

approach for VM migration and supports live migration.
However, the VM would still need to be paused briefly
during the transfer of execution. Remaining dirty memory
pages and dirty storage blocks will all have to be transferred

115
120
125
130
135
140
145
150
155

Ti
m

es
 (s

ec
)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

M
em

or
y

us
ag

e
(M

B)

0.79

7.13

0.32

1.26

0

1

2

3

4

5

6

7

8

Sense Better

To
ta

l m
ig

ra
tio

n
tim

e
(h

ou
rs

)

Without index
With index

0

50000

100000

150000

200000

250000

300000

350000

Sense Better

Am
ou

nt
 o

f d
at

a
se

nt
 b

y
so

ur
ce

st

or
ag

e
se

rv
er

 (M
Bs

)

Without index
With index

99.73

30.42

0

20

40

60

80

100

120

Sense (over WAN)

To
ta

l m
ig

ra
tio

n
tim

e
(m

in
ut

es
)

Without index
With index

156156

to the destination host machine and storage server. The
applications running on the VM will become temporarily
unavailable. The time period is referred to as the migration
downtime. This downtime can vary depending on the loading
of the VM (i.e. a heavily-loaded VM is likely to create more
dirty pages / blocks) and also depending on the bandwidth of
the network. In this experiment, we evaluate the downtime of
the WAN migration system by running I/O intensive
benchmarks including dbench [31] and kcbench [32] on the
VM to be migrated.

Fig. 12. Comparison of migration time and network transmission

with and without indexing mechanism

Fig. 12 shows the result from the experiment. The
average downtime for migrating an idle VM is about 539
milliseconds. It’s short enough for most services to operate
continuously without interruption. The downtime increases
when there is workload on the VM. For instance, the
downtime with dbench running on the VM is 2.627 seconds
and the downtime with kcbench running on the VM is 1.048
seconds. Overall, the average downtime is less than 3
seconds even under heavy I/O workload. This is good
enough for non-realtime applications to be migrated without
much impact on the user experience. Overall, our system
performs well with respect to the downtime evaluation.

VII. CONCLUSION AND FUTURE WORK
Conventional virtual machine migration is limited to

LAN environment, because both the sharing and the
migration of VM storage across wide-area network (WAN)
are expensive due to the amount of data in the VM storage
and the limited bandwidth of WAN. On the other hand, the
adoption of cloud computing has caused active construction
of datacenters around the globe. Being able to carry out VM
migration across datacenter boundaries and across WAN
environment would open up new possibilities for more
powerful resource utilization and fault tolerance in cloud
computing.

We propose a system to facilitate VM storage migration
in WAN environment, thereby enabling VM migration
across datacenter boundaries. The key technique is to exploit
data similarity in the storage images of neighboring VMs on
a storage server. The system builds an index of the VM
storage images on each storage server and uses the index to
assist the reconstruction of the storage image of the VM to be
migrated. The technique reduces the amount of data
transmission involved in VM migration significantly and
brings the overall WAN migration time down to an level that

is acceptable for practical use. The system adopts the pre-
copy approach and supports live migration.

The evaluation of the prototype system confirms that
neighboring VMs do present considerable amount of
duplicate data. Through the proposed system, the migration
time of a production VM across real-world WAN
environment was shown to be reduced by 70%. With respect
to live migration, the system was able to keep the downtime
below 3 secs for all the benchmarks used in the evaluation.

The evaluation also identified some deficiencies of the
prototype system. One deficiency is the memory usage by
the indexing mechanism is still a little bit too high. The
indexing mechanism maintains an index data entry for each
512 bytes storage block. While we can reduce the number of
index data entries by using a large block size, it will cause
the similarity of storage blocks to drop (Sec. VI.B). For
future work, we can leverage upper-layer filesystem
information to address the issue. The other deficiency of the
current prototype is that the downtime may not be short
enough for live migration of real-time applications. For
future work, we are considering to integrate post-copy
mechanism [15] to reduce the downtime.

ACKNOWLEDGMENT
The work was supported in part by Taiwan Information

Security Center and National Science Council under grant
101-2221-E-009-076.

REFERENCES

[1] Amazon.com. Amazon EC2 Instance Types. Available:
http://aws.amazon.com/ec2/instance-types/

[2] Xen.org. Xen Hypervisor. Available: http://www.xen.org/
[3] Open-iSCSI project: Open-iSCSI – RFC3720 architecture and

implementation. Available: http://www.open-iscsi.org/
[4] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and

S. Zhou, "Process migration," ACM Computing Survey, vol.
32, pp. 241-299, 2000/09// 2000.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
et al., "Live migration of virtual machines," 2005, pp. 273-286.

[6] Migration - KVM. Available: http://www.linux-
kvm.org/page/Migration

[7] VMware-VMotion-DS-EN.pdf. Available:
http://www.vmware.com/files/pdf/VMware-VMotion-DS-
EN.pdf

[8] Q. Li, J. Huai, J. Li, T. Wo, and M. Wen, "HyperMIP:
Hypervisor Controlled Mobile IP for Virtual Machine Live
Migration across Networks," in 11th IEEE High Assurance
Systems Engineering Symposium, 2008. HASE 2008, 2008,
pp. 80-88.

[9] M. Tsugawa, P. Riteau, A. Matsunaga, and J. Fortes, "User-
level virtual networking mechanisms to support virtual
machine migration over multiple clouds," in 2010 IEEE
GLOBECOM Workshops (GC Wkshps), 2010, pp. 568-572.

[10] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, "Live virtual
machine migration with adaptive, memory compression,"
2009, pp. 1-10.

[11] X. Zhang, Z. Huo, J. Ma, and D. Meng, "Exploiting Data
Deduplication to Accelerate Live Virtual Machine Migration,"
in 2010 IEEE International Conference on Cluster Computing
(CLUSTER), 2010, pp. 88-96.

[12] F. F. Moghaddam and M. Cheriet, "Decreasing live virtual
machine migration down-time using a memory page selection

0.539

2.627

1.048

0

0.5

1

1.5

2

2.5

3

Idle dbench kcbench

Av
er

ag
e

do
w

nt
im

e
(s

ec
)

157157

based on memory change," in International Conference on
Networking, Sensing and Control, 2010, pp. 355-359.

[13] K. Haselhorst, M. Schmidt, R. Schwarzkopf, N. Fallenbeck,
and B. Freisleben, "Efficient Storage Synchronization for
Live Migration in Cloud Infrastructures," 2011, pp. 511-518.

[14] DRBD.Org. (2012/12/31). DRBD: Software Development for
High Availability Clusters. Available: http://www.drbd.org/

[15] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi,
"A Live Storage Migration Mechanism over WAN for
Relocatable Virtual Machine Services on Clouds," 2009, pp.
460-465.

[16] VMware-Storage-VMotion-DS-EN.pdf. Available:
http://www.vmware.com/files/pdf/VMware-Storage-
VMotion-DS-EN.pdf

[17] S. Akoush, R. Sohan, B. Roman, A. Rice, and A. Hopper,
"Activity Based Sector Synchronisation: Efficient Transfer of
Disk-State for WAN Live Migration," in 2011 IEEE 19th
International Symposium on Modeling, Analysis Simulation
of Computer and Telecommunication Systems (MASCOTS),
2011, pp. 22-31.

[18] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. d. Laat, J.
Mambretti, et al., "Seamless live migration of virtual
machines over the MAN/WAN," Future Gener. Comput. Syst.,
vol. 22, pp. 901-907, 2006.

[19] T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe,
"CloudNet: dynamic pooling of cloud resources by live WAN
migration of virtual machines," in ACM International
Conference on Virtual Execution Environments (VEE), 2011,
pp. 121-132.

[20] Linux Unified Target - Main Page. Available: http://linux-
iscsi.org/wiki/Main_Page

[21] Linux Kernel Documentation :: filesystems : configfs.
Available:
http://www.mjmwired.net/kernel/Documentation/filesystems/
configfs/

[22] proc(5): process info pseudo-file system - Linux man page.
Available: http://linux.die.net/man/5/proc

[23] procfs - Wikipedia, the free encyclopedia. Available:
http://en.wikipedia.org/wiki/Procfs

[24] mmap(2) - Linux manual page. Available:
http://www.kernel.org/doc/man-
pages/online/pages/man2/mmap.2.html

[25] ioctl - Wikipedia, the free encyclopedia. Available:
http://en.wikipedia.org/wiki/Ioctl

[26] ioctl(2) - Linux manual page. Available:
http://www.kernel.org/doc/man-
pages/online/pages/man2/ioctl.2.html

[27] Device-mapper Resource Page. Available:
http://sources.redhat.com/dm/

[28] LVM2 Resource Page. Available: http://sourceware.org/lvm2/
[29] multipath-tools:Home. Available:

http://christophe.varoqui.free.fr/
[30] LAMP (software bundle) - Wikipedia, the free encyclopedia.

Available:
http://en.wikipedia.org/wiki/LAMP_(software_bundle)

[31] DBENCH. Available: http://dbench.samba.org/
[32] kcbench(1): Kernel compile benchmark - Linux man page.

Available: http://linux.die.net/man/1/kcbench

158158

