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This article deals with the minimal parameters of a manipulator in the least squares 
sense, so that the minimal parameters are equivalent to the identifiable parameters. 
The least squares concept is used to introduce terminology for the minimal linear 
combinations (MLCs) of the system parameters that define a set of linear combinations 
of the system parameters. The number of elements of the set is minimal, yet the set 
still completely determines the system. Furthermore, it is shown that the problem of 
finding a set of MLCs of a manipulator can be simplified to that of finding two 
individual sets of MLCs that determine the entries of the inertia matrix and the gravity 
load. Although the approach is applied to the inertia constants of composite bodies 
to obtain a set of MLCs identical to an earlier one, the result is newly interpreted in 
the least squares sense. The approach itself is a new method for finding the identifiable 
parameters of a manipulator, and it yields some new insight into the manipulator 
dynamics. The crucial feature is that a set of MLCs found by using the present approach 
is guaranteed to be identifiable. The earlier approaches always require an identification 
method to verify the results. An equivalence theorem is also presented that rigorously 
states the equivalence between the different sets of minimal parameters. 0 1994 John 
W i l q  G. Sons, Znc. 
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1. INTRODUCTION 

System analysis involves investigating the dynamic 
behavior of a system to understand the system or to 
design regulators to control it. Two methodologies 
used in system analysis are mathematical modeling 
and system identification. However, the compound 
approach is always recommended for a deterministic 
system. An analytic approach can provide a dynamic 
model with wide-range validity and some physical 
insights, while parameter identification improves 
the accuracy of the model parameters. If the model 
of a nonlinear system such as a manipulator can be 
written in the form of linear equations with respect 
to the parameters, the parameter identification is 
then a least squares problem. The difficulty of this 
parameter identification is that not all parameters 
are identifiable, because some parameters determine 
the system not independently, but in combination. 
Essentially, the system is uniquely determined by a 
set of minimal parameters that are linear combina- 
tions of the modeling parameters and are linearly 
independent. These parameters are termed the mini- 
mal linear combinations (MLCs) of the system parame- 
ters in the context. Finding a set of MLCs will facili- 
tate solving the parameter identification problem. 

The dynamic model of a manipulator is now 
well-known. It is highly nonlinear and requires 
knowledge of the kinematic parameters (relations 
between two adjacent links) and the inertia parame- 
ters (mass, center of mass and inertia tensor of each 
link). The kinematic parameters are always provided 
by the manufacturer or can be precisely calibrated, 
whereas the inertia parameters of industrial robots 
are almost all unavailable from the manufacturer be- 
cause these values are not needed for commercial 
controllers. However, most modern precision con- 
trol schemes for manipulators incorporate the in- 
verse dynamics of the manipulator, which requires 
the values of the inertia parameters. To evaluate the 
inertia parameters of the manipulator dynamics, 
Armstrong et a1.l disassembled a PUMA 560 robot 
and used a mechanical method to measure the inertia 

parameters. This approach is tedious and does not 
yield precise results. Fortunately, Atkeson et a1.2 
have found that the actuator forces of a manipulator 
are linear functions of the inertia parameters, i.e., 
the dynamics of a manipulator can be expressed as 
linear equations with respect to the inertia parame- 
ters. Previous attempts to identify the inertia param- 
eters have tried to formulate the linear equations 
either e~pl ic i t ly~-~ or impli~i t ly .~,~- '~  As mentioned 
above, without knowledge of the MLCs of the inertia 
parameters, identifying the parameters is difficult. 
Khosla and Kanade7 intuitively regrouped the 
closed-form dynamic equations, and other research- 
e r ~ ~ - ~  developed regrouping rules to minimize the 
number of inertia parameters appearing in the linear 
equations. These approaches are not practical for a 
manipulator with six or more joints because the 
closed-form dynamic equations of a six-joint manip- 
ulator are too large and too complicated to analyze. 

The MLCs of the inertia parameters of manipula- 
tors have drawn the attention of many researchers. 
Some  researcher^^,'^-'^ have presented numerical ap- 
proaches such as the singular value decomposition 
method and the QR method. Gautier et a1.16-lS devel- 
oped a regrouping rule to symbolically form a set of 
MLCs. Mayeda et al.19-22 found an explicit set of 
MLCs of the inertia parameters. Although these two 
sets of results are substantially equivalent, the ex- 
plicit form is more attractive. 

It should be remarked that, instead of MLCs, 
minimum inertia parameters,'6-'8 base parame- 
t e r ~ , ' ~ - ~ ~  and the basis set of the essential parameter 
~ p a c e ' ~ , ' ~  have all been used in the literature. This 
article will show that the identifiable parameters of 
a linear deterministic system belong to a set of MLCs 
of the system parameters in the least squares sense. 
Of course, a set of MLCs is also the necessary (i.e., 
minimal) parameters required to determine the sys- 
tem dynamics. The name of MLCs illuminates the 
role of the system parameters in the dynamic model 
and in the problem of parameter identification. In 
this article, the problem of finding the MLCs for the 
full manipulator dynamics is divided into a search 
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for two individual sets of MLCs, one for determining 
the inertia matrix and the other for determining the 
gravity load. 

In an earlier article,23 we showed that some iner- 
tia constants of composite bodies form the minimal 
knowledge of the inertia parameters needed to deter- 
mine the manipulator dynamics. This article applies 
a new approach to the inertia constants of composite 
bodies and shows directly that the minimal knowl- 
edge of the inertia parameters in the earlier paper23 
is a set of MLCs. The advantage of the present ap- 
proach is that it is not necessary to verify the identi- 
fiability of MLCs by an identification method. The 
approach also appears to provide a systematic 
method for analyzing the identifiable parameters of 
other mechanical systems. At the end of the article, 
an equivalence theorem is presented that rigorously 
states the equivalence between the different sets of 
minimal linear combinations of parameters. This the- 
orem could also be a tool for exploring other possible 
sets of MLCs in the future. 

This article is organized as follows. Section 2 
introduces the concept of minimal linear combina- 
tions (MLCs) of the system parameters. Several theo- 
rems are established to simplify the problem of find- 
ing the MLCs for a manipulator. To make the idea 
easier to comprehend, all proofs are presented in 
the Appendix. In section 3, we review the inertia 
constants of composite bodies, which are used to 
construct a set of MLCs in section 4. The rigorous 
derivation of the set of MLCs in section 4 is the main 
effort of this article. The approach is systematic and 
comprehensible, although some of the proofs are 
tediously long. 

2. PRELIMINARIES 

Motivated by the fact that the dynamics of a manipu- 
lator can be formulated as linear equations with re- 
spect to the inertia parameters,2 we consider a dy- 
namic system to be identified that has the linear 
deterministic form of 

where y E R", 8 E R"' are observable signals, x E 
RP consists of the system parameters, p > n, and 
A( 8): R"' -+ R'"P. We are concerned with the identfi- 
ability of the system parameters. 

Definition 1. A set of columns a,( 8): R" -+ R" is said 
to be linearly dependent over Rln if tkere exist constants 

a,, i = 1, . . . , n, not all zero such tkat 

J I  

2 ala,(0) = 0, V 8E R"'. (2) 
i = l  

I f  a ,  are all zero, the set is said to be linearly independent 
over R"'. w 

Theorem 1. The number of linearly independent columns 
of A(0) over R'" is k 5 p if and only if there exist 
A( 0): R"' Rnx' whose columns are linearly independent 
over R"' and w(x): RP + Rk whose components are linear 
combinations of x and are linearly independent over RI', 
such that 

- 

A( 0)x = A( 8)w(x), V 8 E R"' and x E Rp. (3) 

w 
The proof of this theorem is presented in the 

Appendix. According to the least squares theory,24 
not all system parameters x are identifiable if the 
columns of A(8) are linearly dependent over R". 
However, the linear combinations w(x) in Theorem 
1 are identifiable because the matrix (xTx) in the 
normal equation of the least squares problem is non- 
singular for a persistently exciting trajectory. A( O)x 
fully determines y, as does A( 0)w(x). If not all values 
of x are available, the knowledge of w(x) is a neces- 
sary condition for determining y. In the sense of 
identification, we are interested in finding w(x) for 
the system in Eq. (1). Therefore, we introduce the 
following definition. 

Definition 2. A set w(x) is a set of minimal linear 
combinations of the system parameters for the system in 
E9. (1) if the elements of the set are linear combinations 
of x and linearly independent over tke domain of x and 
there exists A( 8)  whose columns are linearly independent 

Before turning to the dynamics of manipulators, 
we briefly review the literature. Ha et aL6 showed 
that the dynamic model of a manipulator can be 
formulated in a form like Eq. (3) by using some intu- 
itive regrouping rules. Theorem 1, however, gives 
a necessary condition for the number of linearly inde- 
pendent columns of A(B) and rigorously shows that 
w(x) in Eq. (3) is a set of minimal linear combinations 
of the system parameters for the system in Eq. (1). 
Because there are numerous methods for selecting 
A( 0) from A( 8) ,  the set of minimal linear combina- 
tions is not unique. 

We recognize that the dynamic equations of a 
manipulator with n joints are 

over the domain suck that €9. (3) kolds. w 

- 
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where q E R" consists of the joint displacements, x 
E RP consists of the inertia parameters, T E Rn con- 
sists of the actuator forces, H(q, x): R"+P + RfIxn is 
the symmetric inertia matrix, Tg(q, x): Ril+F' -+ R" 
consists of the gravitational forces, T E R" consists 
of the actuator forces, and &(q, q, x): R2"+p- R"'" 
consists of the Coriolis and centrifugal forces, which 
can also be related to the inertia matrix with Christof- 
fel symbols ( c ~ ~ ) ~ ~ ' ~ ~  

(5) 

(7) 

where T? is the ith element of T', qi is that of q, and 
h, is the ( i ,  j)th entry of H. 

Our present problem is to find a set of MLCs of 
the inertia parameters (simply MLCs in the following 
context) for determining T, provided that the geo- 
metrical parameters of the manipulator are known. 
The strategy is to separate Eq. (4) into two parts: 
7 8  and 

Once the MLCs for 7' and are obtained, we can 
exclude the linear dependent elements and then ob- 
tain a set of MLCs for T. This strategy is supported 
by the following two theorems. 

Theorem 2. A set is a set of MLCs for determining T if 
it is the set consisting of the linearly independent elements 
of [wJT(x), wgT(x)IT, where wJ and wg are two sets of 
MLCs for determining T I  and 78, respectively. Further- 
more, when wJ is partitioned as 

(9) 

where PI and P, are some constant matrices and the compo- 
nents of wl are linearly independent of one another and 
those of wg, then the components of d and wg form 
a set of MLCs for determining T. rn 

Theorem 3. A set is a set of MLCs for determining T' if 
and only if it is also a set of MLCs for determining the 

Theorem 3 follows from Christoffel symbols in 
Eqs. (5)-(7). The detailed proofs of these theorems 
can also be found in the Appendix. By Theorems 2 
and 3, the problem of finding the MLCs for T turns 
out to be a search for two individual sets of MLCs 
that determine the entries of the inertia matrix and 
the gravity load, respectively. 

entries of H(q, x). 

3. INERTIA CONSTANTS OF 
COMPOSITE BODIES 

This section revisits the inertia constants of compos- 
ite bodiesz3 and Renauds formulation for the inertia 
m a t r i ~ . ~ ~ , ' ~  The structure of the inertia constants in 
Renaud's formulation will reveal that these constants 
are consistent with the MLCs of the inertia param- 
eters. 

We consider a manipulator with n low-pair 
joints, which are labeled joint 1 to n outward from 
the base. Assign a body-fixed frame on each joint 
(Lee, frame E l  is fixed on joint i)  in accord with the 
normal driving-axis coordinate s y ~ t e m ~ ~ , ~ ~  (known 
also as modified Denavit-Hartenberg notation). The 
distance from the origin of E l  to that of E, is desig- 
nated asis, and that to the center of mass of link i 
as c,. 

In the normal driving-axis coordinate system 
(see Fig. l), the z-axis of a body-fixed frame is the 
driving axis of the corresponding link, i.e., the unit 
vector along joint i is uJ(') = [0, 0, 1IT, where super- 
script "( i)" denotes the representation of a vector 
with respect to frame E l .  The distance from the origin 
of frame EJ-*  to frame E ,  is 

where SOi = sin Oil  COi = cos O i l  and bi, d i ,  and Oi are 
the geometrical parameters of the coordinate system. 
The coordinate transformation matrix from Ei-l to 
Ei is well known as 
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i" 

U 

Figure 1. Illustration of the normal driving-axis coordi- 
nate system. 

The composite body i is defined as the union of 
link i to link n. Let the mass of the composite body 
i and the first moment of the composite body about 
the origin of Ei be denoted by hi and ti, respectively, 
to obtain 

n 

where mi is the mass of link j. The inertia tensor 
of the composite body about the origin of frame Ei 
(denoted by J i )  results from using the Huygeno- 
Steiner formula30 to obtain 

where I? is the representation of the inertia tensor 
of link ,I with respect to frame E, and [ax] denotes 
a skew-symmetric matrix representing vector multi- 
plication, i.e., [axlb = a x b. In the context, the 
overhead symbol " A "  is used to denote the inertia 
parameters (mass, first moment and inertia tensor) 
of a composite body. 

I 

We introduce the notation of 

1, for rotational joint i, 
0, for translational joint i. (15) K? f (1 - Ki) sz 

Renaud's f o r m u l a t i ~ n ~ ~ - ~ ~ , ~ *  for the entries of the in- 
ertia matrix is 

+ K,,K~ hi(u!i))z, m 5 i. (16) 

where (.) i i  denotes the (i, j)th entry of a matrix, 
the x-component of a vector, and 

a(i) ( i )  x i ( i )  (17) r,m Um m s  

which is, physically, the part of the acceleration of 
the origin of frame E j  due to a unit angular accelera- 
tion of joint m(i.e., I j ' ,  = 1). We can also obtain the 
gravity term of the actuator force applied on joint i 
in the form of23 

where r f  is the ith element of d(q,  x) and g is the 
gravitational acceleration. 
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By the principle of mathematical induction, it 
has been s h o ~ n ~ ~ , ~ ~  that the first moment and the 
inertia tensor of the composite body i can be formed 
as the sum of a constant vector (ki or Ui) and a varying 
vector (ti or UJ, such as 

el') = ki + t i  
p = u. + vi 

(19) 

(20) 

where k, = m,cF), e,, = 0, U,, = IF) - m,[ck')x] 

If joint i + 1 is a rotational joint, then 

whereas for translational joint i + 1 

Note that '+!Rh in Eq. (23) is the third column of 
'+!R, i.e., 

which is a constant vector, and 

dj?:) = [ (i+ls(i+ : 1) ) ]  = [ i,] (29) 

We shall call hi, the components of ki, and the 
entries of Ui, i = 1, . . . , n, inertia constants of compos- 
ite bodies. The salient feature of these constants is 
that the varying terms in Cji) and i!') can be calculated 
with only some (not all) of the inertia constants of 
composite bodies. Namely, ti in Eq. (22) are calcu- 
lated with some Y?Z~ and the x- and y-compounds of 
kj, j > i, and the recursive form for computing Vi in 
Eqs. (24) and (26) requires only the (1, 2)th, (1, 3)th, 
(2, 3)th entries and the difference of the (1, 1)th and 
(2,Z)th entries of Ui+l and some components of ki+l. 
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This property is consistent with the minimal linear 
combinations of the inertia parameters. Indeed, 
some elements of k, and U, and mi constitute a set 
of MLCs for determining the actuator forces of a ma- 
nipulator. 

For instance, the gravity load 7 8  in Eq. (18) re- 
quires KTtji) and Kimi. Because ye(') can be expressed 
in terms of Kjmj and the x- and y-components of 
K;Ckj, j > i (see Eqs. (19) and (22)), we obtain the fol- 
lowing theorem. 

Theorem 4. Consider a manipulator with n low-pair 
joints in which joint r is the first rotational joint counting 
from the base and joint s is the nearest rotational 
joint not parallel to joint r .  A set of MLCs for determin- 
ing the gravity load 7 8  is the set 9 8  = 
{6,K(kJX, 6,K?(ki),, uiKimi, i = 1, . . . , n}  - (0). 

and IT, are either 1 or 0 to denote the 
redundancy of the parameters, which are defined as follows. 
ai = 0 for r 5 i < s and ur//g, otherwise 6 ,  = 1. On the 
other hand, ui = 0 for ui i g, Vq E R" (if r < i < s 
foy translational joint i, ui is always perpendicular to g 
only when ur//g or when u, I g and ui//ur; while this can 
happen for i > s only if ur//g, us I u, and u,//ui/bs for 
any rotational joint j ,  s I j < i), otherwise ui = 1. 

The proof of this theorem is similar to that for 
Theorem 2 in a previous and is thus omitted. 

According to Theorems 2 and 3, the rest of the 
MLCs for determining the actuator forces Tare those 
for determining h = [h,,, . . . , hln,  h22, . . . , h J ,  
which contains all upper triangular entries of the 
inertia matrix H(q, x) in Eq. (4) because the inertia 
matrix is symmetric. By Theorem 2, the problem can 
be temporarily formulated as the problem of finding 
- the components of v such that there is a matrix 
H(q) with linearly independent columns satisfying 

Note that 

h = R(q)v(q, x) + T(q)vg = Wq)v(q, x) + m w g  

(30) 
where T and T are some matrices, v is composed of 
mi, tji) and Ui, i = 1, . , . , n, other than those in 
v8, and 

V '  
8 , w*= 

in which ui is defined as in Theorem 4. Note that 
the components of wg belong to Yg in Theorem 4, 
and v8 = Wgwg, where W8 is a nonsingular upper 
triangular matrix with the diagonal entries of 1 
(which can be seen from Eqs. (19) and (22)). After v 
in Eq. (30) is found, the terms associated with E l i )  
can be rewritten in terms of the x- and y-components 
of kj and mj, j > i, i.e., the component of w8. The 
set of MLCs for determining h then has a form 
like Eq. (9). 

4. MINIMAL LINEAR COMBINATIONS OF THE 
INERTIA PARAMETERS 

To deduce the components of v in Eq. (30), we re- 
quire the following property, which directly follows 
from the definition. 

Property I. If all nonzero elements of a row in FT are 
linearly independent over R", the columns of n containing 
the nonzero elements of this row are linearly independent 
of one another and of the other columns H 

We treat hnli of Renauds formulation given in 
Eq. (16) separately for the different types of joint i. 
First, suppose joint i is a translational joint; it follows 
from Eq. (16) that 

over R". 

h j i=  [O. * . 0 1 0 .  . . O ] f  
t (32) 
m; 

h,, = [0 . . . 0 ( ~ ( n ) ) ~  0 . . . 012 for K,,, = 1, m < i 
t (33) 

mi 

hMi = [0 . . . 0 (a$$)z 0 . . . 0 - (u:))~ (u:))~ 0 . . . O]f ,  
t t  

(tp)x (t$+)y 
t 

mj 

for K: = 1, m < i (34) 

where f consists of the masses, the first moments, 
and the inertia tensors of the composite bodies. By 
Property 1, Eq. (32) shows that the column of E 
corresponding to K@zi is linearly independent of the 
other columns. This also reveals that the columns 
of n corresponding to the x- and y-components 
of Kit$')  must be linearly independent of that 
corresponding to Kimi regardless of whether 
(a(:&)z in Eq. (34) is independent of - (u(n)), and (u:)),. 
For translational joint i, s < i 5 n, there are at least 
two elements of h having the form of Eq. (34), e.g., 
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Because us is not parallel to ur, the x- and y-compo- 
nents of u$) vary independently with q S ,  so that the 
second and third columns in Eq. (35) are linearly 
- independent. This implies that the columns of 
H corresponding to Ki(i?ji)), and Ki(Cji))y for s < i 5 n 
are linearly independent of the other columns. For 
the case of r < i < s, ugj is constant and u,//u, for 
any rotational joint m, m < i, so that the combination 
of ( -  (uf)),,(tj')), + (~y))~( t j~) )~)  is constant and is a 
component of v in Eq. (30) if it is nonzero. It is zero 
when ui//ur. 

It follows from Eq. (33) that Ui and tji) for i < r 
are unnecessary for determining the inertia matrix. 
This result is summarized as follows. 

Property 2. v in E q .  (30) has the following components: 

1. Ki@, i = 1, . . . , n, 
2. ~ ~ ( t j j ) ) ~  and Ki(tj'))Y, s < i 5 n, and 
3. K,Rli for r < i < s and u,)((u,, where 

kIi = -(up) Y I  (tv))x + (u;))x(ej'j)Y (36) 

However, K~U, and  ti'), i < r,  are not components 
of v. w 

If joint i is a rotational joint, we obtain from Eq. 
(16) that 

h i ;=  [ O .  . . O  1 0 .  . .O]a 
t (37) 

( J 9 3 3  

h,,; = [0 . . . 0 (u:))~ -(u;')~ 0 . . . O]k, 
t t  

(tji)), (ey)Y 
for K,, = 1, m < i (38) 

hnli = [0 . , . 0 (a:$), -(a?)) 0 . . . 0 (u:))' 0 . . . 01% 
t tnl t 

J!" 
(tji))x (tji))y Third Column of 

for Ktz = 1, m < i (39) 
Note that Jj') = Ui + Vi. To obtain a general form 
for Vi, we suppose that joints i and j ,  i < j ,  are 
rotational joints, but the joints between them are all 
translational joints. It follows from Eq. (22) that 

Applying Eqs. (24), (26), and (40), we obtain 

where is*( ' )  is constant in the form of 

i - 1  

(43) 

For convenience of analysis, we relate frames Ei 
and Ej directly through a common normal of ui and 
ui, which is in accord with the normal driving-axis 
coordinate ~ y s t e m ~ ~ , ~ ~  (see Fig. 2). The x-axis of frame 
Ei will be in alignment with the common normal by 
a rotation of angle +q about ui (i.e., the z-axis of 
frame E;). Then, the rotation of /3: about the normal 
followed by the rotation of 0; about the z-axis of 
frame Ei transforms frame E ,  so that it is in alignment 
with frame E j .  In mathematical form, the coordinate 
transformation matrix from frame E ,  to E j  can be 
written as28,29 

Note that +ii and /3; are constants since joints i + 
1, . . . , j - 1 are translational joints, whereas e; is 
a variable because it is the sum of qi and some con- 
stant. It can be shown that 
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U 
Figure 2. Geometrical relation of any two joints. 

(45) 

This equation also reveals that ui//uj if and only if 

We are concerned with the third column of Vi. 
sp;= 0. 

Expanding Eq. (42) yields 

where Vl') = 4R V j  4RT, fk are some appropriate vec- 
tor functions and 
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It should be remarked that V!',) is a function of qi, 
q j t l ,  , . ., q,, and B(p;,O;) and IR in the second and 
third terms of Eq. (46) are functions of qj only, while 
D(p,*, 6;) in the last term is a constant matrix. The 
terms in Eq. (46) can be divided into three groups: 
(1) the first term, (2) the second and third terms, and 
(3) the last two terms. The columns of the coefficient 
matrices in any one group are linearly independent 
of those in the other groups because of the differ- 
ent variables. 

KkUk, k = 1, . . . n do not appear in Eq. (46), 
so they are not needed to compute KTV,, i = 1, . . . , 
n, and are then redundant for determining h. 

By Property 2, the columns of R corresponding 
to f i k  for translational joint k are linearly independent 
of the other columns, and the role of the terms associ- 
ated with f i k  for computing J!') in Eqs. (37) 
and (39) can be ignored, as can those with 
(tik)), and (tik))y, k > s. In Eq. (46), only the coefficient 
matrices in front of tik) (i.e., the last term) vary with 
dk ,  the displacements of the translational joints. In 
row rT of hii = rrv, as in Eq. (37), the component 
corresponding to ( I $ ~ ) ) ~  is then linearly independent 
of the components other than those corresponding 
to (tik))x, (tik$,, and f i k  if it is nonzero. It is zero when 
ui//uk (i.e., Sp,* = 0), because it is 2S2p,*dk according 
to Eqs. (46) and (48). For k > s, uk may be parallel 
to uj, i 2 s, but it is never parallel to u,. Because Eq. 
(42) is in a recursive form, there must be a nonzero 
term associated with (tik)), for computing k,,, which 
is also one of the terms varying with d, (the other 
terms are those associated with (tik$ and f i k ) .  
We then conclude that Kk(e(l;))z, k > s, is a component 
of v in Eq. (30). 

For the case of i < k < s, kmi in Eq. (39) requires 
only the (3, 3)th entry of fj')because (u:) = [0, 0, 
+1IT. Combining Eqs. (37), (39), (46), and (48) yields 

where p is some appropriate vector that is not a 
function of tik) and dk ,  and 

which follows from Eq. (45) and ug) = ulk) for r 5 
m < k < s. If uj/,bk, then Sp,* is zero, as is R2k.  It 
should be remarked that R l k  in (36) is also zero when 
Sp,* = 0. This entails that Kktik),  r < k < s, is redun- 
dant for computing h if u,//uk. Applying Property 1 
to Eq. (49), we may state the following property. 

Property 3. v in Eq. (30) has the following components: 

1. Ki(tli))Z, s < i I n, and 
2. KiRZi (see E9. (50)) for r < i < s and u, x u i .  

However, Kit!') for r < i < s and u, x u i  are not compo- 
nents of v, nor are KiUi, i = 1, . . . , n. 

Let us return again to Eqs. (37)-(39). It is now 
apparent that K;fijandK;(i.i')),, j = 1, . . . , n, are 
redundant for computing h. 

We still assume that joints i and j are rotational 
joints and joints k ,  i < k < j, are translational joints. 
Because the components of Vi are all functions of 
qi+l or q j ,  Eq. (37) indicates that the column of R in 
Eq. (30) corresponding to K3.J i )33 ,  i = 1, . . . , n, 
is linearly independent of the other columns. On the 
other hand, the rotational joints in front of joint s 
are parallel to one another, so SPY in Eq. (44) for 
j < 6 is zero and Eq. (47) is reduced to 

0 0  0 0 

0 0 cp;co; -cp;so; 
o o c2p;so; czp;ce; 

j <  s (51) 

Therefore, the contribution of Ul to (V,),,, i < j < s, 
is zero. By Eqs. (37) and (39) and the parallelism of 
the rotational joints, the entries (other than the 
(3, 3)th) of KfV,, i < s, are redundant for computing 
h. This entails that the entries, other than the (3, 
3)th, of KfU, for r I i < s are not components of v 
in Eq. (30). 

Consider rotational joint j, j 2 s, and reformulate 
Eq. (39) as 

h, = (a$y(q% - (a$x(~f))Y 

+ [@))I3 @')23 ij:I))33~u?, j 2 s (52) 

Because the terms associated with K*(tf)), and 
K*(L?!))~, j 2 s, for computing h in Eq. (30) are parti- 
tioned into Tvg, the third term associated with 
K*S') in Eq. (46) and the first two terms in Eq. (52) 
for j 2 s can be ignored in the analysis of v. Keeping 
in mind that the x- and y-components of ul]), j 2 s, 
vary independently (because joint s is not parallel to 
joint r ) ,  and U, is constant while V, varies, it follows 
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from Eq. (52) that (Uj)13 and (Uj)z3, j 2 s, in addition 
to (U,),,, are components of v in Eq. (30). 

Now let i < j = s. hii in Eq. (37) requires (Vi)33. 
The contribution of Us to (Vi)33 is the first row of 
B(P,*, 0:) in Eq. (47), whose components are either 
zero or linearly independent of one another and of 
the other terms in (VJ3, because the terms associated 
with t f )  are ignored. The fact that rotational joint i 
is not parallel to joint s implies that the first two 
components of the first row of B must be nonzero. 
Thus, (Us)ll - (Us)22 and (Us)lz are components of 
v. Fix joint s such that rotational joint j ,  j > s, is not 
parallel to joint r. Let Py and 0; be the transformation 
parameters between joint r and joint j when joint s 
is held stationary; then the above result applies to 

(U,)z3 for rotational joint j ,  I 2 s, as well as 
&+(Ui),,, i = 1, . . . , n, are components of v in 
Eq. (30). 

The x- and y-components of KTti') for r 5 i < s 
are still left to be considered. 

For any two rotational joints m and i, m < i < 
s, we define Case 1 to be Lls = Oor ;,s//u, (i.e., the 
origins of frames Ei and En, are coincident or the 
distance between them is collinear with urn), and 
Case 2 to be all other situations. In Case 1, = 0 
according to Eq. (17). In addition, if there are no 
translational joints in front of joint i that are not 
parallel to joint i, the x- and y-components of Kkuf) 
for all translational joints k ,  k < i, are zero. Thus, 
Eqs. (38) and (39) are, respectively, reduced to Kkhki 
= 0, k < i, and h,,, = +(J ; i ) )33 ,  because u;) = [0, 
0, +1]? In addition, ( L I ~ * ( ' n ) ) x  = = 0 in Case 1, 
so that t(i) has no contribution to (Vm)33 according to 
Eq. (46). We then conclude that (tii))x and (t!i))y of 
rotational joint i, Y < i < s, are redundant for comput- 
ing h if there are no translational joints in front of 
joint i that are not parallel to joint i and if the distance 
from any rotational joint in front of joint i to joint i 
is either zero or parallel to joint i. 

On the other hand, in Case 2, ai,nr is not zero 
and perpendicular to u,,, . Although a!,;) may be con- 
stant (when $("') is constant), the x- and y-compo- 
nents of a;:; vary with the rotation of joint i. They 
are linearly independent of each other and of the 
nonzero component of u;) (i.e., (u$))~, which is kl) .  
Applying Property 1 to Eq. (39) yields the result that 
( ? i i ) ) x  and (t$i))y of rotational joint i, r < i < s, in Case 
2, are components of v in Eq. (30). 

In front of joint r, if there are no translational 
joints not parallel to joint r, then (I?:))~ and (tl'))y are 
redundant for computing h. Otherwise, they are 
components of v in Eq. (30) according to Eq. (38). 
This also applies to rotational joint i, r < i < s. 

j > s. In summary, (uj)11 - (Uj).z, (uj)12, (uj)13, and 

Property 4. v in Eq. (30) has the following components: 

K?((ui)ll - (ui)22)1 K?(ui)lZ, K?(Ui)13r K?(Ui)23r 
s s i s n ,  

2. K1(UJ3,, r 5 i 5 n, 
3. K;( I? !~ ) )~ ,  K(t!')),,for r 5 i < s if there is a transla- 

tional joint k ,  k < i, such that ukx(ui or if there 
is a rotational joint m ,  m < i, such that L,s # 
0 and )((ur (otherwise, they are not). 

However, K:r?ziand & + ( ~ ? j ~ ) ) ~ ,  Y I i I n, are redundant 
for computing h, as are all entries, other than the (3,3)th, 

All components of v in Eq. (30) are included in 
Properties 2 to 4. Let V, consist of all Kikli, Kiri2,, 
y(t(i))x and KT(tii))y, i < s, in v, vB consist of the three 
components of all Kjty), j > s, and vc consist of all 
other components of v. Furthermore, the compo- 
nents of v,, vB, and vc are all assumed to be pre- 
sented in the order from joint 1 to joint n. On the 
other hand, W, and wB are, respectively, defined the 
same as V, and vB except that tj'), kli  and k2, are, 
respectively, replaced with ki and 

of KYU,, r 5 i < s. 

K~~ = -(up))y(ki)x + (up))x(ki)y (53) 

The last two equations are different from Eqs. (36) 
and (50) only in the terms of k,. 

Suppose that there are translational joint k and 
rotational joint i ,  k < i < s. By Properties 2 to 4, if 
uk )((ui, then klk, k2k, and (tji))y are all compo- 
nents of v in Eq. (30). This means that if Kkrilk and 
KkkZk are components of v, then so are &+(t!i))x and 
K;(tji)& for all i, k < i < s. In the other situation, 
when there are only parallel translational joints in 
front of joint i, if there is a rotational joint m in front 
of joint i such that ~ l ~ ) ( ( ~ i ,  then for any rotational 
joint j behind joint i, i < j < s, neither ',s nor LS is 
parallel to u, because ',s = i s  + is. Applying Prop- 
erty 4 yields that if KT(t;i))x and K?(tji))y are compo- 
nents of v, then so are K*(t!j)), and K;(t?))y for all j ,  
i < j < s. Consequently, if either Kikl, and Kik2, or 
K?(tji))x and &+(tji))y, i < s, are in v, then K;(ty))x and 
K;(t!)&, i < j < s, are also in v. Note that Ali and k2i 
are linear combinations of the components of 
tji), and that tji) for translational or rotational joint i 
can be expressed in terms of K . m .  and the x- and y- 
components of Kykj, j > i. Thus it can be shown that 

I .  1 

I .  1 

(55) 
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VB = IwB + PBwg (56) 

where I is the identity matrix, WA is an upper trian- 
gular square matrix with the diagonal entries of 1, 
PA and PB are some appropriate matrices, and wg is 
defined as in Eq. (31). 

Therefore, Eq. (30) can be rewritten as 

(57) 

where 

Because the columns of RAT RBI and Hc are linearly 
independent to one another and WA is nonsingular, 
the columns of C are also linearly independent ac- 
cording to Lemma A2. Note that some columns of 
D may be linearly dependent on those of C. In this 
case, there exists a matrix GD whose columns are 
linearly independent to one another and to those 
of C, such that the second term in Eq. (57) can be 
decoupled into 

DWg = CPlWg + HDP2Wg (60) 

where P, and P, are constant matrices. Finally, we 
conclude that a set of MLCs for determining h is 

w'= [;;j +P,wg 

(61) ............... 
P2wg 

which is also the MLCs for determining 7' according 
to Theorem 3. By Theorem 2, w,, wB, vc, and wg 
constitute a set of MLCs for determining r, as stated 
in the following theorem. 

the set 

1. 
2. 

3. 
4. 
5. 

Y consisting of all nonzero elements of 

Kj+(Uj)33, GjKT(kj),, SjKj+(kj), for r 5 j < s, 

Ky(Uj)23, Kj+(kj),, K;(kj), for s 5 j 5 n, 
Kifii for i = 1, . . . , n, 
Kj(kJX, Ki(ki),, Ki(ki), for s < i I n, and 
uiKiKlir ~ , K , ~ , , f u r  r < i < s, 

Ky((Ujh1 - (Uj),2>/ K;(Uj)33/ Ky(Ujht q(Ujhr 

where tij = 0 for the case that ur//uk//g, Vk 5 j < S ,  
and ',s (when j > r )  is zero or parallel to u, for every 
rotational joint m ,  r 5 m < j ,  otherwise Si = 1, and 
where ui = 0 for the case of ui//ur, r < i < s, otherwise 
uj = 1. 

An example for a set of MLCs of the Stanford 
arm can be found in previous We are now 
ready to state and prove the equivalence theorem. 

Corollary 6. Suppose that two sets Y ,  and YPb, formed 
by the linear combinations of the inertia parameters of a 
manipulator, have the same number of elements and Y ,  is 
a set of MLCs for determining r. Then 9, is also a set of 
MLCs for 7 if and only if the values of the elements of Y ,  
can be obtained from those of Y ,  and vice versa, i.e., there 
is a nonsingular constant matrix M such that 

b = Ma (62) 

where the components of a and b are the elements of 9, 
and Yb ,  respectively. 

Proof: According to the assumption, there are matrix 
A(q, q, q) with linearly independent columns and 
matrix P with linearly independent rows, such that 
r = Aa and a = Px, where x is the vector of all 
inertia parameters. 

When Eq. (62) holds, applying Lemma A2 to 
PTMT yields the result that the rows of (MP) are 
linearly independent, so the components of b are 
also linearly independent. Moreover, we also obtain 
T = AM-lb, where the columns of (AM-I) are lin- 
early independent by Lemma A2. This completes 
the proof of the sufficiency. 

If YPb is also a set of MLCs for T, there are matrix 
B(q, q, q) with linearly independent columns and 
matrix Q with linearly independent rows, such that 
r = Bb and b = Qx. Suppose that x E RP and a and 
b are k-tuples. There are ( p - k) linear combinations 
(denoted by c) of x, such that the components of a 
and c are linearly independent and form a basis of 
the domain of x. Thus x can be expressed as 

Theorem 5. For the manipulator considered in Theorem 
4, a set of MLCs for determining the actuator forces T is 

x = [W, i w2,[q] 



Lin: Identifiable Parameters of a Manipulator 653 

which yields the results that 

(64) b = QW,a + QW2c 

7 = BQW,a + BQW,c (65) 

Note that Ya is a set of MLCs. By Theorem 1, (BQW,) 
must be zero and the columns of (BQW,) are linearly 
independent. This leads to the conclusion that 
QW, = 0 because the columns of B are linearly inde- 
pendent, and that (QW,) is a nonsingular square 
matrix according to Lemma A2. The claim of neces- 
sity then holds. Q.E.D. rn 

5. CONCLUSION 

The minimal linear combinations of the inertia pa- 
rameters (MLCs) introduced in this article illuminate 
the role of the identifiable parameters in the manipu- 
lator dynamics. This article has presented a system- 
atic approach to finding a set of MLCs. The problem 
is first divided into two searches for two individual 
sets of MLCs that determine the entries of the inertia 
matrix and the gravity load. The MLCs for the gravity 
load are easier to find and have been addressed in 
an earlier To find a set of MLCs for the inertia 
matrix, we begin by decoupling the inertia parame- 
ters of composite bodies into two parts, so that the 
varying part of each parameter can be calculated 
from the constant parts of the other parameters. The 
rest of our task is then to carefully inspect the roles 
of the constant parts of the parameters in the inertia 
matrix. The technique for this is presented in section 
4, where it is used to formulate Properties 2 to 4. 
Applying Theorems 2 and 3 converts the elements 
in Properties 2 to 4 to those of the MLCs for the full 
manipulator dynamics. This step-by-step approach 
is different from that in the author's earlier 
although the results are identical. However, this set 
of MLCs is slightly different from others in the litera- 
tUre16,17,19-22 in some minor terms because a set of 
MLCs is not unique. The equivalence of these differ- 
ent results can be proved using Corollary 6 in the last 
section. The crucial feature of the present approach is 
that all derivations are in accordance with the least 
squares theory, so the identifiability of the present 
set of MLCs is assured. 

The present set of MLCs also has some other 
advantages: a systematic off-line identification 
method for it has already been proposed,23 and a 
recursive formulation of the manipulator inverse dy- 
namics in terms of the set of MLCs has been derived 

and shown to be more efficient than most other for- 
mulations of the inverse dynamics in the l i t e r a t ~ r e . ~ ~  
The main emphasis of the present article is that the 
minimal parameters of a manipulator should be 
treated in the least squares sense, so that the minimal 
parameters are equivalent to the identifiable param- 
eters. 

The author gratefully acknowledges the reviewers for 
their constructive comments on the presentation of 
this article. This article was supported by the National 
Science Council, Taiwan, under Grant NSC80-0404- 
E-009-31. 

APPENDIX 

Lemma A l .  Suppose that 

where x E RP are the system parameters, q E R", 
a..R"X1lXnXPjR" b.*RllxP+Rnl,  c. :RnxP+Rfll+ Then, ' I '  lk  
a set is a set of MLCs for determining a if and only 
if it is also a set of MLCs for determining 

Lemma A2. Suppose thnt the columns of matrix A(8) : 
R" + Rnxk are linearly independent over R"'. The constant 
square matrix B E Rkxk is nonsingular if and only if the 
columns of the product A( 8)B (or BA( 8)) w e  also linearly 

Lemmas A1 and A2 are used in the proofs of 
Theorem 3 and Corollary 6, respectively. The proofs 
of these two lemmas are very simple and can be 
found in a previous In the following, we 
prove the theorems in section 2. 
Proof of Theorem 1: Sufficiency (+): According to the 
assumption that the elements of w are linear combi- 
nations of x, there exists a constant matrix B E RkxP 
such that 

rn T T  T T  
~ 1 1 2 ,  ~ 2 1 ,  . . . r cnJ . [b:, . . . b,T, c T ~ ,  . * . 

independent over R". rn 

The rank of B is k since the rows of B are linearly 
independent. It follows from Eqs. (3) and (A2) that 

ai(8) = x(8)bi (A3) 

where ai and bi are the ith columns of A and B, re- 
spectively. 
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We select k linearly independent columns bi and 
then reorder them and the corresponding ai( 8)  to be 
the first to kth columns of B and A( O), respectively. 
If we let 

a,a,(8) + . . + akak(8) = 
- 
A(8)(blal + * * * + bkak) = 0 (A4) 

then a, = , . . = (Yk = 0 because the linear indepen- 
dence of the columns of x ( 8 )  over R" implies 
(b,al + . + bkaJ = 0. We conclude that al(8), 
. . . , ak(8) are linearly independent over R". Be- 
cause the rank of B is k, there exist not all zero ai 
such that (bla, + . . . + bk+,ak+,) = 0. Because 

c ai( 8)ai = x( 8)  , V 8 E Rm (A5) 
I 

any k + 1 or more columns of A( 8)  are then linearly 
dependent over R". Consequently, the number of 
linearly independent columns of A is k. 

Necessity (4): Because the number of linearly 
independent columns of A( 8)  is k, we choose k lin- 
early independent columns to construct x( e) : R" + 
Rnxk, and let the other ( m  - k) columns form A(0) : 
R" --.) Rnx(m-k).  We can partition x into X and 2 
such that 

A(e)x = A(e)X + A(e)n (-46) 

Every column (ai) of A can be expressed as a linear 
combination of the columns (ai) of in the form of 

where aij are some constants. Substituting Eq. (A7) 
into Eq. (A6), we get 

where 

a l k l  
. . .  . . .  pll . 

Lu;, . . .  . . .  

Proof of Theorem 2: Suppose that there are 
H(q, q, q) = [H, : H,] and G(q) whose columns are 
linearly independent over R3" and R", respectively, 
such that 

_ _ -  

Thus, 

where 

and I is the identity matrix. The fact that each entry 
of H is associated with q and/or q (see Eqs. (4) and 
(5)) implies that the columns of [H i GI are linearly 
independent over R3". This completes the proof of 
the first part. Let ([HI i H, i G]P)a = 0. Because the 
columns of [H i GI are linearly independent, Pa = 
0. This is only possible when a = 0. The claim of 
the second part is then true. Q.E.D. 

Proof of Theorem 3: Let h = [h,,, . . . , hln,  h,,, . . . , 

Suppose that w(x):RP + Rk is a set of MLCs for 
determining h, and there exists H(q) : R" RnZxk 
such that 

- _  

- _  

L I T  and c = [ciiir ~ 1 1 2 ,  . * * c i i n r  ~ 1 2 2 ,  * * . cnnnI'* 

h = H(q)w(x) 6414) 

By Christoffel symbols in Eqs. (6) and (7), we get 

c = T(q)w(x) (A151 

where c (q)  is some appropriate matrix, whose col- 
umns may be linearly dependent over R". Therefore, 
w(x) is also a set of MLCs for [h', cTIT because the 
columns of [HT, CTlT are linearly independent over 
R" . 

Conversely, we assume that the columns of 
whose elements are linearly independent over [nT, CTlT are linearly independent, but the columns 
RP. Q.E.D. of H are linearly dependent over R". We linearly 
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combine the dependent columns of k to form H, 
whose columns are linearly independent over R”, 
such that 

h = H(q)w(x) (A16) 

where the elements of w(x) are linear combinations 
of w(x) and are linearly independent over RP. Using 
Christoffel symbols again, we obtain the result that 
w(x) is also a set of MLCs for [h’, $1’. This contra- 
dicts Theorem 1 since the dimensions of w and w 
are not the same. Consequently, the columns of H 
are linearly independent over R” if and only if the 
columns of [HT, c’]’ are linearly independent over 
R”. This implies that w(x) is a set of MLCs for h if 
and only if it is also a set of MLCs for [h’, cTIT. 

The rest of the proof consists of showing that a 
set is a set of MLCs for T I  if and only if it is also 
one for [hT, $ I T ,  which follows directly from Lemma 
A1 above. Q.E.D. H 
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