
1412 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 6, JUNE 2011

High-Efficiency Processing Schedule for Parallel
Turbo Decoders Using QPP Interleaver

Cheng-Chi Wong and Hsie-Chia Chang

Abstract—This paper presents a high-efficiency parallel archi-
tecture for a turbo decoder using a quadratic permutation polyno-
mial (QPP) interleaver. Conventionally, two half-iterations for dif-
ferent component codewords alternate during the decoding flow.
Due to the initialization calculation and pipeline delays in every
half-iteration, the functional units in turbo decoders will be idle for
several cycles. This inactive period will degrade throughput, espe-
cially for small blocks or high parallelism. To resolve this issue, we
impose several constraints on the QPP interleaver and rearrange
the processing schedule; then the following half-iteration can be
executed before the completion of the current half-iteration. Thus,
it can eliminate the idle cycles and increase the efficiency of func-
tional units. Based on this modified schedule with 100% efficiency,
a parallel turbo decoderwhich contains 32 radix- SISOdecoders
is implemented with 90 nm technology to achieve 1.4 Gb/s while de-
coding size-4096 blocks for 8 iterations.

Index Terms—Parallel turbo decoder and quadratic permuta-
tion polynomial (QPP) interleaver.

I. INTRODUCTION

T HE turbo code, which can achieve near Shannon limit
performance via iterative decoding process, is an impres-

sive forward error correction technique [1]. It is typically con-
structed with two constituent convolutional codes and one in-
terleaver. The corresponding codeword includes the systematic
data along with two parity checks, which are encoded from the
information in original sequence and in permuted sequence, re-
spectively. During the decoding procedure, we need one soft-in/
soft-out (SISO) decoder to calculate soft output values and sev-
eral memories to store received codewords and temporary re-
sults. The SISO decoder can utilize the maximum a posteriori
probability (MAP) algorithm [2] to obtain the log-likelihood
ratio (LLR) and extrinsic information of each constituent con-
volutional code. The LLR is used to make a decision, while the
extrinsic information is treated as the a priori probability esti-
mation for the other constituent code. Such soft value compu-
tation of each constituent code is called one half-iteration, and

Manuscript received June 01, 2010; revised October 03, 2010; accepted
November 05, 2010. Date of publication January 20, 2011; date of current
version May 27, 2011. This work was supported in part by the NCTU-MTK
Research Center and in part by the National Science Council (NSC), Taiwan,
under Contract NSC 99-2220-E-009-033. This paper was recommended by
Associate Editor V. Gaudet.
The authors are with the Department of Electronics Engineering and Institute

of Electrics, National Chiao Tung University, 300 Hsinchu, Taiwan (e-mail: hc-
chang@mail.nctu.edu.tw).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCSI.2010.2097690

two successive half-iterations make a complete iteration. The
decoding flow alternates between these components until cer-
tain stopping criteria are satisfied.
The interleaver to generate the permuted sequence is crucial

to the error-correcting capability, but its pseudo random prop-
erty complicates parallel execution and restricts throughput
enhancement. To solve this problem, many contention-free
interleavers which allow multiple SISO decoders to process
every codeword under trivial memory mapping are proposed
[3]. The quadratic permutation polynomial (QPP) interleaver is
such an interleaver and is adopted by 3GPP LTE standard due
to its simple formula and outstanding performance [4], [5]. For
a size- block, the QPP interleaving formula is

(1)

where is the original address, and stands for the inter-
leaved address. The interleaving parameters, and , are de-
termined by the block size [4]. In general, there will be many
valid pairs of and . After a careful search of these param-
eters, we can get the contention-free interleavers with superior
error-correcting capability [4].
For practical turbo decoders, the processing schedule is

also an important design issue. The percentage of time used
for generating outputs within each half-iteration, denoted as
operating efficiency, will affect the throughput calculation [6].
This factor is mostly dependent on block size, and its value is
low for decoding small blocks. A parallel architecture with
SISO decoders will divide every received size- block into
size- subblocks. However, the overall speedup will

be less than the expected because a shortened subblock
size leads to lower operating efficiency. Several methods have
been proposed to improve this factor. The modified schedule
in [7]–[9] has shorter latency and higher efficiency at the
expense of extra storage elements. The work in [10] restricts
the interleaving rule so that the decoder can carry out partial
processes of the current half-iteration and partial processes of
the following half-iteration concurrently. Based on these two
ideas, a high-efficiency schedule and special QPP interleavers
are presented. Moreover, a design that uses 32 radix- SISO
decoders, each of which can complete the executions of 4 trellis
stages per cycle, to decode the rate- and size-4096 block
is implemented. With the proposed approaches, its operating
efficiency can be enhanced from 66.7% to 100%.
The paper is organized as follows. Section II introduces the

relation between processing schedule and operating efficiency.
Section III illustrates how to achieve high operating efficiency

1549-8328/$26.00 © 2011 IEEE

WONG AND CHANG: HIGH-EFFICIENCY PROCESSING SCHEDULE FOR PARALLEL TURBO DECODERS USING QPP INTERLEAVER 1413

by imposing constraints on the QPP interleaver. Section IV dis-
cusses the proposed schedule and the corresponding SISO de-
coder. Section V gives the simulation and implementation re-
sults; and Section VI concludes this paper.

II. PROCESSING SCHEDULE AND OPERATING EFFICIENCY

A practical SISO decoder usually adopts the sliding window
method to execute the path metric and LLR for less overhead
[11]. Fig. 1(a) shows the typical processing schedule within
two half-iterations [12], where stands for the th window.
In each window, the dummy backward path metric , forward
path metric , backward path metric , and LLR are computed
successively. Each half-iteration can be divided into four par-
titions: is the pipeline delay for accessing data from memo-
ries to SISO decoders; is the interval for initial metric cal-
culation between the first input and the first output; is the
time for deriving all LLR’s and decisions; and is the pipeline
delay for writing extrinsic information back to memories. The
following half-iteration can not start until the processes of the
current half-iteration finish. Fig. 1(b) shows when the major op-
erations of every window are executed. In every half-iteration,
it takes cycles to generate the decoding results; so we can de-
fine the operating efficiency of one SISO decoder as

(2)

All of , and are determined by decoder architecture
and block size. Both and are constant because they only
comprise memory access time and pipeline delay time. Here we
represent the window length as and use a radix- SISO de-
coder to process successive trellis stages within one cycle.
From Fig. 1(a), includes cycles and few pipeline de-
lays. When and are fixed, is almost the same in any
block. By contrast, is in proportion to the window number.
If the SISO decoder has to process windows, then
requires cycles. Therefore, the of the typical

schedule can be expressed as

where is the summation of , and the constant part of
. It is obvious that smaller results in lower , especially

when is close to . Based on our design characteristics, we
assume that consumes 8 cycles (and) and that

equals 8 cycles (and). These assumptions
are helpful in getting the ’s numerical value in the following
discussion.
From [13], the parallel design using radix- SISO de-

coders with clock frequency , efficiency , and iteration
number can achieve the throughput as

(3)

Using large and large is a common method to enhance
throughput. However, the increment of the two factors will
cause negative effects on and . The choice of high indi-
cates the extension of the critical path and a decrease of . Also,
each SISO decoder processes windows in the parallel

Fig. 1. Conventional processing schedule with two windows. (a) Decoding
flow for two half-iterations. (b) Active periods of main components.

Fig. 2. Modified schedule with two windows % .

architecture, so we need to replace with while com-
puting . The overall speedup with respect to is influenced
by the change of . For example, a block with has
97.7% operating efficiency. After using 32 parallel decoders,
the of each subblock is reduced to % . The
actual speedup is about 18 times rather than the expected 32
times. Due to the declining , parallel processing has only
limited success.
From (2), , and dominate the operating efficiency .

A trivial solution for raising is to shorten their execution time.
Instead of the dummy calculation, the works in [7]–[9] utilize
the boundary of and from the previous iteration to initialize
and in the current iteration. Fig. 2 shows the modified pro-

cessing schedule. This initialization approach can reduce
cycles from , so the general expression of becomes

Here we take the above example with and
again; the of each SISO decoder with is improved
from 57.1% to 66.7%, so the speedup is about 21 times. This
schedule with smaller can reduce the damage of the declining
in a highly parallel architecture.

III. QPP INTERLEAVER CONSTRAINTS FOR OVERLAPPING
HALF-ITERATIONS

The operating efficiency for small blocks is far from 100% in
normal processing schedules like Fig. 1 or 2. The major reason
of this disappointing result is the necessary execution time (
, and). Reducing them to zero within each individual half-

iteration is difficult, but starting the succeeding half-iteration in
advance can achieve the same effect. The design could com-
pute the LLR of one component code and the path metric of

1414 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 6, JUNE 2011

another component code at the same time [10]. For simplicity,
this method is called overlapping half-iterations. However, the
turbo decoder would encounter several problems. The first one
is the shortage of reliable a priori probability estimation for
the new half-iteration, which might cause a large performance
loss. The other problem is memory conflict; this would arise
when one memory address is accessed by writing the output of
the unfinished half-iteration and reading the input for the new
half-iteration simultaneously. To avoid the above problems, the
corresponding interleaver must guarantee no mapping between
the processed data of different constituent codes involved in the
overlapping region.
The turbo decoder needs appropriate interleaving rules and

processing schedules for successful overlapping half-iterations.
In our approach, all original data are divided into two groups
according to their window indexes. All permuted data are also
classified into two window groups. The second step is mapping
one window group in the original sequence exactly onto one
window group in the permuted sequence. This rule implies that
the remaining data of both sequences will be correlated with
each other.We then take advantage of the processing schedule in
[7]–[9], where all windows can be processed in arbitrary order
by utilizing previous ’s and ’s. By arranging the execution
order of all windows properly, one window group in the orig-
inal sequence and its uncorrelated group in the permuted se-
quence can be decoded at the same time. Thus, the decoding
process with overlapping half-iterations can be accomplished.
In this section, two types of interleaver constraints will be in-
troduced. As the parameters meet either of them, the interleaver
can possess the mentioned characteristic. In addition, a turbo
code with such a restricted interleaving rule can obtain compa-
rable performance as a conventional turbo code.

A. Interleaver Constraints for Overlapping Half-Iterations

First of all, a proper address expression is necessary in the
proposed strategy. The in (1) is replaced with , indi-
cating the th symbol in the th window. With the above sub-
stitution, the interleaving address is rewritten as index in the
th window

(4)

Note that and . The is
determined by and , whereas only depends on [4]. We
can divide both sides in (4) by and get as (5)

(5)

The is the remainder of this division

The interleaver design involves classificationmethods and map-
ping rules, and only and are under consideration. All win-
dows are categorized according to and modulo 2; then even
’s and odd ’s must be mapped onto different groups of ’s

after interleaving. Three basic restrictions are set in this paper:
, and , where the notation “ ” indicates

divides ; otherwise “ .” The first restriction, ,
promises that is an even number. As and , it
is trivial that , and

. With these properties, (5) leads to

(6)

The term within the floor function determines the relation be-
tween and . It is essential that, for all possible ’s, the re-
sults of the floor function modulo 2 are the same; they are all
0’s or all 1’s, and then either of or

can hold. For this purpose, we must find special and
. The following constraints on these parameters can be used

for .
Proposition 1: If , and can satisfy (7a), (7b), and (7c),

then and can be congruent modulo 2

(7a)
(7b)
(7c)

Proof:
a) The floor function in (6) can be rewritten as

b) With (7a) and (7b), both and are in-
tegers. If is an odd number, and are
congruent modulo 2 after applying (7c); otherwise, they
are both even integers. In either case, these constraints
make their summation always be an even integer. They
then can be moved out of the floor function

c) Due to , the range of is , and
will be eliminated.

d) As a result, the last term in (6) is divisible by 2 and can be
removed; and holds true for to

and to .
In the proof, decomposing (6), checking the summation of

and , and removing are critical steps.
If we replace (7a) by with another integer , the de-
composition will generate , and the elimination will fail.
Without (7c), an odd number might result in an odd summa-
tion of and , and it would destroy the con-
sistency of for all ’s. This set of constraints
lets all even ’s map to even ’s and odd ’s map to odd ’s.
The window length is an important factor in finding suitable
interleaver parameters. This search process can start by setting

or . By adding
multiples of to and , we can get many usable :

and ,
where and are arbitrary integers. The final step is to verify
the corresponding performance of the turbo code with these
parameters.

WONG AND CHANG: HIGH-EFFICIENCY PROCESSING SCHEDULE FOR PARALLEL TURBO DECODERS USING QPP INTERLEAVER 1415

B. Variant Constraints for Overlapping Half-Iterations

If the tail-biting technique is applied [14], we can have
more choices of the interleaving parameters for overlapping
half-iterations. Another constraint set that promises

in an alternative way will be used for this method.
Since the initial and ending states are the same, the whole
trellis can be regarded as a loop. The decoding procedure
for the original sequence, , could be ro-
tated as . Similarly, the permuted
sequence also could be changed from to

. The cyclic shift with offset
reorganizes the window classification and allows for different
constraints.
The value of relies on a feature of the interleaving rules.

For our variant constraints on the QPP interleaver, must be
1. Before presenting another proposition, we have to redefine
the indexes for the rotated sequence. Here and

are expressed as and ,
respectively. The relation between the modified indexes and the
original indexes can be further derived as follows:

Each of the and has two possible
values: and 0. Besides, in (4), implies

Hence, the two terms are equivalent to each other

(8)

With the modified indexes, the interleaving parameters for
can be proven as well as for

.
Proposition 2: If , and can satisfy (9a), (9b), and (9c),

then and are true.

(9a)
(9b)
(9c)

Proof:
a) By substituting for in (6), we get

(10)

b) The second floor function in (10) can be rewritten as

Due to (9a), (9b), and (9c), the summation of the first two
terms is an even integer and can be moved out of the floor
function. This outcome lets (10) change to

(11)

c) The term is given in (8). If is 0, is
0; otherwise, its value is . Therefore, (11) can be further
expressed as in (12)

(12)

d) The relation of and can be found by substituting
for in (6) and simplifying the equation with the proposed
constraints and mentioned properties

(13)

Then, the value of and are assigned

(14)

e) Finally, (12) and (14) indicate that both
and hold true.

The constraints set is similar to the preceding one, but it uses
to replace . It will generate by the

decomposition as in (11) or (13). Although this term has two
possible values, the substitution of or can offer a comple-
mentary number and get a constant result. With (9a), (9b), and
(9c), the required property for the overlapping process in the cir-
cular trellis structure is allowed. Here we take the example of
size-16 blocks with . We represent the original and the
permuted sequences as and , re-
spectively. As the interleaver meets

the two windows, and
, are mapped to and

1416 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 6, JUNE 2011

Fig. 3. Performance of rate- turbo codes in an AWGN channel and for BPSKmodulation: floating point simulation withMax-LogMAP algorithm, 8 iterations,
various block sizes, and three sets of .

TABLE I
PROPERTIES OF VARIOUS AND

Fig. 4. Architecture of the SISO decoder using previous path metrics.

. The other windows in the original sequence,
and , are mapped

to and . During
the search for proper parameters, could be
or at first. The subsequent flow is to examine
the performance of the turbo code while equals

or with
any integers and .

TABLE II
AREA OF MAIN COMPONENTS IN DIFFERENT RADIX- SISO DECODERS

Fig. 5. Overlapping half-iterations with two windows % .

C. Performance of Turbo Code With Constrained Parameters

Fig. 3 shows the performance of turbo codes with different in-
terleaver parameters for , 1024, 2048, and 4096. The
simulation utilizes the turbo code generator polynomial in the
3GPP LTE standard and the tail-biting method [5], [14]. Here
we apply a typical processing schedule with [12]. For
each block size, can meet (7a), (7b), and
(7c); can meet (9a), (9b), and (9c); and

are the parameters defined in [5]. The selec-
tion of these parameters mainly depends on their spread factors,
which can filter inferior interleavers quickly [4], [15], [16]. Both

and have higher

WONG AND CHANG: HIGH-EFFICIENCY PROCESSING SCHEDULE FOR PARALLEL TURBO DECODERS USING QPP INTERLEAVER 1417

Fig. 6. Overlapping half-iterations with four windows % . (a) Decoding flow for several half-iterations. (b) Active periods of main components.

spread factors than most interleavers under their respective con-
straints. Table I shows the properties of these interleavers, in-
cluding spread factor and minimum distance [17]. Note that
these data are helpful for removing interleavers that result in
very poor performance. An accurate estimation of performance
must consider their distance spectra. At error rate, the per-
formance loss caused by both restricted interleavers is about 0.3
dB for and 0.1 dB for , while the loss be-
comes insignificant for or . If the window
length is 16, the specification parameters
can also satisfy the second proposition. The corresponding de-
coder could support overlapping half-iterations and get better
operating efficiency. However, the short window might reduce
error-correcting capability. In comparison to for

, the code with has 0.1 dB loss at error rate.
To obtain both benefits of performance and operating efficiency,
sufficient window length plays a dominant role in the search of
parameters.

IV. ARCHITECTURE AND SCHEDULE OF THE PROPOSED
SISO DECODER

Both the architecture and the schedule are adjusted to support
overlapping half-iterations. The hardware cost of one SISO de-
coder is greatly affected by the design characteristics and de-
coding flow. Each radix- SISO decoder in our design deals
with one size-128 subblock. The subblock is divided into four
windows with . Since the modified architecture al-
lows an unusual execution order of all windows, the overlapping
process becomes likely to work. In the following discussion
about the proposed schedule, we only take
into account. For the other condition with a tail-biting trellis
structure, the corresponding schedule can be derived by rotating
either the original sequence or the permuted sequence.

A. Modified SISO Decoder Architecture

Fig. 4 illustrates the block diagram of the modified decoder.
Its main components include branch metric units, add-com-
pare-select (ACS) circuits, the LLR unit, and buffers. Unlike the
architectures in [12], the circuits for computing are unnec-
essary, and the amount of input buffers are reduced. However,
it needs extra storage elements for previous boundary metrics
to initialize the path metrics of each window. If the processed
blocks are small, the modified SISO decoder requires smaller
buffers, which might reduce hardware cost compared to a
conventional SISO decoder. Furthermore, the exploitation of
a high-radix structure will make a larger difference between
the two SISO decoders since the area of combinational circuits
grows rapidly, but the boundary metric storage is unaffected.
Table II gives the synthesis results of the SISO decoder with

conventional andmodified schedules. The components with sig-
nificant difference are listed here. The conventional SISO de-
coder also needs some boundary storage for appropriate initial-
ization in the parallel architecture. When the SISO decoder is
designed for and , the circuits with the modi-
fied schedule save about 1.5 k and 9.5 k gates count in radix-
and radix- structures, respectively. Consequently, the parallel
architecture using this radix- SISO decoder for size-128 sub-
block can benefit area overhead.

B. Proposed High-Efficiency Scheduling

The decoding flow within each half-iteration should be ar-
ranged before overlapping two consecutive half-iterations. The
guideline for this arrangement is the prevention of mapping cor-
relation among the original and the permuted sequences in the
overlapping region.With the relation between and , the exe-
cution order can be determined. According to the classification
method, we let the SISO decoder first handle all the windows

1418 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 6, JUNE 2011

Fig. 7. Performance of rate-1/3 turbo codes in an AWGN channel and for BPSK modulation: fixed point simulation for size-4096 blocks with Max-Log MAP
algorithm, , and 8 iterations.

whose indexes are identical in modulo-2 calculation. Thus, the
remaining windows in the current half-iteration will belong to
the same group. When we choose the uncorrelated windows
as the initially processed data in the following half-iteration, a
high-efficiency decoding process free from conflict is feasible.
Employing the overlapping half-iterations can raise the op-

erating efficiency, but the maximal improvement will be domi-
nated by subblock size and hardware resources. Since the exe-
cution of one window group (windows) takes

cycles, the subsequent half-iteration can start at least
cycles prior to that in the normal schedule. For the overlap-

ping process, the equivalent cycle number of one half-iteration
is shortened to , and this variation leads to

(15)

Note that can exceed 100% if . However,
the above condition implies a demand for double the number of
functional units. If extra overhead is disallowed, then 100 %
will be an upper bound of . Two fundamental examples of the
proposed schedule are demonstrated here. In Fig. 5, the sub-
block contains only two windows; this is the minimum window
number due to the basic restriction, . The LLR
of original-ordered and the of permuted-ordered are
computed simultaneously. Compared to Fig. 2, the equivalent
increases from 50% to 66.7%. Fig. 6 shows the schedule with

and activities of the main component circuits. The

execution order of windows in either half-iteration is
, and . After deriving the extrinsic information of and
, the SISO decoder continues the unfinished execution of

and . Meanwhile, the process of and in different-or-
dered sequence are activated immediately. It is a remarkable fact
that the equivalence, , holds in this case,
and grows rapidly from 66.7% to 100%. When the limited re-
sources set the ceiling of to 100%, the proposed schedule with

can achieve the optimum improvement.

V. SIMULATION AND IMPLEMENTATION RESULTS

Fig. 7 shows the fixed-point simulation results with various
combinations of , parallelism, and data width. The con-
stituent convolutional code with generator matrix

is exploited, along with the tail-biting method in [14]. The data
width of path metrics is 9 bits for 6-bit input and 8 bits for
5-bit input. Under the same parallelism and data width, the per-
formance with , which can meet (7a),
(7b), and (7c), is similar to that with specification parameters

[5]. In contrast to a design with a single
SISO decoder, using 32 parallel SISO decoders will cause less
than 0.1 dB performance loss. On the other hand, shorter data
width leads to about 0.2 dB loss. If there is sufficient design
area, the employment of 6-bit input is preferable; otherwise, we
choose another quantization with moderate performance.
Our design with 32 radix- SISO decoders can process

rate- codewords with and . It utilizes

WONG AND CHANG: HIGH-EFFICIENCY PROCESSING SCHEDULE FOR PARALLEL TURBO DECODERS USING QPP INTERLEAVER 1419

TABLE III
CHIP SUMMARY AND COMPARISON

Fig. 8. Layout graph of the proposed design.

a barrel-shift network for lower routing effort [20] and a
two-stage technique for less overhead [23]. Considering the
available area, the quantized data with 5-bit codewords and
8-bit metrics are adopted. In this design, we can configure

and select the appropriate processing schedule. If
can satisfy the proposed constraints, the turbo decoder

can operate with either overlapping process % or
normal process % ; for the other , only
normal process % is permitted. Fig. 8 shows the
layout graph implemented with 90 nm technology. The post-
layout simulation indicates that the core area is 9.61 mm with
85.75% core utilization. Its equivalent gates count is 2833 k.
The maximal frequency is 175 MHz; so this design can reach
1.4 Gb/s with % and 933 Mb/s with % while
executing eight iterations. The power consumption of the two
modes is 1.356 W and 0.994 W respectively. Table III gives
a comparison of several parallel decoders; it lists simulation
results in [18], [19] and measurement results in [20]–[22]. The
operating efficiency of [18]–[22] is calculated by dividing the
throughput by . We can further find their
execution intervals in one half-iteration via (2) and estimate
their ’s with respect to various subblock sizes. They will suffer
from low operating efficiency as the subblock size is small.
Dissimilar to those designs, even though is merely 128

in our decoder, all functional units can be fully utilized during
the decoding flow with the help of specific parameters and
overlapping half-iterations.

VI. CONCLUSION

This paper highlights the importance of operating efficiency
in parallel turbo decoders. To improve the inefficient execu-
tion caused by high parallelism, a modified processing schedule
using previous path metrics instead of dummy metric calcu-
lations is exploited. This schedule with a shorter latency and
higher efficiency can also allow the SISO decoder to deal with
all windows in an arbitrary order. With the flexibility in exe-
cution order, the constraints over the QPP interleaver and the
corresponding decoding flow are introduced to support over-
lapping half-iterations. Moreover, these methods are applied to
a parallel turbo decoder containing 32 radix- SISO decoder.
From the postlayout simulation with 90 nm technology, the pro-
posed design can achieve 100% operating efficiency and 1.4
Gb/s throughput.

ACKNOWLEDGMENT

The authors thank the Chip Implementation Center, UMC,
and NCTU Si2 Lab for their assistance.

REFERENCES
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: Turbo-codes,” inProc. IEEE Int.
Conf. Commun., May 1993, pp. 1064–1070.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
of linear codes for minimizing symbol error rate,” IEEE Trans. Inf.
Theory, vol. IT-20, pp. 284–287, Mar. 1974.

[3] E. Boutillon, C. Douillard, and G.Montorsi, “Iterative decoding of con-
catenated convolutional codes: Implementation issues,” Proc. IEEE,
vol. 95, no. 6, pp. 1201–1227, Jun. 2007.

[4] O. Y. Takeshita, “On maximum contention-free interleavers and per-
mutation polynomials over integer rings,” IEEE Trans. Inf. Theory, vol.
52, no. 3, pp. 1249–1253, Mar. 2006.

[5] Technical Specification Group Radio Access Network; Evolved Uni-
versal Terrestrial Radio Access; Multiplexing and Channel Coding
(Release 8), 3GPP Std. TS 36.212, Rev. 8.5.0, Dec. 2008.

1420 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 6, JUNE 2011

[6] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel interleaver design and
VLSI architecture for low-latency MAP turbo decoders,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 4, pp. 427–438, Apr.
2005.

[7] A. Dingninou, F. Rafaoui, and C. Berrou, “Organisation de la mémorie
dans un turbo décodeur utilisant l’algorithme sub-MAP,” in Proc.
GRETSI, Sep. 1999, pp. 71–74.

[8] J. Dielissen and J. Huisken, “State vector reduction for initialization of
sliding windows MAP,” in Proc. 2nd Int. Symp. Turbo Codes Related
Topics, Sep. 2000, pp. 387–390.

[9] S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low latency
turbo decoding,” IEEE Commun. Lett., vol. 6, no. 7, pp. 288–290, Jul.
2002.

[10] D. Gnaedig, E. Boutillon, J. Tousch, and M. Jézéquel, “Towards an op-
timal parallel decoding of turbo codes,” presented at the 4th Int. Symp.
Turbo Codes Related Topics, Munich, Germany, Apr. 2006.

[11] S. A. Barbulescu, “Iterative decoding of turbo codes and other con-
catenated codes,” Ph.D. Dissertation, Univ. South Australia, Adelaide,
Australia, 1996.

[12] G. Masera, M. Mazza, G. Piccinini, F. Viglione, and M. Zamboni,
“Architectural strategies for low-power VLSI turbo decoders,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 3, pp.
279–285, Jun. 2002.

[13] R. Dobkin, M. Peleg, and R. Ginosar, “Parallel VLSI architecure for
MAP turbo decoder,” in Proc. IEEE Int. Symp. Personal, Indoor Mo-
bile Radio Commun., Sep. 2002, pp. 15–18.

[14] C. Weiβ, C. Bettstetter, S. Riedel, and D. J. Costello, “Turbo decoding
with tail-biting trellises,” in Proc. IEEE URSI Int. Symp. Signals, Syst.,
Electron., Oct. 1998, pp. 343–348.

[15] S. Dolinar and D. Divsalar, Weight distribution of turbo codes using
random and nonrandom permutations Jet Propulsion Lab., TDA
Progress Report 42-122, Aug. 1995.

[16] S. Crozier, “New high-spread high-distance interleavers for
turbo-codes,” in Proc. 20th Bienn. Symp. Commun., May 2000,
pp. 3–7.

[17] S. Crozier, P. Guinand, and A. Hunt, “Estimating the minimum dis-
tance of turbo-codes using double and triple impulse methods,” IEEE
Commun. Lett., vol. 9, no. 7, pp. 631–633, Jul. 2005.

[18] Y. Sun, Y. Zhu, M. Goel, and J. R. Cavallaro, “Configurable and scal-
able high throughput turbo decoder architecture for multiple 4G wire-
less standard,” in Proc. IEEE Int. Conf. Appl.-Specific Syst., Archit.,
Processors, Jul. 2008, pp. 209–214.

[19] C.-H. Lin, C.-Y. Chen, A.-Y. Wu, and T.-H. Tsai, “Low-power
memory reduced traceback MAP decoding for double-binary convo-
lutional turbo decoder,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.
56, no. 5, pp. 1005–1016, May 2009.

[20] C.-C. Wong and H.-C. Chang, “Reconfigurable turbo decoder with par-
allel architecture for 3GPP LTE system,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 57, no. 7, pp. 566–570, Jul. 2010.

[21] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder
for mobile WiMAX and 3GPP-LTE,” in Proc. IEEE Custom Integr.
Circuits Conf., Sep. 2009, pp. 487–490.

[22] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “A 380 mb/s 3.57
mm 3GPP-LTE turbo decoder ASIC in 0.13 m CMOS,” in Proc.
IEEE Int. Solid-State Circuit Conf., Feb. 2010, pp. 274–276.

[23] C.-H. Tang, C.-C. Wong, C.-L. Chen, C.-C. Lin, and H.-C. Chang, “A
952 Mb/s Max-Log MAP decoder chip using radix-4 4 ACS archi-
tecture,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2006,
pp. 79–82.

Cheng-Chi Wong received the B.S. and Ph.D. de-
grees in electrical engineering from National Chiao
Tung University, Hsinchu Taiwan, in 2004 and 2010,
respectively.
His research interests include algorithms andVLSI

architecture of error correction codes.

Hsie-Chia Chang received the B.S., M.S., and
Ph.D. degrees in electrical engineering from Na-
tional Chiao Tung University, Hsinchu, Taiwan, in
1995, 1997, and 2002, respectively.
From 2002 to 2003, he was with OSP/DE1 in Me-

diaTek Corp., working in the area of decoding archi-
tectures for Combo single chip. In February 2003,
he joined the faculty of the Electronics Engineering
Department, National Chiao Tung University, where
he is currently an associate professor from August
2007. His research interests include algorithms and

VLSI architectures in signal processing, especially for error control codes and
crypto-systems. Recently, he also committed himself to joint source/channel
coding schemes and multi-Gb/s chip implementation for wireless communica-
tions.

