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VIBRATIONS INDUCED BY HARMONIC LOADINGS APPLIED AT 
CIRCULAR PLATE ON LAYERED MEDIUM 

 

Gin-Show Liou * 

Department of Civil Engineering 
National Chiao-Tung University 
Hsin-Chu, Taiwan 30049, R.O.C. 

 

ABSTRACT 

A systematic procedure is developed to calculate ground vibration at any specific location in layered 
medium due to harmonic loadings applied at a circular plate on the medium.  In the procedure, the tech-
nique decomposing the interaction tractions between excited plate and layered medium will be employed.  
The decomposed tractions will automatically match boundary values of general solutions of three dimen-
sional wave equations in cylindrical coordinates.  In numerical results, the effect of layered stratum on 
ground vibration will be investigated and how ground vibration in layered medium decreases with depth 
will be presented.  Also, from the numerical results, one can observe ground vibration may not decay 
monotonically along distance away from vibration source.  The presented scheme is proved to be effec-
tive and efficient for accurately predicting near-field ground response to harmonic loadings applied at a 
rigid circular plate on layered medium.  Comments on the presented scheme and numerical results will 
be given. 
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1.  INTRODUCTION 

Ambient vibration due to near-by sources is annoy-
ing in design of vibration sensitive facility and hi-tech 
production machine.  For vibration source, there are 
two major problems to be addressed in research; one is 
how to isolate or reduce vibration waves and the other 
is to evaluate attenuation of vibration waves.  To deal 
with the first problem, open or in-fill trenches are usu-
ally recommended at the location near vibration source 
as Ahmad and Al-Hussaini [1] have suggested in their 
theoretical studies.  Also, Lu et al. [2] have used pile 
row to reduce vibration caused by moving load.  
Moreover, if track is elevated on bridges, vibration due 
to excited bridge abutments also produce serious prob-
lem to hi-tech production machine and vibration sensi-
tive facility.  Takemiya [3] has designed a wave im-
peding barrier of honeycomb piles to reduce the vibra-
tions near bridge abutments.  As for evaluating wave 
attenuation due to different vibration sources, there are 
many researches.  For examples, Sheng et al. [4] and 
Krylou [5] have employed Euler beam theory to model 
whole track including sleepers and ballast and then to 
solve the problem of moving train, and Kaynia et al. [6] 
have proposed a more sophisticated analysis model, 
which takes dynamic interaction into account, to evalu-
ate ground vibration induced by passing trains.  
Moreover, Karlstrom [7] has employed a refined semi- 

analytic model to investigate the effect on ground vi-
bration due to accelerating train. 

Most of the above analysis model, finite element or 
boundary element methods are being used to model 
half-space medium or layered half-space medium.  
Regarding analytical approach to evaluate ground vi-
bration, Yeh et al. have developed the transition matrix 
to calculate the ground vibration induced by incident 
and scattering wave [8].  Apsel and Ruco [9] have 
calculated the vibrations at the locations on half-space 
medium due to a point source (Green’s Function).  
Vostroukhov [10] et al. have employed integral trans-
form method to obtain ground vibration in layered 
half-space due to a buried uniform load at a circular 
area.  And Liou [11,12] has developed a semi-    
analytical scheme to calculate vibration at arbitrary 
location on half-space medium and in half-space me-
dium due to torsional, vertical, horizontal and rocking 
loads applied at a foundation plate on half-space surface.  
Also, from the practical point of view, Woods and 
Jedele [13] have collected some observed ground vibra-
tion data and deduced them into a simple formula ex-
pressing attenuation phenomenon of ground vibration in 
terms of soil damping and distance between source and 
observation locations.  The paper will employ the 
technique, developed by Liou [11], to decompose the 
tractions induced by vibration of foundation plate.  
These decomposed tractions can match boundary values 
of general solutions of three dimensional wave equa-
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tions in cylindrical coordinates.  This technique has 
been applied to generating the impedance functions for 
circular foundation embedded in layered medium by 
Liou and Chung [14].  This paper will extend the work 
by Liou [11] to calculate the vibration at any location in 
layered medium induced by harmonic loadings applied 
at a rigid circular plate. 

The analytical expression for vibration at a specific 
location in a layered medium will end up with a form of 
semi-infinite intergration with respect to wave number k, 
and Rayleigh singular pole existing in the integration 
path if there is no material damping effect in the me-
dium.  However, if material damping is always as-
signed in the medium, the singular pole will move away 
from intergration path.  Therefore, from the decaying 
nature of the integrand with respect to k as shown in 
Liou’s work [11], the vibration can be calculated by 
integration only up to a certain upper limit ku without 
losing accuracy.  Also, in the derivation, the interac-
tion tractions between foundation plate and layered 
medium are assumed to be piecewise linear.  

Some selected numerical results for a rigid circular 
plate subjected to torsional, vertical, horizontal and 
rocking excitations are presented to demonstrate the 
effectiveness and efficiency of the proposed scheme.  
In the numerical investigations, some numerical aspects 
regarding integration scheme, selection of ku and 
influence of nondimensional layer thickness on the nu-
merical scheme will be discussed.  Also, some com-
ments about the presented scheme are made. 

2.  ANALYTICAL SOLUTIONS FOR DYNAMIC 
LOADINGS ON LAYERED MEDIUM 

The general solution of the differential equations for 
wave propagation in cylindrical coordinates is inde-
pendently found for each layer in layered medium.  
The displacement and stress continuity conditions at the 
horizontal interfaces in layered system are then im-
posed in order to express the displacement and stress 
fields in terms of the prescribed dynamic loadings.  
The prescribed dynamic loadings are the interaction 
traction between foundation plate (vibration source) and 
surrounding medium.  The total system of prescribed 
dynamic loadings applied at layered medium is shown 
in Fig. 1.  The prescribed dynamic loadings can be 
expressed in cylindrical coordinates in terms of Fourier 
components with respect to azimuth as follows: 
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Fig. 1  Dynamic Loading on Layered Medium 

where superscript n denotes nth Fourier component in 
the series; in this circular rigid plate case, n = 0 repre-
sents vertical (symmetric with respect to θ = 0) and 
torsional (anti-symmetric with respect to θ = 0) load-
ings, n = 1 represents horizontal and rocking (symmet-
ric with respect to θ = 0) loadings; ω is frequency; a0 is 
radius of circular plate.  Since the time variation eiωt 
appears on both sides of the equation, it will be omitted 
hereinafter. 

Now, considering a particular layer j in the total sys-
tem shown in Fig. 1, the general differential equations 
for wave propagation in the layer with harmonic excita-
tion can be obtained using the technique separating the 
dilatational wave from the rotational wave.  And the 
technique of separation of variables is employed to 
solve the independent differential equations for the di-
latational wave and the rotational wave.  After com-
bining the solutions for the dilatational and the rota-
tional waves, the general solution of the differential 
equations of wave propagation for nth Fourier compo-
nent can be expressed in the matrix form as follows: 
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or 

 1 Lu = LJκ eA  

where 
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matrix κ1 is defined by Eq. (A-1) in Appendix, vector  
A = (A1, B1, C1, A2, B2, C2)T

 is unknown coefficient 
vector determined from the boundary conditions at the 
upper and the lower interfaces of the layer, 6 × 6 di-
agonal matrix 

- - -(  ,  ,   ,   ,   ,  ) ,j j j j j jv z v z v z v z v z v ze diag e e e e e e′ ′ ′ ′=  
2 2 2 2 2 2( / ) , ( / )j pj j gjk c    k c′ν = − ω ν = − ω  

cpj and cgj are compressional and shear wave velocities 
respectively in the layer (jth layer), k is wave number in 
horizontal direction, Jn(kr) is first kind of Bessel func-
tion of order n, and [ ]( ) ( ) /n nJ kr dJ kr dr′ = .  

The stress field in the layer can be obtained by dif-
ferentiating the displacement field of Eq. (2) with re-
spect to the corresponding variables r, z and θ, and then 
multiplying it with constitutive matrix of elasticity.  
The stress components on horizontal plane, with the 
azimuthal variation of matrix L in Eq. (2) factored out, 
can then be expressed as follows:  
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where matrix κ2 is defined by Eq. (A-2) in Appendix. 
Since the unknown coefficients in vector A are de-

termined from the boundary conditions of the layer, the 
displacement and the stress fields of Eqs. (2) and (4) 
can be expressed in terms of the unknown displacement 
and stress components at the lower interface of the layer.  
Moreover, the displacement and stress components at 
the upper interface can be combined together and writ-
ten in terms of the displacement and stress components 
at the lower interface as follows:  

  
1

j 1 j jY = Ea E Y−
−  (5) 

where 6 × 6 matrix E = diag (J, J) in which Bessel ma-
trix J is shown in Eq.(3), transfer matrix 

1 1( )j jd− −=a eκ κ  in which matrix [ ,   ]= 1 2κ κ κT T T  is 
defined by Eq. (A-3) in Appendix , diagonal matrix 

 ( )
jj z=dd = |e e in which dj is the thickness of the layer, 

and Yj−1 and Yj are the unknown displacement-stress 
vectors at the upper and the lower interfaces of the layer, 
respectively. 

Consider the total system shown in Fig. 1.  For a 
given layer in the system, Eq. (5) shows that the dis-
placement-stress vector at the upper interface can be 

expressed in terms of the displacement –stress vector at 
the lower interface.  Therefore, by imposing the dis-
placement and stress continuity conditions at the hori-
zontal interfaces from the first top layer down to the 
half-space layer, one can obtain the displacement-stress 
vector at the surface of the total system in terms of the 
displacement-stress vector at the surface of the 
half-space layer as expressed by Eq. (6). 

 1 1
0 1 2 M M MY = Ea a ......a E Y = ETE Y− −  (6) 

Consider the half-space layer in Fig. 1 alone.  The 
general solutions of differential equations of wave 
propagation and the stress field in the half-space layer 
are similar to Eqs. (2) and (4) respectively except that 
upward propagating reflection waves do not exist.  
The displacement-stress vector at the surface of the 
half-space layer can then be written as  
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κM
M

M

u
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where matrix [  ,  ]′ ′ ′= 1 2κ κ κT T T  in which submatrices 
′1κ  and ′2κ  are defined by Eqs. (A-1a) and (A-2a) in 

Appendix respectively, and 1 1 1( ,  ,  )TA B C′ =A  is un-
known coefficient vector determined from the boundary 
conditions at the surface of the half-space layer.  

Substituting YM in Eq. (7) into Eq. (6) , Eq. (6) can 
be written as 
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where T11 ~ T22 are submatrices of matrix T in Eq. (6).  
After some matrix manipulations of eliminating the 
unknown vector A′, one can obtain the displacement 
vector u0 in terms of the stress vector t0. 

  ( )( )′ ′ ′ ′= =1 1 1
0 11 1 12 2 21 1 22 2 0 0κ κ κ κu J T + T T + T J t JQJ t− − −  

  (9) 

If the layered medium is assumed to be welded to a 
rigid lower boundary, then uM = 0 in YM of Eq. (6).  
This leads to 1

12 22Q = T T −  for Eq. (9). 
Equation (9) shows the relationship of the stress and 

the displacement vectors on the surface of the total sys-
tem.  This means that one can calculate vibration at 
arbitrary location on the surface due to the vibration 
source of Eq. (1), if Eq. (1) is properly decomposed to 
match t0 in Eq.(9).  The method to decompose Eq. (1) 
has been proposed by Liou [11], and will be summa-
rized later. 

To calculate vibration at locations in an arbitrary 
layer j shown in Fig. 1, one has to calculate the dis-
placement-stress vector Yj−1 at interface j − 1 first.  
From Eq.(6), one observes that Yj−1 can be expressed in 
terms of Y0 as follows:  

 ′1 1 1 1
1 1 1 0 0j jY = Ea ......a E Y = ET E Y− − − −

− −  (10) 

where matrices E and a1……aj−1 are respectively de-
fined in Eq. (5) and Eq. (A-3) in Appendix.  
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Now considering the solution for layer j alone, the 
general solutions for displacement and stress on hori-
zontal plane in layer j are given by Eqs. (2) and (4), 
respectively.  One can assemble the two equations as 
follows:  
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where matrices E, κ1, κ2, e and vector A of unknown 
coefficients are respectively defined in Eqs. (2), (4) and 
(5).  Equation (11) can be employed to calculate the 
displacement and stress components at interface j − 1 
by setting z = 0.  Equation (11) becomes 
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Substituting Eq. (13) into Eq.(11), one obtains 
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where matrix ′ja  can be expressed in a similar form of 
aj with dj replaced with z in Eq. (A-3).  Now, substi-
tuting Eq. (10) into Eq. (14) , the displacement and 
stress components on arbitrary horizontal plane at depth 
z from the interface j − 1 can be obtained as follows: 

 ′ ′ ′1 1
0 0jY = Ea T E Y = EQ E Y− −  (15) 

Using Eq. (9) to assemble vector Y0 ( (  ) )=0 0 0,T T TY u t , 
vector Y can be expressed as 
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u Q
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−  (16) 

where matrices E, Q′, Q and J are defined in Eqs. (5), 
(15), (9) and (3) respectively, and matrix I is 3 × 3 
identity matrix.  Therefore, the displacement vector u 
in Eq. (16) can be obtained as follows : 

 ( )′ ′= 1
11 12 0u J Q Q + Q J t−  (17) 

where 3 × 3 matrices ′11Q  and ′12Q  are submatrices of 
6 × 6 matrix Q′ in Eq. (15) as Q′ can be partitioned as 
follows: 
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To calculate vibrations in half-space layer in Fig.1, 
one can express the unknown coefficient vector A′ in 
Eq. (7) by using Eq. (8) as follows : 

 ( )′ ′ ′= 1 1
21 1 22 2 0κ κA T + T J t− −  (17b) 

Similar to Eq. (17), the displacement vector at arbi-
trary location (depth z) in half-space layer can then be 
expressed as follows : 

 ( )′ ′ ′ ′ ′ ′ ′= = 1 1
1 1 21 1 22 2 0κ κ κ κu J e A J e T + T J t− −  (17c) 

where 3 × 3 diagonal matrix (  ,  M+1ν z= diag e−′e  
,  )M+1 M+1ν z ν ze e′ ′− −  is similar to the 6 × 6 diagonal matrix e 

defined in Eq. (2). 
Equations (17) and (17c) give the displacement vec-

tor u at arbitrary location in arbitrary layer j and in half- 
space layer M + 1, respectively, of the total system in 
Fig. 1, if traction vector t0 applied at the surface of the 
total system is known. 

To obtain traction vector t0, Liou [11] has developed 
a technique to decompose the interaction tractions of Eq. 
(1) by approximating each Fourier component of inter-
action tractions with piecewise linear distribution in 
r-direction first as follows: 
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b = a0 / m is width of subinterval, m is number of sub-
intervals, and pj, qj and sj are the traction intensities at 
node j for 
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After some mathematical manipulation as shown in 
Liou’s work [11], one can obtain the following equa-
tion. 
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and 

 
0 

-1 0
( ) 

a

n
r= J kr dr
2∫1

T T
nD h−  

Equation (19a) is Hankel transform of Eq. (18).  
Thereforce, ground surface is no longer traction free for 
each wave number k.  Using = −0 0t t  and substitut-
ing dk0t JDP= −  from Eq. (19) into Eq. (17) or Eq. 
(17c), the displacement vector at arbitrary depth in ar-
bitrary layer or in half-space layer, respectively, can be 
obtained by integrating the resulting expression from 0 
to ∞. 

 
 

 
 dk

∞
′ ′∫ 11 12

0
( )u J Q Q + Q DP= −  (20) 

or 

 
 

 
dk

∞
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1 21 1 22 2

0
κ κ κu J e (T + T ) DP−= −  (20a) 

Equations (20) or (20a) can be employed to calculate 
vibration at any specific location in layered medium, if 
the intensity vector P = [pT, qT, sT]T described in Eq. (18) 
is known. 

Also, one should note that intensity vector P is in-
dependent of wave number k. 

To find the intensity vector P due to harmonic load-
ing applied at foundation plate, the impedance matrix 
(dynamic stiffness matrix) for the plate has to be ob-
tained first.  The methodology of finding impedance 
matrix has been presented by Liou [14].  In the meth-
odology, finite element model for displacement field of 
foundation is assumed, and variational principle (prin-
ciple of virtual work) and reciprocal theorem are em-
ployed.  Then, the intensity vector P in Eqs. (18) or 
(19) can be obtained for all the excitation forces and 
moments in the process of finding impedance matrix. 

For the cases of rigid circular foundation, the dis-
placement fields in the foundation plate can be assumed 
as follows:  

1( ,  )u r rθ θ = υ  (n = 0 of anti-symmetric mode ) for 
excitation by torsional moment, 2( ,  )zu r θ = υ  (n = 0 
of symmetric mode ) for excitation by vertical force, 
and 3 ( ,  ) coszu r rθ = υ θ , 4( ,  ) cosru r θ = υ θ  and 

4( ,  ) sinu rθ θ = −υ θ  (n = 1 of symmetric mode ) for 
excitations by rocking moment and horizontal force.   

In the expressions, υ1 is the unknown generalized 
displacement at center of foundation for torsional exci-
tation, υ2 is for vertical excitation, and υ3 and υ4 are, 
respectively, for coupling rocking and horizontal exci-
tations. 

With these assumed displacement fields of founda-
tion plate, the impedance matrix and the interaction 
tractions in Eq. (18) can therefore be calculated for a 
rigid circular foundation subjected to harmonic loadings.  
Then, the displacement vector u in Eqs. (20) or (20a) 
can be calculated. 

3.  NUMERICAL INVESTIGATIONS 

The semi-infinite integration of Eqs. (20) or (20a) 
can be replaced with finite integration without losing 
accuracy, if material damping is always assumed in the 
medium and  nondimensional integration limit (nor-
malized by shear wave length λ of top layer) ku, to re-
place ∞ for Eqs. (20) or (20a), is properly chosen.  
This has been proved by Liou [11] using decaying na-
ture with respect to wave number k for the elements in 
matrices J, Q and D in Eqs. (20) or (20a).  Also, Liou 
[11] has verified the presented scheme by comparison 
of the results with that by point source (Green Function) 
applied on half-space medium.  Two-layer system (one 
layer over half-space) is used to perform the numerical 
investigation.  The investigation concludes that non-
dimensional integration limit ku can be smaller as non-
dimensional thickness (normalized by shear wave 
length λ of top layer) d1 is greater, and nondimensional 
integration limit ku must be larger as shear modulus 
ratio (G2 / G1) is greater or nondimensional distance r 
(normalized by shear wave length of top layer) from 
center of vibration source is farther.  For examples: 
Nondimensional integration limit ku = 5,000 is large 
enough for the case of (G2 / G1) = 5 and nondimen-
sional top layer thickness d1 = 1 with ground vibrations 
to be calculated for locations of nondimensional dis-
tance r up to 10; nondimensional integration limit ku 
must be as large as 50,000 for the case of (G2 / G1) = 
100 and nondimensional top layer thickness d1 = 0.1 
with ground vibrations to be calculated for locations of 
non-dimensional distance r only up to 2.  Also, by 
comparing the cases of torsional, vertical, horizontal 
and rocking excitations to each other, larger ku is nec-
essary for the case of torsional excitation if one wants 
to obtain the same accurate results.  Figure 2 shows 
the converging results by different ku (10000, 20000, 
30000, 40000, 50000 and 60000) for the case of excita-
tion by unit nondimensional torsional moment.  From 
the figure, one can see that the amplitude of nondimen-
sional displacement | uθ | (normalized by shear wave 
length) at z = 0 has been converging as ku = 50,000 for 
nondimensional distances r = 0 ~ 2.  To calculate the 
results in Fig. 2, following parameters are selected: 
Nondimensional top layer thickness d1 = 0.1; nondi-
mensional frequency ω = 1.0 (normalized by thickness 
and shear wave velocity of top layer; i.e. 1 1/ 2 sd cλ ω π ); 
nondimensional plate radius a0 = 0.01 (normalized by 
shear wave length of top layer); Poisson ratio is 0.33; 
damping ratio of layered medium is 0.05; shear 
modulus ratio (G2 / G1) = 100. 

Since the torsional, vertical, horizontal, coupling and 
rocking impedances for circular plate are nondimen-
sionalized, respectively, as 3

1 0/TTI G a , 1 0/I G aυυ , 
1 0/HHI G a , 1 0/HRI G a  and 3

1 0/RRI G a  as defined in 
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Fig. 2 Converging Results for soft layer over stiff 

half-space medium subjected to torsional ex-
citation (Z = 0) 

Liou and Chung’s work [14], the excitation forces are 
normalized in the similar way.  The vertical and hori-
zontal excitation forces are nondimensionalized in the 
forms of 1 0 /VF G a λ  and 1 0 /HF G a λ , respectively, 
in which λ is the shear wave length of top layer.  The 
torsional and rocking excitation moments are normal-
ized in the forms of 3

1 0 /TM G a λ and 3
1 0 /RM G a λ , 

respectively.  Because these quantities have been ma-
nipulated in this way, the numerical results of ur, uz and 
uθ will also be nondimensionalized by λ.  The nu-
merical results discussed in the paper are calculated 
with unit nondimensionalized harmonic excitation 
forces applied at foundation.  This means the excita-
tion forces 1 0 vF G a= λ , 1 0 HF G a= λ , 3

1 0 TM G a= λ  
and 3

1 0 RM G a= λ . 
The effect of the number of subinterval m for piece-

wise linear model in Eq. (18) on the numerical preci-
sion is also investigated.  Table 1 shows some results 
of ur and uz at groud surface (z = 0) due to unit non-
dimesional vertical force. 

The parameters chosen to calculate the results of Ta-
ble 1 and Figs. 3, 4 and 5 are as follows: Nondimen-
sional plate radius a0 = 0.1; nondimensional frequency 
ω = 1.0; nondimensional thickness of top layer d1 = 1.0; 
Poisson ratio is 0.33; damp ratio is 0.05 for both layers 
(bottom half-space layer and top layer); shear modulus 
ratio of bottom half-space layer to top layer G2 / G1 

= 5.0. 
From Table 1, one can observe that the effect of 

number of subinterval m on results is diminishing as the 
nondimensional distance r goes farther.  For example, 
the difference between the results for m = 1 and m = 20 
is less than 1% for r = 1.0.  This means the variation 
of distribution of interaction tractions is not an impor-
tant factor for ground vibrations as nondimensional 
distance getting larger. 

Gaussian quadrature is employed to perform the in-
tegrations of matrix D in Eq. (19) and displacement 
vector u in Eqs. (20) or (20a), and the number of sub-
intervals m = 20 in Eq. (18) is selected for the numeri-
cal results presented in the paper.  All the integration 
schemes employed in presented procedure have been 
carefully checked in order to ensure that the number of 
the significant figures of the final numerical results (ur, 

 
Fig. 3 Vibration amplitude of ur due to unit nondi-

mensional horizontal force (a0 = 0.1) 

 
Fig. 4 Vibration amplitude of uz due to unit nondi-

mensional horizontal force (a0 = 0.1) 

 
Fig. 5 Vibration amplitude of uθ due to unit nondi-

mensional horizontal force (a0 = 0.1) 

uz and uθ) is no less than 4.  Also, depth z for calculat-
ing the displacement amplitudes shown in Figs. 3 ~ 10 
is normalized by shear wave length λ of top layer.  
Figs. 3, 4 and 5 show the nondimensional amplitude 
| ur |, | uz | and | uθ | respectively for the case of founda-
tion plate subjected to unit nondimensional horizontal 
force.  From these figures, one can observe that 
ground vibration, in average, decreases with depth, al-
though fluctuation along nondimensional distance oc-
curs.  The fluctuation seems no fixed pattern.  This 
indicates that near-field vibration due to wave propaga-
tion in layered medium is more unpredictable than far- 
field vibration.  From Figs. 3, 4 and 5, it can be con-
firmed that foundation of structure can be embedded in 
ground in order to reduce the influence of ground vi-
bration. 

The results for ur, uz and uθ shown in Figs. 6, 7 and 8 
respectively are for the case of a0 = 0.1 in contrast to 
that in Figs. 3 ~ 5.  From these 3 figures, one can 
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Table 1  Ground Vibrations due to unit nondimensional vertical force (a0 = 0.1) 

 ur uz      u 
r 

m Re Im Re Im 

m = 1 0.000000E+00 0.000000E+00 1.170450E+00 −7.719510E-01 

m = 10 0.000000E+00 0.000000E+00 1.268820E+00 −7.737340E-01 0 

m = 20 0.000000E+00 0.000000E+00 1.264420E+00 −7.727760E-01 

1 −1.482910E-01 9.119650E-02 5.431670E-01 −6.606440E-01 

10 −1.438410E-01 8.708790E-02 5.575520E-01 −6.598690E-01 0.125 

20 −1.433740E-01 8.670190E-02 5.587060E-01 −6.597910E-01 

1 −2.717150E-02 1.397540E-01 −1.114250E-01 −3.428860E-01 

10 −2.711180E-02 1.383050E-01 −1.091560E-01 −3.421740E-01 0.25 

20 −2.708120E-02 1.381670E-01 −1.089700E-01 −3.421170E-01 

1 7.909590E-02 9.050190E-02 −2.235130E-01 −6.169320E-02 

10 7.846670E-02 8.974590E-02 −2.221000E-01 −6.220600E-02 0.375 

20 7.842310E-02 8.967050E-02 −2.219810E-01 −6.225570E-02 

1 1.185460E-01 −5.926990E-03 −1.391100E-01 1.116700E-01 

10 1.177740E-01 −5.993480E-03 −1.386760E-01 1.106490E-01 0.5 

20 1.177110E-01 −6.006480E-03 −1.386430E-01 1.105570E-01 

1 8.333560E-02 −9.362590E-02 −3.639840E-04 1.453970E-01 

10 8.284420E-02 −9.319620E-02 −7.580230E-04 1.446060E-01 0.625 

20 8.280280E-02 −9.316420E-02 −7.974330E-04 1.445370E-01 

1 2.980070E-03 −1.284150E-01 9.182190E-02 7.547550E-02 

10 2.952060E-03 −1.278490E-01 9.110030E-02 7.531040E-02 0.75 

20 2.949120E-03 −1.278040E-01 9.103360E-02 7.529830E-02 

1 −7.417010E-02 −9.920670E-02 9.620140E-02 −2.270950E-02 

10 −7.382990E-02 −9.884610E-02 9.569030E-02 −2.231170E-01 0.875 

20 −7.380160E-02 −9.881770E-02 9.564380E-02 −2.227330E-02 

1 −1.085530E-01 −2.965630E-02 3.334090E-02 −8.033340E-01 

10 −1.081160E-01 −2.965540E-02 3.332250E-02 −7.974970E-02 1 

20 −1.080800E-01 −2.965730E-02 3.332160E-02 −7.969530E-02 

 

 

Fig. 6 Vibration amplitude of ur due to unit nondi-
mensional horizontal force (a0 = 0.1) 

 

Fig. 7 Vibration amplitude of uz 
due to unit nondi-

mensional horizontal force (a0 = 0.1) 
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Fig. 8 Vibration amplitude of uθ due to unit nondi-

mensional horizontal force (a0 = 0.1) 

observe that the ground vibration may not decay with 
depth in average as the ground location (r) is very close 
to vibration source (circular plate).  This phenomenon 
is not observed in Figs. 3, 4 and 5 for the case of     
a0 = 0.1. 

The behavior of harmonic wave propagation in a thin 
soft layer over stiff half-space layer is also investigated 
in the paper.  In the investigation, except d1 = 0.1,   
a0 = 0.01, ku = 50000 and G2 / G1 = 100 are assigned, 
the other parameters are the same as the parameter 
chosen for the case to calculate the results in Figs. 3 ~ 8.  
The results of nondimensional displacement amplitude 
| ur | and | uz | for the case of vertical excitation by unit 
nondimensional force are shown in Figs. 9 and 10.  In 
the two figures, one can observe two characteristics as 
follows: (1) The decay of vibration along horizontal 
nondimensional distance is very fast for r < 0.8; (2) For   
r > 0.8, the vibration decays monotonically.  From 
characteristics No. (2), one can conclude that thin layer 
provides as wave guide for nondimensional distance   
r > 0.8.  This also indicates that the fluctuation phe-
nomenon shown in Figs. 3 ~ 8 is diminishing as the 
ratio r/d1 is getting larger and larger.  To obtain the 
results with r > 2, one can extrapolate the results shown 
in Figs. 9 and 10 linearly in log-scale.  Although only 
the results for vertical excitation are shown in Figs. 9 
and 10, the results for torsional, horizontal and rocking 
excitations also indicate the same characteristics stated 
above. 

4.  CONCLUSIONS 

The presented method is very effective and efficient 
for calculating the near-field ground vibration in lay-
ered medium, since the numerical scheme is convergent.  
This convergency can be proved by comparison of the 
numerical results calculated with increasing number of 
integration points or shortening the integration interval 
while using Gaussian Quadrature to integrate Eqs. (19a), 
(20) and (20a), or like the results shown in Fig. 2 by 
selecting larger integration upper limit ku to replace ∞ in 
Eqs. (20) or (20a).  From Figs. 3, 4 and 5, one can 
observe that ground vibration, in average, is smaller as 
depth is getting greater.  This means that deeper foun-
dation for building to house vibration sensitive facility 

 
Fig. 9 Vibration amplitude of ur due to unit nondi-

mensional vertical force for thin layer situation 

 
Fig. 10 Vibration amplitude of uz due to unit nondi-

mensional vertical force for thin layer situation 

is effective.  However, this statement may not valid as 
the vibration source is very close to the facility.  This 
can be observed in Figs. 6, 7 and 8.  Moreover, from 
Figs. 9 and 10, one can conclude that layer can act like 
a wave guide, if the thickness of the layer compared to 
wave length is small.  Also, from Figs. 9, 10 and other 
numerical results not shown in the paper, one can con-
clude that the fluctuation phenomenon is diminishing as 
the ratio r/d1 (nondimensional distance to nondimen-
sional thickness of top layer) is getting larger. 
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APPENDIX 

The matrix κ1 in Eq. (2) can be expressed as follows: 

 [ ]′ ′′=1 1 1κ κ κ  (A-1) 

where 

 
0
0

0 0 1

j

j

k v
= v k

′−⎡ ⎤
⎢ ⎥′ −⎢ ⎥
⎢ ⎥⎣ ⎦

1κ  (A-1a) 
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and 

  
0
0

0 0 1

j

j

k v
= v k

′⎡ ⎤
⎢ ⎥′′ ⎢ ⎥
⎢ ⎥⎣ ⎦

1κ  (A-1b) 

The matrix κ2 in Eq. (4) can be expressed as follows: 

  [ ]′ ′′=2 2 2κ κ κ  (A-2) 

where 

 

2 2

2 2
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2κ  (A-2a) 

and 
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⎢ ⎥
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2κ  (A-2b) 

in which 2 2 2/
j gjk cβ = ω , Gj is shear modulus of jth layer. 

The transfer matrix aj in Eq. (5) can be expressed as follows: 

  ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
11 12

21 22
j

a a
a

a a
 (A-3) 

where 
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2 2

2 2

2
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2 2 22
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in which  j jSH = sinhν d ,  j jSH = sinhν d′ ′ , CH =   j jcoshν d , and  j jCH = coshν d′ ′ . 
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