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This article deals with the minimal parameters of a manipulator in the least squares
sense, so that the minimal parameters are equivalent to the identifiable parameters.
The least squares concept is used to introduce terminology for the minimal linear
combinations (MLCs) of the system parameters that define a set of linear combinations
of the system parameters. The number of elements of the set is minimal, yet the set
still completely determines the system. Furthermore, it is shown that the problem of
finding a set of MLCs of a manipulator can be simplified to that of finding two
individual sets of MLCs that determine the entries of the inertia matrix and the gravity
load. Although the approach is applied to the inertia constants of composite bodies
to obtain a set of MLCs identical to an earlier one, the result is newly interpreted in
the least squares sense. The approach itself is a new method for finding the identifiable
parameters of a manipulator, and it yields some new insight into the manipulator
dynamics. The crucial feature is that a set of MLCs found by using the present approach
is guaranteed to be identifiable. The earlier approaches always require an identification
method to verify the results. An equivalence theorem is also presented that rigorously
states the equivalence between the different sets of minimal parameters. © 1994 John
Wiley & Sons, Inc.
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1. INTRODUCTION

System analysis involves investigating the dynamic
behavior of a system to understand the system or to
design regulators to control it. Two methodologies
used in system analysis are mathematical modeling
and system identification. However, the compound
approach is always recommended for a deterministic
system. An analytic approach can provide a dynamic
model with wide-range validity and some physical
insights, while parameter identification improves
the accuracy of the model parameters. If the model
of a nonlinear system such as a manipulator can be
written in the form of linear equations with respect
to the parameters, the parameter identification is
then a least squares problem. The difficulty of this
parameter identification is that not all parameters
are identifiable, because some parameters determine
the system not independently, but in combination.
Essentially, the system is uniquely determined by a
set of minimal parameters that are linear combina-
tions of the modeling parameters and are linearly
independent. These parameters are termed the mini-
mal linear combinations (MLCs) of the system parame-
ters in the context. Finding a set of MLCs will facili-
tate solving the parameter identification problem.
The dynamic model of a manipulator is now
well-known. It is highly nonlinear and requires
knowledge of the kinematic parameters (relations
between two adjacent links) and the inertia parame-
ters (mass, center of mass and inertia tensor of each
link). The kinematic parameters are always provided
by the manufacturer or can be precisely calibrated,
whereas the inertia parameters of industrial robots
are almost all unavailable from the manufacturer be-
cause these values are not needed for commercial
controllers. However, most modern precision con-
trol schemes for manipulators incorporate the in-
verse dynamics of the manipulator, which requires
the values of the inertia parameters. To evaluate the
inertia parameters of the manipulator dynamics,
Armstrong et al.! disassembled a PUMA 560 robot
and used a mechanical method to measure the inertia

parameters. This approach is tedious and does not
yield precise results. Fortunately, Atkeson et al.?
have found that the actuator forces of a manipulator
are linear functions of the inertia parameters, i.e.,
the dynamics of a manipulator can be expressed as
linear equations with respect to the inertia parame-
ters. Previous attempts to identify the inertia param-
eters have tried to formulate the linear equations
either explicitly’>=® or implicitly.>*-*> As mentioned
above, without knowledge of the MLCs of the inertia
parameters, identifying the parameters is difficult.
Khosla and Kanade’ intuitively regrouped the
closed-form dynamic equations, and other research-
ers*® developed regrouping rules to minimize the
number of inertia parameters appearing in the linear
equations. These approaches are not practical for a
manipulator with six or more joints because the
closed-form dynamic equations of a six-joint manip-
ulator are too large and too complicated to analyze.

The MLCs of the inertia parameters of manipula-
tors have drawn the attention of many researchers.
Some researchers>3-* have presented numerical ap-
proaches such as the singular value decomposition
method and the QR method. Gautier et al.}e-18 devel-
oped a regrouping rule to symbolically form a set of
MLCs. Mayeda et al.”-* found an explicit set of
MLCs of the inertia parameters. Although these two
sets of results are substantially equivalent, the ex-
plicit form is more attractive.

It should be remarked that, instead of MLCs,
minimum inertia parameters,’®"'® base parame-
ters,’"-?2 and the basis set of the essential parameter
space'®!* have all been used in the literature. This
article will show that the identifiable parameters of
a linear deterministic system belong to a set of MLCs
of the system parameters in the least squares sense.
Of course, a set of MLCs is also the necessary (i.e.,
minimal) parameters required to determine the sys-
tem dynamics. The name of MLCs illuminates the
role of the system parameters in the dynamic model
and in the problem of parameter identification. In
this article, the problem of finding the MLCs for the
full manipulator dynamics is divided into a search



for two individual sets of MLCs, one for determining
the inertia matrix and the other for determining the
gravity load.

In an earlier article,” we showed that some iner-
tia constants of composite bodies form the minimal
knowledge of the inertia parameters needed to deter-
mine the manipulator dynamics. This article applies
a new approach to the inertia constants of composite
bodies and shows directly that the minimal knowl-
edge of the inertia parameters in the earlier paper®
is a set of MLCs. The advantage of the present ap-
proach is that it is not necessary to verify the identi-
fiability of MLCs by an identification method. The
approach also appears to provide a systematic
method for analyzing the identifiable parameters of
other mechanical systems. At the end of the article,
an equivalence theorem is presented that rigorously
states the equivalence between the different sets of
minimal linear combinations of parameters. This the-
orem could also be a tool for exploring other possible
sets of MLCs in the future.

This article is organized as follows. Section 2
introduces the concept of minimal linear combina-
tions (MLCs) of the system parameters. Several theo-
rems are established to simplify the problem of find-
ing the MLCs for a manipulator. To make the idea
easier to comprehend, all proofs are presented in
the Appendix. In section 3, we review the inertia
constants of composite bodies, which are used to
construct a set of MLCs in section 4. The rigorous
derivation of the set of MLCs in section 4 is the main
effort of this article. The approach is systematic and
comprehensible, although some of the proofs are
tediously long.

2. PRELIMINARIES

Motivated by the fact that the dynamics of a manipu-
lator can be formulated as linear equations with re-
spect to the inertia parameters,? we consider a dy-
namic system to be identified that has the linear
deterministic form of

y = A(0)x o)

where y € R", 8 € R™ are observable signals, x €
R? consists of the system parameters, p > n, and
A(0): R"— R"?, We are concerned with the identfi-
ability of the system parameters.

Definition 1. A set of columns a(0): R" — R" is said
to be linearly dependent over R™ if there exist constants
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o, 1 =1,. . .,n, notall zero such that

> aa(0) =0, VOER" ()
i=1

If o; are all zero, the set is said to be linearly independent
over R™. "

Theorem 1. The number of linearly independent columns
of A(8) over R" is k = p if and only if there exist
A(0): R"— R"* whose columns are linearly independent
over R™ and w(x): RP? — R¥ whose components are linear
combinations of x and are linearly independent over R?,
such that
A(6)x = A()w(x), VO R"andx ER?. (3)
]
The proof of this theorem is presented in the
Appendix. According to the least squares theory,
not all system parameters x are identifiable if the
columns of A(6) are linearly dependent over R™.
However, the linear combinations w(x) in Theorem
1 are identifiable because the matrix (ATA) in the
normal equation of the least squares problem is non-
singular for a persistently exciting trajectory. A(8)x
fully determines y, as does A(8)w(x). If not all values
of x are available, the knowledge of w(x) is a neces-
sary condition for determining y. In the sense of
identification, we are interested in finding w(x) for
the system in Eq. (1). Therefore, we introduce the
following definition.

Definition 2. A set w(x) is 4 set of minimal linear
combinations of the system parameters for the system in
Eg. (1) if the elements of the set are linear combinations
of x and linearly independent over the domain of x and
there exists A(@) whose columns are linearly independent
over the domain A such that Eq. (3) holds. n

Before turning to the dynamics of manipulators,
we briefly review the literature. Ha et al.® showed
that the dynamic model of a manipulator can be
formulated in a form like Eq. (3) by using some intu-
itive regrouping rules. Theorem 1, however, gives
a necessary condition for the number of linearly inde-
pendent columns of A(6) and rigorously shows that
w(x) in Eq. (3) is a set of minimal linear combinations
of the system parameters for the system in Eq. (1).
Because there are numerous methods for selecting
A(0) from A(0), the set of minimal linear combina-
tions is not unique.

We recognize that the dynamic equations of a
manipulator with n joints are
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H(q x4 +7(q q. %) + (g =7 (4

where q € R" consists of the joint displacements, x
€ R consists of the inertia parameters, 7 € R" con-
sists of the actuator forces, H(q, x): R"*? — R"™" is
the symmetric inertia matrix, 73(q, x): R"*# — R"
consists of the gravitational forces, = € R" consists
of the actuator forces, and 7(q, q, x): R¥"*# — R™*"
consists of the Coriolis and centrifugal forces, which
can also be related to the inertia matrix with Christof-

fel symbols (c;)*>2
78(q, 4, %) = 21 kE Cididx )
j=1k=j
()
Cii = <36]k + i o , forj#k 6)
_fohy 1 3h]-j)

where 7¢ is the ith element of 75, g; is that of q, and
h; is the (i, j)th entry of H.

Our present problem is to find a set of MLCs of
the inertia parameters (simply MLCs in the following
context) for determining 7, provided that the geo-
metrical parameters of the manipulator are known.
The strategy is to separate Eq. (4) into two parts:
78 and

7'=H(q x4 + 7(q, 4, %) ®)

Once the MLCs for 7! and 7¢ are obtained, we can
exclude the linear dependent elements and then ob-
tain a set of MLCs for . This strategy is supported
by the following two theorems.

Theorem 2. A set is a set of MLCs for determining 7 if
it is the set consisting of the linearly independent elements
of [w'(x), ws(x)]", where w' and w& are two sets of
MLCs for determining =" and 78, respectively. Further-
more, when W' is partitioned as

i W] Pl
R

where P, and P, are some constant matrices and the compo-
nents of wl are linearly independent of one another and
those of w8, then the components of w/ and wé form
a set of MLCs for determining 7. [

Theorem 3. A set is a set of MLCs for determining 7' if
and only if it is also a set of MLCs for determining the
entries of H(q, x). |

Theorem 3 follows from Christoffel symbols in
Egs. (5)-(7). The detailed proofs of these theorems
can also be found in the Appendix. By Theorems 2
and 3, the problem of finding the MLCs for 7 turns
out to be a search for two individual sets of MLCs
that determine the entries of the inertia matrix and
the gravity load, respectively.

3. INERTIA CONSTANTS OF
COMPOSITE BODIES

This section revisits the inertia constants of compos-
ite bodies” and Renaud'’s formulation for the inertia
matrix.?¥ The structure of the inertia constants in
Renaud’s formulation will reveal that these constants
are consistent with the MLCs of the inertia param-
eters.

We consider a manipulator with n low-pair
joints, which are labeled joint 1 to n outward from
the base. Assign a body-fixed frame on each joint
(i.e., frame E, is fixed on joint i) in accord with the
normal driving-axis coordinate system®?% (known
also as modified Denavit-Hartenberg notation). The
distance from the origin of E; to that of E; is desig-
nated as’s, and that to the center of mass of link {
as ¢;.

In the normal driving-axis coordinate system
(see Fig. 1), the z-axis of a body-fixed frame is the
driving axis of the corresponding link, i.e., the unit
vector along joint i is u{” = [0, 0, 1]%, where super-
script “(i)”" denotes the representation of a vector
with respect to frame E;. The distance from the origin
of frame E,_; to frame E, is

bi b,CHi
58V = —diSB; |, or ;_is¥ | —b56; | (10)
dCB; d;

where 56; = sin 6;, CO, = cos 0,, and b;, d;, and 6, are
the geometrical parameters of the coordinate system.
The coordinate transformation matrix from E;_; to
E; is well known as

C@i - 59, 0
iR =]CBS56; CBCH, —SB (11)
SB:S0; SBLCO; CB;
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Figure 1. Illustration of the normal driving-axis coordi-
nate system.

The composite body i is defined as the union of
link 7 to link n. Let the mass of the composite body
i and the first moment of the composite body about
the origin of E; be denoted by r1; and ¢;, respectively,
to obtain

iy =2, m, (12)
j=i

n
& = ,Z mi(is” + ) (13)
where m; is the mass of link j. The inertia tensor
of the composite body about the origin of frame E,
(denoted by J) results from using the Huygeno-

Steiner formula® to obtain

jir = 2 RIPRT (14)

j i
~ m{(s?” + )X + ¢)x]

where I{ is the representation of the inertia tensor
of link ; with respect to frame E; and [aX] denotes
a skew-symmetric matrix representing vector multi-
plication, i.e., [aX]b = a X b. In the context, the
overhead symbol “"” is used to denote the inertia
parameters (mass, first moment and inertia tensor)
of a composite body.
We introduce the notation of

1,  forrotationaljoint i,

Kr=(1- K)—{ . . (15)

0, fortranslational joint .

Renaud’s formulation®-%! for the entries of the in-
ertia matrix is

013 @)y

hml = K:z :(- $111> (J§I>)23 + ——(a<Z> )x i
U 0
(uf?),
+ KmK;(- _(ugy)x ' é§l>
0
(us?),
+ K:'IKI mi(ag/i;)z - _(uﬁt?)x ' é§i>
0
+ KmKi rﬁni(usi?)zl m=i. (16)

where (-); denotes the (i, j)th entry of a matrix, ('),
the x-component of a vector, and

af), = w) X s 17)

which is, physically, the part of the acceleration of
the origin of frame E; due to a unit angular accelera-
tion of joint m(i.e., §, = 1). We can also obtain the
gravity term of the actuator force applied on joint i
in the form of

T8 = _u(z> (K"' (i) g<l> + Kt g<1>
- (g<i>)y

=K (8",
0

é§i> - Kimi(g<i>)z (18)

where 7¢ is the ith element of 73(q, x) and g is the
gravitational acceleration.
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By the principle of mathematical induction, it
has been shown?? that the first moment and the
inertia tensor of the composite body i can be formed
as the sum of a constant vector (k; or U;) and a varying
vector (¢, or Uy, such as

& =1k + ¢ (19)
Jo =0+ v, (20)
where kn = mncslml en = 0/ Un = Islm - mn[c<n”>><]
[¢"x],V, = 0and
0
k; = mcl? + Kby | iy s+ IR0
(kis1):
(*1s),
+ Ky | i 0 + IRk 4 (21)
0
@),
f — K;(-+ 1+1R (Cz(i:—ll))v
(€i+1)z
0
+ Kz+1 zR €1+1 + mt+l 0 (22)

(i+ils(i+1>)z
If joint i + 1 is a rotational joint, then

U =19 — mc?x][c’x]

= [ TisOX] [ 80X

(Uit )2 0 0
+ IRl 0 (Ui 0 |*IRT
0 0 (Uit
— [ IsOX] (IR 1 1)) ¥ ]
— [(*1Ry(ky ) ) X ][ }s9X] (23)
V[ — z'+i1R
Uit = Uisde Uit Ui
<Vz-+1 + Ui 0 Uitz
Ui Uiids O

FIRT - [lsOX[€X] — [€X][ %] (24)

whereas for translational joint i + 1

U= -

m{c?x][cfx]
+ " RU; T IRT = i [bE) X [BE) X]
— b X J[(* IRK;, ) ¥]

— [(* 1Rk, )X][b{2, ¥] (25)

Vi = "IR(Viyy — it [dE0X[d X

— ity [P X | [b{E ]

= ;41 [b{ VX ][d{PX]

— [dXEX]
— [N x] = [P, %]

= [€ 1 X1bEHDX]) HIRT (26)
Note that ‘*IR, in Eq. (23) is the third column of
*IR, i.e.,

0

—SBi+1 (27)
CBis1

i+1 —
in -

which is a constant vector, and

(i+z15<i>)x bi+1
b}, = 0 ={ 0
0 0
bi+1C0i+1
bitY = | =156 (28)
| 0
[ o 0
=1 0 y=[0 (29)
(Hz’ls(lﬂ))z dis1

We shall call #1;, the components of k;, and the
entriesof U;,i = 1,. . ., n, inertia constants of compos-
ite bodies. The salient feature of these constants is
that the varying terms in & and §{ can be calculated
with only some (not all) of the inertia constants of
composite bodies. Namely, ¢; in Eq. (22) are calcu-
lated with some 7, and the x- and y-compounds of
k;, j > i, and the recursive form for computing V; in
Egs. (24) and (26) requires only the (1, 2)th, (1, 3)th,
(2, 3)th entries and the difference of the (1, 1)th and
(2, 2)th entries of U, , ; and some components of k;__ ;.



This property is consistent with the minimal linear
combinations of the inertia parameters. Indeed,
some elements of k; and U, and ; constitute a set
of MLCs for determining the actuator forces of a ma-
nipulator.

For instance, the gravity load 72 in Eq. (18) re-

quires K}¢&” and Ky#;. Because K}¢f” can be expressed
in terms of Ky, and the x- and y-components of
K'k;, j > i (see Egs. (19) and (22)), we obtain the fol-
lowing theorem.
Theorem 4. Consider a manipulator with n low-pair
joints in which joint r is the first rotational joint counting
from the base and joint s is the nearest rotational
joint not parallel to joint r. A set of MLCs for determin-
ing the gravity load 3 is the set 8 =
{8:K (k) 81'K;(-(ki)yl oKy, i=1,. .., n}—{0}h

Note that 8; and o; are either 1 or 0 to denote the
redundancy of the parameters, which are defined as follows.
8, = Oforr =i <sandug, otherwise §, = 1. On the
other hand, o, = O foru; L g, VqQ ER" (if r < i <s
for translational joint i, w; is always perpendicular to g
only when w,jlg or when u, L g and wjfu,; while this can
happen for i > s only if u, /g, u, L u, and wjuju, for
any rotational joint j, s < j < i), otherwise o; = 1. =

The proof of this theorem is similar to that for
Theorem 2 in a previous work® and is thus omitted.

According to Theorems 2 and 3, the rest of the
MLCs for determining the actuator forces rare those
for determiningh = [hyy, . . ., by, By, . - ., Ryl
which contains all upper triangular entries of the
inertia matrix H(q, x) in Eq. (4) because the inertia
matrix is symmetric. By Theorem 2, the problem can
be temporarily formulated as the problem of finding
the components of v such that there is a matrix
H(q) with linearly independent columns satisfying

h = H(q)v(q, ) + T(q)v, = H(q)v(q, x) + T(q)w,
(30)

where T and T are some matrices, v is composed of
i, &2 and U, i = 1, . . ., n, other than those in

\ and

[ K2, | [ Kk, ]
K@), K2 (k)
o K o K

Vg = ’ wg = (31)

K (&™), Kii(k,),
KE), Ki(k,),

| oK., | o, K, |
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in which o; is defined as in Theorem 4. Note that
the components of w, belong to ¥2 in Theorem 4,
and v, = W,w,, where W, is a nonsingular upper
triangular matrix with the diagonal entries of 1
(which can be seen from Egs. (19) and (22)). After v
in Eq. (30) is found, the terms associated with &?
can be rewritten in terms of the x- and y-components
of k; and 1, j > i, i.e., the component of w,. The
set of MLCs for determining h then has a form
like Eq. (9).

4. MINIMAL LINEAR COMBINATIONS OF THE
INERTIA PARAMETERS

To deduce the components of v in Eq. (30), we re-
quire the following property, which directly follows
from the definition.

Property 1. If all nonzero elements of a row in H are
linearly independent over R”, the columns of H containing
the nonzero elements of this row are linearly independent
of one another and of the other columns H over R". m

We treat h,; of Renaud’s formulation given in
Eq. (16) separately for the different types of joint i.
First, suppose joint i is a translational joint; it follows
from Eq. (16) that

hy=10...010...0]%
T (32)
;
By =10...0@,0...0kforK, =1 m<i
1 (33)
s
e =10. . .0@f}).0. . .0 =(u), (@),0. . .0,
f re
mi (é§'>)x (é§I>)y

forK, =1, m<i (34

where X consists of the masses, the first moments,
and the inertia tensors of the composite bodies. By
Property 1, Eq. (32) shows that the column of H
corresponding to Ki; is linearly independent of the
other columns. This also reveals that the columns
of H corresponding to the x- and y-components
of K&" must be linearly independent of that
corresponding to Kgfi; regardless of whether
(af}), in Eq. (34) is independent of —(u{?), and (u{?),.
For translational joint i, s < i < n, there are at least
two elements of h having the form of Eq. (34), e.g.,
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Py

[h”] ) [(a?’?)z —(u), (u%] (c7<n>) i>s (35)

hsi (aflg —(u§1>)y (ugl))x (é<i>)
iy

Because u, is not parallel to u,, the x- and y-compo-
nents of u{” vary independently with 4, so that the
second and third columns in Eq. (35) are linearly
independent. This implies that the columns of
H corresponding to Ki(¢!"), and Ki(&"), for s < i =n
are linearly independent of the other columns. For
the case of r < i < s, u} is constant and u,,/u, for
any rotational joint m, m < i, so that the combination
of (= (u"),(@"), + (u")(&"),) is constant and is a
component of v in Eq. (30) if it is nonzero. It is zero
when uj/fu,.

It follows from Eq. (33) that U; and & for i <r
are unnecessary for determining the inertia matrix.
This result is summarized as follows.

Property 2. v in Eq. (30) has the following components:
1. Ky, i =1, ;1

2. K@), andK(c<’>)V, s<i=mn,and
3. Kiky; for r < i < s and u; Wu,, where

Ry = — (@), (&), + (u)(&?), (36)

However, KU; and K&, i < r, are not components
of v. ]

If joint i is a rotational joint, we obtain from Eq.
(16) that

hil‘:[o...o 1 00])’\(

1 37)
)33
hy=10...0 (uﬁ,?)y -, 0. ..0]%
&) (@M,
forK, =1, m<i (38)
M =10...0@), —(@"),0...0u)"0...0%,
T, 0 1
&, (&), Thirdj%olumn of

for Ky =1, m<i (39)

Note that J{ = U; + V,. To obtain a general form
for V;, we suppose that joints i and j, i < j, are
rotational joints, but the joints between them are all
translational joints. It follows from Eq. (22) that

€= 1R¢_ + el fori<k<j—-1 (40)

where
2 TR A (41)

Applying Egs. (24), (26), and (40), we obtain

U — Uy Uz (Ups
+ R (U2 0 (U)s|RT
(Ujhs U)s O

— %] IR €_)x] — [(-IR €j_1)X][§s*<i>X]
ji=1

- 2 IROM{AP I + [bfx](efx]

+ [ X][bx] + [dFx][ex]

+ [&Fx][aFx]) RT 42)

where is*” is constant in the form of

ie¥() =
0=

_is + 2 b} (43)

k=i+1

For convenience of analysis, we relate frames E;
and E; directly through a common normal of u; and

Wthh is in accord with the normal drlvmg axis
coordmate system®? (see Fig. 2). The x-axis of frame
E; will be in alignment with the common normal by
a rotation of angle ¢; about u; (i.e., the z-axis of
frame E;). Then, the rotation of 8 about the normal
followed by the rotation of 6} about the z-axis of
frame E; transforms frame E; so that it is in alignment
with frame E;. In mathematical form, the coordinate
transformation matrix from frame E; to E; can be
written as?®%

coy —so, O[] CoF S0
R=|[Sé; Ca; 0] ChSET CBICO S
0 0 1} sgser sprcer  cgr

(44)

Note that ¢;; and g} are constants since joints i +
1,. . .,j — 1are translational joints, whereas 6} is
a variable because it is the sum of g; and some con-
stant. It can be shown that
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Figure 2. Geometrical relation of any two joints.

SB;S6; — (is¥D — (ig*D )
756, 0. 0 =) e
ull = | SRrCe; 45) 0 =) =l | R| @),
cB A, 25, 0 ()
This equation also reveals that wjfu; if and only if -1
Sgr= 0. + 2 £(Giv1s - o gy
We are concerned with the third column of V.. k=itl

Expanding Eq. (42) yields

- ) j=1 0 Coy —S5¢y - (é<kk>)x
1
V] [V + 2 &0 S Cou D(BE, 67 (&),
(Vs | = | (V)3 - 1 0 0 (@),
V) v
3 | (Vi) (46)
_ U),, — (U.
0 C¢ij - Sd)ij ( ])1(1U ) ( ])22
+10 Sé; Co; [B(B, 6} U] 2 where V) = IRV, IRT, £, are some appropriate vec-
1 0 0 (Ui tor functions and
N (U)2s
$2p; S 25%B4CO;SH? 25B7CB;SO} 25BFCBrCof
B(B!, 0F) = | SBrSOICOr  SBHCM; — S6) Cpycor —CBrsef (47)

CBrSBrSYr  2SBICBICEISEr  (C28F — SBHSH;  (C2BY — S?BY)CO?

25BFCBESHE 25B¢CBECo; 25°B¢
D(8, 67) = Cpicer —CBiSo; 20B55BE (48)
(C*BF — S*BH)S6;  (C*BE — SBYCH; 0
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It should be remarked that V is a function of 9/
Gi+1, - - - Gy and B(B, 67) and IR in the second and
third terms of Eq. (46) are functions of g; only, while
D(B%, 6f) in the last term is a constant matrix. The
terms in Eq. (46) can be divided into three groups:
(1) the first term, (2) the second and third terms, and
(3) the last two terms. The columns of the coefficient
matrices in any one group are linearly independent
of those in the other groups because of the differ-
ent variables.

KU, k =1, .. .n do not appear in Eq. (46),
so they are not needed to compute Kf'V;, i =1,. . .,
n, and are then redundant for determining h.

By Property 2, the columns of H corresponding
to 1y, for translational joint k are linearly independent
of the other columns, and the role of the terms associ-
ated with y, for computing J in Egs. (37)
and (39) can be ignored, as can those with
(&M), and (&"),, k > s. In Eq. (46), only the coefficient
matrices in front of &" (i.e., the last term) vary with
di, the displacements of the translational joints. In
row 1! of h; = r'v, as in Eq. (37), the component
corresponding to (&), is then linearly independent
of the components other than those corresponding
to (&), (&"),, and rf, if it is nonzero. It is zero when

u/u, (i.e., Sﬁk = 0), because it is 25°8¢d, according
to Egs. (46) and (48). For k > s, u; may be parallel
tow;, i = s, but it is never parallel to u,. Because Eq.
(42) is in a recursive form, there must be a nonzero
term associated with (&), for computing #,,, which
is also one of the terms varying with d, (the other
terms are those associated with (&°),, (&), and ).
We then conclude that Ki(&),, k > s, is a component
of v in Eq. (30).

For the case of i <k <s, h,; in Eq. (39) requires
only the (3, 3)th entry of j{’because (u? = [0, 0,
+1]". Combining Egs. (37), (39), (46), and (48) yields

[
= , +
K:rhmi p(q V)

[ 24y (£(d))as ][kzk] m<i<k<s (49)
20u)Ac  (a)(E8(dD)ss ] L i |

where p is some appropriate vector that is not a
function of & and d,, and

Ry = — SBECBESOF(E),
— SBECBECOH(EM), + S*BE(EM),
= - (u$k>)z((u$k>)x(é§gk>)x

+ (),(&),) + (1 - @PE). (50)

which follows from Eq. (45) and u{’ = u{® for r <
m < k < s. If ujflu,, then SB} is zero, as is iky. It
should be remarked that &, in (36) is also zero when
SB; = 0. This entails that K,&*, r < k <, is redun-
dant for computing h if u,ju,. Applying Property 1
to Eq. (49), we may state the following property.

Property 3. v in Eq. (30) has the following components:

1. K(&"),, s <i=n,and
2. Kiky; (see Eq. (50)) for r < i < s and u, Yu,.

However, K& for r < i < s and u, Yu, are not compo-
nents of v, norare KU, i = 1, . . ., n. ]

Let us return again to Eqs. (37)-(39). It is now
apparent that K and K¥(&"),, j = 1, . . ., n, are
redundant for computing h.

We still assume that joints i and j are rotational
joints and joints k, i < k < j, are translational joints.
Because the components of V; are all functions of
gi+1 or q;, Eq. (37) indicates that the column of H in
Eq. (30) corresponding to Kf(U)s, i = 1, . . ., #n,
is linearly independent of the other columns. On the
other hand, the rotational joints in front of joint s
are parallel to one another, so S in Eq. (44) for
j < sis zero and Eq. (47) is reduced to

00 0 0
B(B!, %) = 0 0 CgiCe; —-CBiser |
0 0 C’Brser CgCor

j<s (51)

Therefore, the contribution of U; to (V))y;, i <j <s,
is zero. By Egs. (37) and (39) and the parallelism of
the rotational joints, the entries (other than the
(3, 3)th) of K}'V,, i <s, are redundant for computing
h. This entails that the entries, other than the (3,
3)th, of K*U; for r = i < s are not components of v
in Eq. (30).

Consider rotational joint j, j = s, and reformulate
Eq. (39) as

= @Dy, — @LE,

+ [(j]('j>)13 (j;j>)23 (jjv Nulul, j=s  (52)

Because the terms associated with K*(é;.f))x and
K*@),, j = s, for computing h in Eq. (30) are parti-
tloned into Tv,, the third term associated with
K’*c‘f> in Eq. (46) and the first two terms in Eq. (52)
forj Jj = s can be ignored in the analysis of v. Keeping
in mind that the x- and y-components of u{’, j = s,

vary independently (because joint s is not parallel to
joint r), and U; is constant while Vj varies, it follows



from Eq. (52) that (U));3 and (U)), j = s, in addition
to (U))s;, are components of v in Eq. (30).

Now leti < j = s. h; in Eq. (37) requires (V).
The contribution of U, to (V))5; is the first row of
B(B%, 6%) in Eq. (47), whose components are either
zero or linearly independent of one another and of
the other terms in (V});; because the terms associated
with &/ are ignored. The fact that rotational joint i
is not parallel to joint s implies that the first two
components of the first row of B must be nonzero.
Thus, (Uy)y; — (U,)y and (U,);, are components of
v. Fix joint s such that rotational joint j, j > s, is not
parallel to joint r. Let 8f and 67 be the transformation
parameters between joint r and joint j when joint s
is held stationary; then the above result applies to
j >s. In summary, (U);; — (Upzn, (U, (Ujss, and
(U)y; for rotational joint j, j = s, as well as
K¥U)sy, 1 = 1, ., n, are components of v in
Eq. (30).

The x- and y-components of Kf¢&" for r < i <s
are still left to be considered.

For any two rotational joints m and i, m < i <
s, we define Case 1 to be \s = Oor s/, (i.e., the
origins of frames E; and E,, are coincident or the
distance between them is collinear with u,), and
Case 2 to be all other situations. In Case 1, af’, = 0
according to Eq. (17). In addition, if there are no
translational joints in front of joint i that are not
parallel to joint i, the x- and y-components of Ku”
for all translational joints k, k < 7, are zero. Thus,
Eqs (38) and (39) are, respectively, reduced to Kih;

=0, k < i, and h,; = ("3, becauseu) = [0,
0, 1]~ In addition, (,s%™), = (;,8%"™), = 0 in Case 1,
so that &? has no contribution to (Vm)33 accordmg to
Eq. (46). We then conclude that (&"), and (&), of
rotational joint i, r <i <, are redundant for comput—
ing h if there are no translational joints in front of
jointi that are not parallel to joint i and if the distance
from any rotational joint in front of joint i to joint
is either zero or parallel to joint i.

On the other hand, in Case 2, a;,, is not zero
and perpendicular to u,,. Although a{") may be con-
stant (when /s is constant), the x- and y-compo-
nents of af’), vary with the rotation of joint i. They
are linearly independent of each other and of the
nonzero component of u$f (i.e., (uf),, which is £1).
Applying Property 1 to Eq. (39) yields the result that
(&), and (&), of rotational joint i, r < i <'s, in Case
2, are components of v in Eq. (30).

In front of joint 7, if there are no translational
joints not parallel to joint 7, then (&), and (&), are
redundant for computing h. Otherwise, they are
components of v in Eq. (30) according to Eq. (38).
This also applies to rotational joint i, r < i <.
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Property 4. v in Eq. (30) has the following components:

1 KU -
s=1=1,

2. K¥(U)g, r=i=n,

3. K*(c<’>)x, K*(cm) for r <1 <s if there is a transla-
tional joint k, k < i, such that u, W u; or if there
is a rotational joint m, m < i, such that's #
0and s Y u, (otherwise, they are not).

(Udz), K¥ Uz, KUz, KF (U,

However, Kithand KH&Y),, r < i < n, are redundant
for computing h, as are all entries, other than the (3, 3)th,
of KfU, r =i <s. |

All components of v in Eq. (30) are included in
Properties 2 to 4. Let v, consist of all Kiky;, Kiky;,
KX(& i), and K*(¢ ’>) i <s, inv, vy consist of the three
components of all Kc<1>, j > s, and v, consist of all
other components of v. Furthermore, the compo-
nents of v,, v, and v are all assumed to be pre-
sented in the order from joint 1 to joint n. On the
other hand, w, and w; are, respectively, defined the
same as v, and vy except that &”, &y; and &y are,
respectively, replaced with k; and

Ky = ”(u§i>)y(ki)x + (u<ri>)x(kf)y (53)
Ky = — (W) () (ky), + (“$i>)y(ki)y)
+ (1 = @3k, (54)

The last two equations are different from Eqs. (36)
and (50) only in the terms of k;.

Suppose that there are translational joint k and
rotational joint i, k < i < 's. By Properties 2 to 4, if
u, Yy, then &y, &y, (€7),, and (&), are all compo-
nents of v in Eq. (30). This means that if Kikq and
Kszk are components of v, then so are K}(&"), and
K}(@"), for all i, k < i < s. In the other situation,
when there are only parallel translational ]omts in
front of joint i, if there is a rotational joint m in front
of joint i such that is Wu;, then for any rotational
joint j behind joint i, i < j < s, neither /s nor is is
parallel to u,, because /,s = i s + is. Applying Prop-
erty 4 y1elds that if K*(c‘”)x and K*(c<’>) are compo-
nents of v, then so are K*(cj”)x and K? (c<1>)y for all j,
i<j<s. Consequently, if either KKl, and Kiky; or
K}(&"), and K¥(&"),, i <ss, are in v, then K*(&/"), and
K*(c<1>)y, i <j<s, are also in v. Note that & Ry, and & Ry
are linear combinations of the components of
&?, and that & for translational or rotational joint i
can be expressed in terms of K#t; and the x- and y-

i
components of K'k;, j > i. Thus it can be shown that

VA = WAWA + PAWg (55)
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Vg = IWB + PBWg (56)

where 1 is the identity matrix, W, is an upper trian-
gular square matrix with the diagonal entries of 1,
P, and P are some appropriate matrices, and w, is
defined as in Eq. (31).

Therefore, Eq. (30) can be rewritten as

Va
h=[—ﬁA:-ﬁB:ﬁC] VB +ng
Ve
Wy
=C|wg|+ Dwg (57)
Ve
where
C = [H,W,) :Hy: H] (58)
D=H,P, + HiP; + T (59)

Because the columns of H,, ﬁB, and ﬁc are linearly
independent to one another and W, is nonsingular,
the columns of C are also linearly independent ac-
cording to Lemma A2. Note that some columns of
D may be linearly dependent on those of C. In this
case, there exists a matrix ﬁD whose columns are
linearly independent to one another and to those
of C, such that the second term in Eq. (57) can be
decoupled into

Dwg = Cleg + ﬁDPzwg (60)

where P, and P, are constant matrices. Finally, we
conclude that a set of MLCs for determining h is

............... (61)

which is also the MLCs for determining 7/ according
to Theorem 3. By Theorem 2, w,, wg, v, and w,
constitute a set of MLCs for determining 7, as stated
in the following theorem.

Theorem 5. For the manipulator considered in Theorem
4, a set of MLCs for determining the actuator forces 7 is

the set & conmsisting of all nonzero elements of

1. K¥(U)ss, 8,Kf(k),, 8Kf(k), forr =j <,

2. Ki((Ui = (Upa), Ki(Upss, KUy, Kf(Ujys,
K;'(.(Uj)23r K]*(kj)xr K/*(k])y f01’ § = J =n,

3. Kiﬁ’lifori = 1, R (9

4. Kik;,, Kik),, Ki(k)), for s <i=n, and

5. o Kixy;, 0Ky forr <i <s,

where 8 = 0 for the case that ufug, Yk = j <,
and I,s (when j > r) is zero or parallel to u, for every
rotational joint m, v < m < j, otherwise §; = 1, and
where o; = 0 for the case of wiffu,, r < i <'s, otherwise
g; = 1. |

An example for a set of MLCs of the Stanford
arm can be found in previous work.? We are now
ready to state and prove the equivalence theorem.

Corollary 6. Suppose that two sets ¥, and &, formed
by the linear combinations of the inertia parameters of a
manipulator, have the same number of elements and & is
a set of MLLCs for determining 7. Then ¥, is also a set of
MLCs for = if and only if the values of the elements of &,
can be obtained from those of ¥, and vice versa, i.e., there
is a nonsingular constant matrix M such that

b = Ma (62)

where the components of a and b are the elements of &,
and &,, respectively.

Proof: According to the assumption, there are matrix
A(q, q, §) with linearly independent columns and
matrix P with linearly independent rows, such that
7 = Aa and a = Px, where x is the vector of all
inertia parameters.

When Eq. (62) holds, applying Lemma A2 to
P™MT yields the result that the rows of (MP) are
linearly independent, so the components of b are
also linearly independent. Moreover, we also obtain
7 = AM™'b, where the columns of (AM ™) are lin-
early independent by Lemma A2. This completes
the proof of the sufficiency.

If &, is also a set of MLCs for 7, there are matrix
B(q, q, q) with linearly independent columns and
matrix Q with linearly independent rows, such that
7= Bband b = Qx. Suppose that x € R” and a and
b are k-tuples. There are (p — k) linear combinations
(denoted by c) of x, such that the components of a
and c are linearly independent and form a basis of
the domain of x. Thus x can be expressed as

a
c

x = [Wy: Wz][ ] (63)



which yields the results that
7= BQW,a + BQWyc (65)

Note that ¥, is a set of MLCs. By Theorem 1, (BQW,)
must be zero and the columns of (BQW)) are linearly
independent. This leads to the conclusion that
QW, = 0 because the columns of B are linearly inde-
pendent, and that (QW;) is a nonsingular square
matrix according to Lemma A2. The claim of neces-
sity then holds. QED. m

S. CONCLUSION

The minimal linear combinations of the inertia pa-
rameters (MLCs) introduced in this article illuminate
the role of the identifiable parameters in the manipu-
lator dynamics. This article has presented a system-
atic approach to finding a set of MLCs. The problem
is first divided into two searches for two individual
sets of MLCs that determine the entries of the inertia
matrix and the gravity load. The MLCs for the gravity
load are easier to find and have been addressed in
an earlier work.” To find a set of MLCs for the inertia
matrix, we begin by decoupling the inertia parame-
ters of composite bodies into two parts, so that the
varying part of each parameter can be calculated
from the constant parts of the other parameters. The
rest of our task is then to carefully inspect the roles
of the constant parts of the parameters in the inertia
matrix. The technique for this is presented in section
4, where it is used to formulate Properties 2 to 4.
Applying Theorems 2 and 3 converts the elements
in Properties 2 to 4 to those of the MLCs for the full
manipulator dynamics. This step-by-step approach
is different from that in the author’s earlier work,?
although the results are identical. However, this set
of MLCs is slightly different from others in the litera-
ture'®”*-2 in some minor terms because a set of
MLGs is not unique. The equivalence of these differ-
ent results can be proved using Corollary 6 in the last
section. The crucial feature of the present approach is
that all derivations are in accordance with the least
squares theory, so the identifiability of the present
set of MLCs is assured.

The present set of MLCs also has some other
advantages: a systematic off-line identification
method for it has already been proposed,? and a
recursive formulation of the manipulator inverse dy-
namics in terms of the set of MLCs has been derived
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and shown to be more efficient than most other for-
mulations of the inverse dynamics in the literature,
The main emphasis of the present article is that the
minimal parameters of a manipulator should be
treated in the least squares sense, so that the minimal
parameters are equivalent to the identifiable param-
eters.

The author gratefully acknowledges the reviewers for
their constructive comments on the presentation of
this article. This article was supported by the National
Science Council, Taiwan, under Grant NSC80-0404-
E-009-31.

APPENDIX
Lemma Al. Suppose that

aq,q, 4, x) = 21 bi(q, x)g; + 21 kE Guq, )99k
j= f=1k=j
(Al)

where x € RP are the system parameters, q € R",
a: RwPmxnxp— Rm bj:R”x”——> R™, cjk:R”X”—> R™. Then,
a set is a set of MLCs for determining a if and only
if it is also a set of MLCs for determining
f,. . .,bLc,. . Y L ]

Lemma A2. Suppose that the columns of matrix A(6):
R™— R™** gre linearly independent over R™. The constant
square matrix B € RV is nonsingular if and only if the
columns of the product A(6)B (or BA(8)) are also linearly
independent over R™, [

T T
.,Cln, C21,- .

Lemmas Al and A2 are used in the proofs of

Theorem 3 and Corollary 6, respectively. The proofs
of these two lemmas are very simple and can be
found in a previous work.* In the following, we
prove the theorems in section 2.
Proof of Theorem 1: Sufficiency («): According to the
assumption that the elements of w are linear combi-
nations of x, there exists a constant matrix B € RV
such that

w(x) = Bx (A2)

The rank of B is k since the rows of B are linearly
independent. It follows from Egs. (3) and (A2) that

a(6) = A(0)b (A3)

where a; and b; are the ith columns of A and B, re-
spectively.
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We select k linearly independent columns b; and
then reorder them and the corresponding a,( ) to be
the first to kth columns of B and A(8), respectively.
If we let

alal(ﬂ) + - -+ akak(O) =
A(0)(ba; + “+ba) =0 (Ad)
theng,; = . = a; = 0because the linear indepen-

dence of the columns of A(6) over R” implies
(byoy + - + biry) = 0. We conclude that a;(8),
., a(0) are linearly independent over R™. Be-
cause the rank of B is k, there exist not all zero ¢;
such that (b;oy + . + bii104,.1) = 0. Because

> a(0)a; = A(6) (2 b,a,), VOER" (A5)

t

any k + 1 or more columns of A(8) are then linearly
dependent over R". Consequently, the number of
linearly independent columns of A is k.

Necessity (—): Because the number of linearly
independent columns of A(8) is k, we choose k lin-
early independent columns to construct A(): R" —
R™*, and let the other (m — k) columns form A(6):
R™ — R™m=k)_ We can partition x into X and X
such that

A(B)x = A(0)X + A(0)x (A6)
Every column () of A can be expressed as a linear
combination of the columns (a;) of A in the form of

(A7)

k
i=1

where a; are some constants. Substituting Eq. (A7)
into Eq. (A6), we get

A(0)x = A(O)W(X) (A8)

where

r—all DRI e e DR alk

wix)=x+ | a;

>

L akl . s . « s DR akk

(A9)

whose elements are linearly independent over
Rr. QED. m

Proof of Theorem 2: Suppose that there are
H(q, 9, ) = [H;:H,] and G(q) whose columns are
linearly independent over R*" and R*, respectively,
such that

7' = H(q, q, @w'(x) = Hw
+ (H,P, + H,P,)w? (A10)
8 = G(q)WA(x) (A11)
Thus,
, o Wi
T+ 78=[H(qq q: G(q)][wg(x)]
— — _— WK
=[H, i H,: G]P[ ] (A12)
wi(x)
where
1 P,
P=|0 P, (A13)
0 1

and I is the identity matrix. The fact that each entry
of H is associated with q and/or q (see Eqgs. (4) and
(5)) implies that the columns of [H : G] are linearly
independent over R*. This completes the proof of
the first part. Let ([H1 H, : G]P)a = 0. Because the
columns of [H : G] are linearly independent, Pa =
0. This is only possible when a = 0. The claim of

the second part is then true. QED. =
Proofof Theorem 3: Leth = [hyy, . . ., hy, By, o . .,
hd"and € = {cug, Cias  + ) Citns Cizas -+ -y Copal

Suppose that w(x):R? — Rk is a set of MLCs for
determining h, and there exists H(q):R"— R**
such that

h = H(@w(x) (A14)

By Christoffel symbols in Egs. (6) and (7), we get

¢ = C(q)w(x) (A15)
where C(q) is some appropriate matrix, whose col-
umns may be linearly dependent over R". Therefore,
w(x) is also a set of MLCs for [h', ¢"]” because the
columns of [H', C’]” are linearly independent over
R

__ Conversely, we assume that the columns of
[HT, CT]" are linearly independent, but the columns
of H are linearly dependent over R”. We linearly



combine the dependent columns of H to form H,
whose columns are linearly independent over R”,
such that

h = H(q)w(x) (A16)

where the elements of w(x) are linear combinations
of w(x) and are linearly independent over R?. Using
Christoffel symbols again, we obtain the result that
w(x) is also a set of MLCs for [h?, ¢']”. This contra-
dicts Theorem 1 since the dimensions of w and w
are not the same. Consequently, the columns of H
are linearly independent over R" if and only if the
columns of [H, C']" are linearly independent over
R". This implies that w(x) is a set of MLCs for h if
and only if it is also a set of MLCs for [h7, ¢']".
The rest of the proof consists of showing that a
set is a set of MLCs for 7! if and only if it is also
one for [h?, ¢’]T, which follows directly from Lemma
Al above. QED. =
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