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Directional Symmetry of the Time Lag for Downstream Absorptive 
Permeation studied by the Matrix Method 
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The directional symmetry of the downstream time lag for absorptive permeation, accompanying a first-order 
reaction, across a heterogeneous membrane h a s  been proven by t h e  matrix method based on the theory of 
Siegel. Owing to t h e  heterogeneity the partition coefficient (K),  diffusivity (D) and rate constant (k )  are all depen- 
dent on position. The directional symmetry was first shown for multiple laminates with each laminate having a 
distinct K,  D and k .  The transmission matrix of t h e  system is then  a sequential product of those of the individual 
laminates. The proof is for the uni t  value of t h e  determinant of the transmission matrix for each laminate and, 
hence, for the  whole system. Directional symmetry is thus proven for the heterogeneous membrane, since it can 
be visualized to be an assembly of an infinite number of infinitely thin,  homogeneous laminates. 

A typical experiment for permeation across membranes 
involves maintaining, at upstream and downstream faces, the 
penetrant activity at constant levels a, and a d ,  usually with 
a, > a d  = 0, respectively. The penetrant activity in the mem- 
brane is initially adjusted to a d  for running absorptive per- 
meation or to a, for running desorptive permeation. ' v 2  The 
accumulated amount of penetrant release is then measured as 
a function of time at the downstream or upstream faces. A 
plot of total release us. time gives the steady-state per- 
meability from the slope and the time lag from the intercept 
with the time axis. Thus four time lags are given from various 
combinations of upstream/downstream and desorptive/ 
absorptive permeation. ' v 2  In addition, the four time lags are 
also associated with reverse permeation resulting from the 
exchange of the upstream and downstream compartments.'T2 
In conjunction with the permeability, appropriate time lags 
are used to determine the diffusivity and solubility (or parti- 
tion coefficient) of the penetrant inside the membrane if diffu- 
sion is F i ~ k i a n . ~ - ~  They are also employed to identify and 
study the non-Fickian time-lag increments due to the time 
and/or position dependence of diffusion  parameter^^.^ and a 
consistency check of the experimental determination of 
various time  lag^.^,^,^ In practical applications, however, the 
diffusion time lag can be visualized as a gauge of the stability 
of colloid flocculation,* or as a measure of the induction time 
of crystalli~ation.~~ ' These are possible because the above- 
mentioned processes can all be modelled as diffusion under 
the influence of a potential field. 

Consider under what conditions the downstream absorp- 
tive time lags for forward and reverse permeation are equal, i.e. 
the directional symmetry holds. Jaeger' ' was probably the 
first author to address this point in the context of heat con- 
duction across a multi-laminate slab. The extensive theoreti- 
cal studies of Petropoulos et a1.1*5912913 have revealed that the 
time-lag symmetry holds for any type of heterogeneity if D 
and K are functions of position, x, only. In the more general 
case where D and K are functions of both x and concentra- 
tion, p, the directional symmetry applies only if there is sym- 
metry about the midplane of the membrane. For K(p,  x) and 
D ( p .  x) without symmetry about the midplane, a distinction 
between the two cases of separable and non-separable p, x, 
can be made by checking the symmetry or asymmetry of flux, 
respectively. Those results are summarized in Table IV of ref. 
5, and serve a practical, diagnostic purpose. Up to now, 

however, only permeation across heterogeneous membranes 
in the absence of chemical reactions has been considered. 

Of increasing practical importance are membranes with 
associated reactive moieties, such as catalysts or enzymes, to 
enhance the productivity of chemical and biological processes 
in catalytic membrane r eac to r~ , '~  to enhance the per- 
formance of biosensors,' or to simulate active transport 
using uneven distribution of enzyme activities. A theoretical 
study' has also suggested that the directionality of products 
and substrate fluxes and the separation of product and sub- 
strate can be drastically improved by using an appropriate, 
non-uniform distribution of the reactive moieties. Hence, it is 
desirable to extend the discussion of directional symmetry to 
include the case where the reaction takes place inside the 
membrane. Only first-order reactions with position- 
dependent rate constants are considered here. This simplifica- 
tion will, of course, not cover all cases, especially for the 
enzyme catalytic reaction which usually has a Michaelis- 
Menten type rate constant. However, as pointed out by 
Kubin and Spacek,16 in the case of a linear gradient distribu- 
tion of the enzyme with high or low concentrations of sub- 
strate, the accompanying first-order reaction will have a 
position-dependent rate constant. 

The matrix method will be employed to prove the direc- 
tional symmetry of the downstream time lag for absorptive 
permeation across a heterogeneous membrane accompanying 
a first-order reaction. In a previous publication'8 the direc- 
tional symmetry of the time lag for the same system was 
proven using the symmetry property with respect to the 
exchange of two coordinate arguments of the Green's func- 
tion associated with the diffusion equation. 

A review of the matrix formulation of the mass diffusion 
(or heat conduction) problem can be found in ref. 19-21. 

Transmission Matrix of a Homogeneous Membrane 
Consider one-dimensional absorptive permeation across a 
homogeneous membrane extending from x = xu to x = xd, 
with xd > xu. The penetrant is also involved in a first-order 
reaction with rate constant k inside the membrane. The con- 
centrations of penetrant in the upstream compartment (at the 
left side of the membrane) and downstream compartment (at 
the right side of the membrane), p,(t) and p d ( t ) ,  respectively, 
are time-dependent. The permeation experiment starts with 
zero concentration of penetrant inside the membrane. The 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
94

. D
ow

nl
oa

de
d 

by
 N

at
io

na
l C

hi
ao

 T
un

g 
U

ni
ve

rs
ity

 o
n 

28
/0

4/
20

14
 1

7:
20

:0
6.

 
View Article Online / Journal Homepage / Table of Contents for this issue

http://dx.doi.org/10.1039/ft9949002765
http://pubs.rsc.org/en/journals/journal/FT
http://pubs.rsc.org/en/journals/journal/FT?issueid=FT1994_90_18


2766 J. CHEM. SOC. FARADAY TRANS., 1994, VOL. 90 

mathematical formulation is then 

a a 2  

at a x 2  
- P(X, t )  = D - (x, t) - kp(x ,  t ) ;  

where D is the diffusivity of the penetrant in the membrane; 
p(x, t ) ,  p(x, , t ) ,  p(xd, t) represent, respectively, the concentra- 
tion inside the membrane and at the upstream and down- 
stream sides. K ,  K , ,  & are partition coefficients in the 
membrane, upstream and downstream compartments. The 
boundary conditions take into account the requirement that 
the activity of the penetrant ( = p / K )  should be continuous at 
interfaces. 

We will analyse the problem in the Laplace domain. 
Expressing eqn. (1) in terms of s, the Laplace variable, and 
?(x, s), the Laplace transform of p(x, t) ,  gives 

d2  
dx S?(& s) - p(x, 0) = D 2 ?(x, s) - kfi(x, s); 

With p(x, 0) = 0, the solution to eqn. (2) is given by 

K 
sinh[q(x, - x)] 

fi(x, s) = sinh[q(x, - xu)] {F 
1 fid(S) 

Kd 

+ - sinh[q(x - xu)] (3) 

with q = (s + k/D)'I2. The permeation fluxes at the upstream 
side (x = xu) and downstream side (x = xd) are then 

j , ( s )  = D q K { Y  coth(qh) - 

where h (= xd - xu) is the thickness of the membrane, and the 
positive direction of the fluxes is defined to be from left to 
right. Eqn. (4) and (5) can be rewritten in a matrix form 

The 2 x 2 array in eqn. (6) is the transmission matrix 
absorptive permeation across a homogeneous membrane. 

(6) 

for 

Directional Symmetry of Downstream Time Lags for 
Absorptive Permeation accompanying Chemical 

Reactions across Multiple-laminate and/or 
Heterogeneous Membranes 

Consider a membrane which consists of a series of n different 
homogeneous laminates and extends from x = xu to x = xd. 
A typical ith slab (i = 1, 2, . . . , n), extending from x = x i -  to 
x = xi ,  is characterized by a thickness di , a diffusitivity Di,  a 
partition coefficient K i  and a first-order rate constant ki. 
Thus we have di = xi - x i -  1, xo = xu and x, = xd . The initial 
and boundary conditions are the same as in eqn. (1). In terms 
of transmission matrices the permeation problem is formu- 
lated as [z] = T,(S)T,-~(S), ..., T , ( s )  [-] K ,  = T(s) [-I K ,  (7) 

where T(s) is the resultant transmission matrix of the whole 
membrane. T&), the transmission matrix of the ith com- 
ponent laminate, is in the same form as the transmission 
matrix in eqn. (6) except for D ,  K ,  q and h being attached by a 
subscript i. 

The transport equation, eqn. (7), can be converted to 

[ = T - ' ( s ) [ K ]  (8) 

This is possible because the determinant of every component 
matrix T(x) (i = 1, . . . , n) is unity, and hence the determinant 
of T(s) is also unity, i.e. T(s) is non-singular. Let the 2 x 2 
matrix, T(s), be represented by a general form as 

(9) 

where a(s), B(s), y(s), 6(s) are real numbers. With unit determi- 
nant of T(s), its inverse becomes 

As mentioned before, exchanging upstream and downstream 
compartments results in flow reversal. It is natural to define, 
in reverse permeation, the positive direction to be from right 
to left. Schematically 

where the superscript R is used to signify the reverse per- 
meation. A combination of eqn. (8), (10) and (11) yields 

This is the transport equation of reverse absorptive per- 
meation formulated in matrix form. 

According to Siege121 the downstream absorptive time lag 
can be calculated from the transmission matrix element as 

where T,,(s) is the element of first row and second column of 
T(s). For both forward and reverse permeation TI&) is iden- 
tified to be P(s). Thus it is readily seen that the downstream 
absorptive time lags for forward permeation, L, and those for 
reverse permeation, I!, are identical, i.e. 

(14) 

A heterogeneous membrane, in which D, K and k are con- 
tinuously varying with position, can be visualized as an 
assembly of n infinitely thin, homogeneous laminates with 
n + 00, keeping the total thickness equal to the original one. 
Since the preceding proof is valid irrespective of the value 
of n, and the thickness of each laminate, the directional sym- 
metry obviously holds for absorptive permeation accompany- 
ing a first-order reaction across a heterogeneous membrane. 

The work was funded in part by the National Science 
Council, Taiwan, Republic of China under the project NSC 
82-0208-M-009-0 19. 
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