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ABSTRACT   

Spectral reflectance estimation of an object via low-dimensional snapshot requires both image acquisition and a 

post numerical estimation analysis. In this study, we set up a system incorporating a homemade cluster of LEDs with 

spectral modulation for scene illumination, and a multi-channel CCD to acquire multichannel images by means of fully 

digital process. Principal component analysis (PCA) and pseudo inverse transformation were used to reconstruct the 

spectral reflectance in a constrained training set, such as Munsell and Macbeth Color Checker. The average reflectance 

spectral RMS error from 34 patches of a standard color checker were 0.234. The purpose is to investigate the use of 

system in conjunction with the imaging analysis for industry or medical inspection in a fast and acceptable accuracy, 

where the approach was preliminary validated. 
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1. INTRODUCTION  

 

The color perception of an object varies under different situations. It is determined by three attributes: scene 

illuminants, spectral reflectance of the object and observers. In terms of color engineering, metamerism reveals a 

fundamental phenomenon that  different reflectance spectrum can lead to the same color perception by human under 

specific conditions [1]. Reconstructing the spectral reflectance from image sensor outputs is essential not only for 

avoiding vision mistakes caused by metamerism, but also for more accurate material or industrial identification. Spectral 

imaging is a technique that combines spectroscopic system and imaging technique [2]. It requires to create a three-

dimensional (3D) data cube involving a series of images of the same object, where each one of them is measured at 

different wavelengths. Generally, a dispersive element (or scanning setup) is needed when acquiring the spectral 

information in time domain or spectral domain or spatial domain sequence. Optical elements such as color filter wheel, 

liquid crystal tunable filter, acousto-optic filter, prism, and gratings are employed. Despite scanning process can be quite 

precise, these approaches sometimes face challenge with its inherent bulky optomechanical setup and low speed.  

 

Multispectral imaging is widely used in fields such as remote sensing, artwork reproduction, medical diagnosis and 

so on. Most of the multispectral imaging technique use filters and monochrome charge-coupled device (CCD) to produce 

different channels of digital counts [3]. However, there exists mechanical difficulties and other obstacles in using filters. 

Instead of placing filters on the pathways of imaging, in this study, we offered active illuminants to produce different 

spectral channels. We setup a platform capable of acquiring images at least one order of magnitude more quickly than 

the existing tunable filter system. One superiority in this system lies in an active spectrally-tunable LED light source by 

our group [4][5]. By an optimal spectral mixing of LEDs with dynamic control, we can manipulate color channels at will. 

An integrating sphere was added to offer a stable and uniform lighting environment. In the following paragraph, we will 

introduce the platform layout and numerical algorithm in detail. Experimental results will be given to prove the 

feasibility of  spectral reconstruction with multispectral imaging.    

 

Imaging Spectrometry XVIII, edited by Pantazis Mouroulis, Thomas S. Pagano, Proc. of SPIE 
Vol. 8870, 88700C · © 2013 SPIE · CCC code: 0277-786X/13/$18 · doi: 10.1117/12.2023263

Proc. of SPIE Vol. 8870  88700C-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/27/2014 Terms of Use: http://spiedl.org/terms



 

 
 

 

2. MULTISPECTRAL IMAGING TECHNIQUE 

 

2.1 Concept of multispectral imaging 

Multispectral imaging is a fully digital technique that uses digital counts of imager to estimate the spectral 

reflectance of an object.  Figure 1 is the flow chart of the multispectral imaging. First of all, a training database was 

selected in accordance with purpose and measuring the spectral reflectance of each data set. Munsell catalog in moderate 

colors were chosen as training target for general purpose of color inspection. Secondly, Principal Component Analysis 

(PCA) was employed to find out the eigenspectral components of the selected database [6]. In this study,  merely six 

principal components were sufficient for reconstruction accuracy up to 98%, meaning that the first six eigenvectors is 

enough to extract the spectral feature of the selected spectral dataset (moderate color group). Certainly, the number of 

component is highly relevant to the spectral complexity. PCA helped us reduce data volume and shorten the processing 

time. As well, multichannel imager was used to acquire those color patches, accompanying with two pre-defined 

illuminations, six channels of digital counts could be retrieved. We could derive a transformation matrix to find the 

relationship between the digital values of each pixel and its spectral reflectance. In other words, talking about the 

calibration of the imaging system, we must characterize the entire imaging system to find the correspondence between 

the digital counts of imager and the illumination upon it. With the aid of the transformation matrix, there's no need to 

measure nor scan through the whole spectral domain. The spectral reflectance of interested target could be obtained 

simply by the measured digital values of the imager. Finally, the reconstruction can be conducted by the pseudo-inverse 

algorithm. 

 

2.2 Spectral reconstruction equations 

The transformation matrix, which links the correspondence of digital counts of imager and spectral estimation of 

each pixel, is the kernel of algorithm based on the camera model.  Equation (1) represents that the digital counts of CCD 

with the k-th channel is determined by the integration of illuminant ( )l  , the k-th channel of CCD’s sensitivity function 

( )ks   and spectral reflectance ( )r  of the object.  

 

                                                      ( ) ( ) ( )k kc s l r d                                                             (1) 

 

We can reformulate it into a matrix form as equation (2):  

 

                                                          

T ( )k kC S Diag L R
                                                                    (2) 

 

Since the spectral sensitivity of CCD is unknown, we employed an indirect approach based on learning reconstruction. 

Instead of directly measurement of sensitivity functions of CCD, a set of color patches were used as the calibration 

targets in the training database. The results are greatly influenced by the calibration targets. In terms of camera model in 

equation (3), the digital counts and spectral reflectance of each color patch in the training database have been measured 

already. The M matrix is the transformation matrix between digital values and spectral reflectance. The idea of 

multispectral imaging is to retrieve the reflectance information from the camera response. If the noise could be neglected 

in a constrained environment, there exists an inverse linear operator, the so called transformation matrix, between digital 

values of imager C and corresponding spectral reflectance R.   

 

train trainC =MR                                                                     (3) 

 

The transformation matrix M can be obtained via pseudo-inverse operation. The dimension of each matrix in equation (3) 

is the first thing to determine before applying pseudo inverse. Spectral reflectance of the patches based on Munsell color 

catalog, R, is a n*k matrix (n: wavelength intervals; k: number of color patches). C is the digital values, with dimension 

m*k (m: camera channel number). Namely, when k ≥ m, the problem becomes a least square approximation, where M is 
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the matrix which projects the spectra in dataset onto camera basis. We can derive matrix M as equation (4), and pinv 

stands for pseudo inverse.  

train trainM=C pinv(R )                                                              (4) 

 

Principal component analysis (PCA) is an effective approach to reduce the dimension of training dataset. We used PCA 

to extract the eigen-spectral components who dominate the spectral properties of the original dataset. E is the matrix 

where each column is an eigenvector of trainR , where A and trainR  represent the  weighting factors and mean spectrum, 

respectively. As we used eigen-spectral bases ( trainR ) in replace of original standard spectral bases ( trainR ),equation (3) 

can be expressed as equation (6): 

 

 

train trainR =EA+R                                                  (5)  

train
train

C =QA+MR
                                                          (6) 

 

 

Where we use a new matrix Q = ME to simplify the expression. Once we obtain the correspondence between the digital 

counts and weighting factors, we can estimate an unknown sample ( testA ) by transformation matrix based on the 

training dataset. In equation (7), the digital counts testC is already known by imager. We aimed to find out the 

corresponding weighting factors testA  for the purpose of spectral reconstruction.           

                                          

traintest testC =QA +MR                                                    (7) 

 

In equation (8) we compute the weighting factors of test samples. 

                                               
-1

test test-modifiedA =Q C                                                       (8) 

 

The last step is to put the weighting factors back into the eigen-spectral components of the system in interest, the spectral 

reflectance can be thus reconstructed from digital values of imager: 

 

traintest testR =EA +R                                                      (9) 

 

                                

Step 1. 

Measuring spectral 

reflectance

trainR (λ)
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Imaging: 

camera model

train trainR =EA+Rtrain train
C =MR

Step 3.

Principal component 
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R =EA +R

Step 4. 

Spectral reflectance

Reconstruction

 
 

Figure 1 : We aimed to build the relationship between spectral reflectance and digital counts through 

multispectral imaging technique. The first step was to measure spectral reflectance of a set of chosen patches 

as our training database. Then imaging these color patches with our platform. Those measured spectral 

reflectance were analyzed with PCA. With these digital counts and spectral reflectance, we found out the 

transformation matrix of this system. In the final step, we chose other color patches to verify our system 

through the spectral reconstruction algorithm.  
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3. SYSTEM DEVELOPMENT  

 

Figure 2 (a) shows the multispectral imaging platform, which consists of an integrating sphere, spectrally tunable 

LED-based illuminants, and a multi-channel imaging sensor. Integrating sphere is used to provide a stable and uniform 

lighting condition. Here we chose LED as our illuminants rather than halogen lamp. Although halogen lamp is able to 

provide a broadband spectral power distribution (SPD), it requires filters or gratings to achieve orthogonally spectral 

component. LED-based active illuminant consists of 8 types of LEDs, which are red, dental blue, true green, cyan, amber, 

warm white, cold white and Near-UV. The spectrally-tunable LED lighting system can help us create arbitrary spectral 

distribution (SPD) of illuminant. By mixing and tuning the LEDs, our purpose is to estimate the spectral reflectance of 

an object.  RGB-channel CCD accompanying with two light sources will make six channels. We setup color CCD and 

spectroradiometer, leaning at the angle of 8  by the middle line of the integrating sphere. By measuring the spectral 

reflectance and imaging the training dataset at the same time, we can build the transformation matrix for the system. 

Figure 2 (b) (c) shows the control program of our LED lighting system. By changing the percentage of each type of LED, 

different spectrum of illuminants can be produced. The advantage of this lighting system over the traditional method of 

using filters is that it is a much more direct way. Also we can avoid the mechanical problem such as the misalignment 

between filters and CCD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) Photograph of the imaging system. The main components includes an integrating sphere, 

spectro-photometer, multi-channel camera and LED clusters (b) graphical utility interface of spectrally 

tunable illumination (c) With adequate geometric layout and first-order optical design, we enable a 

uniform illumination on the color checker. 

 

Figure 3 (a) is the collection of color patches chosen as our training dataset. The number of color patches in our training 

dataset is near 300. Dual  SPDs were used in our study, with cold white (100%) + dental blue (100%) + cyan (100%) and 

warm white (100%) + red (100%). The two light sources were chosen because they almost cover the whole spectral 

range of visible light with likely complementary to each other, as shown in Figure 3 (b). In case of moderate color 

systems based on Munsell’s catalog, only six eigenvectors were needed when applying PCA. In our experiments, several 

combinations of light source have been tested. However, so far we discovered that monochrome light (using single LED) 

is unlikely to reconstruct spectral reflectance with certain level of accuracy. The reason is sharp-distributed SPDs might 

have a tight margin in sample spectral distribution. With proper arrangement of broadband illuminant pairs, spectral 

reflectance can be reconstructed by means of transformation matrix. We measured the color patches from the Munsell 

training database first. These targets were distributed in every hue of the color system. Since the Munsell catalog is a 
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standard collection to represent most general colors in nature scenes, Munsell-based dataset was assumed to be an 

appropriate candidate in development of transformation matrix.  
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Figure 3 (a) Munsell-based training target (b) SPD of two illuminants. Both SPDs are broadband and 

complementary to some extent in order to ensure the precision of spectral reconstruction from every hue of 

the color system. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

In this paragraph, we will use three other color sample groups to examine the capability of spectral reconstruction 

of proposed methodology and system. The first group is another four Munsell color patches outside the training database. 

The second is Macbeth color checkers. The third one is a computer generated print. Three test samples are discrepant in 

the realm of Munsell-based training database. We will investigate the performance of both spectral reconstruction and 

the influential factors in accuracy. 

 

Figure 4 is another four Munsell color patches which are not within the realm of our training dataset. Experimental 

results showed that the reconstructed spectra are in close agreement with those measured by a spectroradiometer. 

CIEDE2000 and spectral reflectance RMS error were calculated as the quantitative merits. CIEDE2000 accumulates the 

spectral difference across the entire visible spectrum, thus leads to a reasonable merit for distinguishable judgment for 

human vision. If CIEDE2000 is smaller than 1, that means the color difference of two patches are unlikely to be 

distinguished by human vision. Except in case B that the color difference is slightly larger than 1, the reason is due to the 

hue of that color patch is intermediate : red-yellow. We can see from the reconstruction, in the long wavelength those 

two lines couldn’t fit very well, thus causing slightly larger color difference. However, the overall performance are the 

best. Since these four patches and our training database are both from Munsell Book of Color. Not only the texture but 

also the ink are the same.  
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Figure 4: Reconstructed spectral reflectance (black line) and measured spectral reflectance (red line) of four 

color patches on Munsell Book of Color. Color Difference CIEDE 2000 and spectral reflectance RMS error 

are calculated. All the four patches have value=6, chroma=8 and with different hue.  

(A=7.5r, B=7.5yr, C=7b, D=7.5rp) 

 

 

 

The second case is the Macbeth color checker, where a standard checkerboard contains the basic colors in most nature 

scenes. Figure 5 shows five arbitrarily-selected color patches. It’s worth noting that #17 (magenta) exhibits a large 

discrepancy amid the long wavelength region. Color patches of Macbeth have higher color saturation, while our training 

database mostly belong to moderate colors. The choices of training database can determine the ability of reconstruction, 

thus influence the color performance of these high-saturated color patches. At last, Figure 6 is a computer generated print. 

Compared to the former experiment using color checkers, the reconstruction is less accurate, especially in the long 

wavelength region. The color picture was generated by computer and then printed out by laser printer, since we didn’t do 

the calibration for printer, there might exists color difference in the beginning. In addition, the number of color patches in 

training database is around 300, there are chances that increasing the color patches number or adding other training 

samples with different textures and saturations might help to improve the capability of spectral reconstruction for all 

interested samples.  
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Figure 5: We chose the best five samples over the 24 patches on Macbeth Color Checker that achieve the best 

reconstruction. Reconstructed spectral reflectance (black line) and measured spectral reflectance (red line). 

Color Difference CIEDE 2000 and spectral reflectance RMS error are calculated. 
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Figure 6: Reconstructed spectral reflectance (black line) and measured spectral reflectance (red line) of 

computer generate picture. Color Difference CIEDE 2000 and spectral reflectance RMS error are calculated. 

Right side is the real image retrieved under two illuminants. 

 

 

5. CONCLUSIONS 

In this study, we reconstructed the spectral reflectance of a targeted color patch image by an integrating sphere 

imaging system and spectrally-tunable LED illumination. Based on the principal component analysis, no additional 

dispersive elements are required, the reflectance spectra of 34 patches from standard color checker board were estimated 

with high accuracy (RMS error_ave = 0.234). In order to optimize the estimation transformation matrix for training data, 

a tunable illumination source such as LED cluster is implemented. Preliminary results validated this full digital 

restoration process, numerical operation with PCA effectively save the system complicity and computational efficiency 

without expense of estimation accuracy. Multispectral imaging can provide more color information at each pixel than 

those with conventional tri-stimulus imaging. As a result, many vision applications stand to benefit. Certainly, there is a 

huge space yet required for further investigation, such as noise model, statically independence of the spectral target, and 

stability of LED-based illumination system.   
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