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ABSTRACT

This paper proposes an off-line feedrate scheduling method of CNC machines constrained by chord
tolerance, acceleration and jerk limitations. The off-line process for curve scanning and feedrate
scheduling is realized as a pre-processor, which releases the computational burden in real-time task. The
proposed method first scans a non-uniform rational B-spline (NURBS) curve and finds out the crucial
points with large curvature (named as critical point) or G° continuity (named as breakpoint). Then, the
NURBS curve is divided into several NURBS sub-curves using curve splitting method which guarantees the
convergence of predictor-corrector interpolation (PCI) algorithm. The suitable feedrate at critical point
is adjusted according to the limits of chord error, centripetal acceleration and jerk, and at breakpoint is
adjusted based on the formulation of velocity variation. The feedrate profile corresponding to each NURBS
block is constructed according to the block length and the given limits of acceleration and jerk. In addition,
feedrate compensation method for short NURBS blocks is performed to make the jerk-limited feedrate
profile more continuous and precise. Because the feedrate profile is established in off-line, the calculation
of NURBS interpolation is extremely efficient for CNC high-speed machining. Finally, simulations and
experiments with two free-form NURBS curves are conducted to verify the feasibility and applicability

of the proposed method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In order to achieve high-speed and high-accuracy machining,
many scholars devote to investigate the fields such as parametric
curve interpolation, feedrate profile scheduling and servo-loop
control techniques. Since 1950s, parametric curves like Bezier,
B-spline and NURBS have been developed. Because of the benefits
of NURBS [1], NURBS even becomes the standard format of free-
form curve and surface in 1991. Recently, STEP compliant NC
programming, STEP-NC has been specified as a new NC data
model [2,3]. NURBS is adopted by STEP-NC and becomes the
standard interface for data exchange between CAD/CAM and CNC
systems. How to design a reliable and efficient NURBS interpolator
is critical for developing the next generation intelligent CNC
machine tool.

Shpitalni et al. [4] first proposed parametric curve interpolation
and realized the parametric interpolator in CNC machine, which
accepts parametric curve codes directly from CAD/CAM. For
generating more precise motion trajectory, Yang and Kong [5]
applied Taylor's expansion method to develop the first-order
and second-order interpolation algorithms with constant feedrate.
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Nevertheless, because of high-order truncation errors [6], Taylor
series interpolator might not generate accurate feedrate command
along high-curvature tool paths for high-speed machining. Tsai and
Cheng [7] proposed a closed-loop predictor-corrector interpolator
(PCI) algorithm to replace Taylor’s expansion method and provided
the convergent condition of corrector. The advantage of PCI
method is that the feedrate fluctuation can be controlled through
setting tolerance of feedrate error for either given constant or
variable feedrate command. Erkorkmaz and Altintas [8] proposed
a quintic spline interpolation method to minimize feedrate
fluctuation. This is done by either approximating the relation
between the arc length and spline parameter using a feed
correction polynomial or by solving the exact parameter using an
iterative interpolation method. Otherwise, Lei et al. [9] proposed a
fast NURBS interpolation method which generated inverse length
functions (ILF) for each parameter subinterval in off-line. The new
setting path parameter was calculated directly by using the ILF
without the need for any time-consuming computation of NURBS
derivatives and iterations in real time. However, most of the
proposed methods attempt to maintain constant feedrate without
considering chord error and acceleration/deceleration (ACC/DEC).

Yeh and Hsu [10] first proposed an adaptive-feedrate interpo-
lator to adjust curve speed according to chord tolerance. Zhim-
ing et al. [11] presented a curvature-based interpolation algorithm
based on curvature of curves. Yang and Narayanaswami [12] pro-
posed an off-line algorithm to detect feedrate sensitive corners and
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planned ACC/DEC accordingly so that chord errors are bounded.
Sun et al. [13] developed a guide spline-based feedrate scheduling
method for machining along curvilinear paths with constraints of
chord error and ACC/DEC. However, the jerk might be out of limit
for machine if the curvature of a curve changes abruptly.

To obtain a smooth jerk-limited feedrate profile with chord
error constraint, many interpolation algorithms were developed
in [14-17]. Lai et al. [17] proposed a more complete process to
identify the segment points whose acceleration changed across
zero, as the basis of feedrate scheduling. The algorithm embedded
in look-ahead module can plan jerk-limited feedrate profile under
various continuity conditions for composite curves. Nevertheless,
most of the algorithms did not include dynamics effects of machine
tool; thus the tracking or contouring error might not keep within
desired accuracy for real machining. Liu et al. [15] considered
machining dynamics by utilizing notching filtering or time spacing
based on FFT analysis to eliminate the components containing high
frequencies or frequencies matching machine natural ones in the
interpolated acceleration profile. However, they did not provide
the dynamics model of machine tool and consider the effects of
servo dynamics. Lin et al. [18] and Tsai et al. [19] considered the
effect of servo dynamics and appended servo dynamics model to
look-ahead function. The experiment results demonstrate that the
tracking and contouring performance were improved significantly.
Dong and Stori [20] proposed a time-optimal algorithm based
on dynamics of machine tool and capabilities of individual
motion axis. A minimum-time feedrate profile subject to the
constraints of velocity, acceleration, bandwidth and contouring
error can be generated for a complex trajectory. Otherwise,
Tikhon et al. [21] and Choi et al. [22] proposed the criterion of
feedrate scheduling in accordance with material removal rate and
surface roughness, respectively. Fleisig and Spence [23] extended
spline curve interpolation algorithm from three-axis to five-axis
machining. Mohan et al. [24] presented a review of various
parametric interpolation methods for NURBS and discussed the
salient features, problems and solutions. Recent approaches on
variable feedrate interpolation, parameter compensation were also
reviewed and research trends were addressed.

Feedrate scheduling is worthy of going deep into research
since it is one of the most important factors for achieving the
efficiency and quality of machining. Based on the architecture of
CNC controller, feedrate scheduling can be performed in on-line or
in off-line mode. In particular, real-time interpolation algorithms
with look-ahead function are proposed in [15,17-19]. However,
while complicated NURBS interpolation algorithms are performed
in real time, the large number of backtracking process may cause
time-consuming computations or the buffer could be used up for
storing pre-interpolated data. Failure of the interpolator might
incur tool chatter or breakage, even damage machine tool.

To solve the problems of CNC machining occurred in reality and
to achieve the goal of high-speed and high-accuracy machining,
this paper proposes an off-line feedrate scheduling method for CNC
machines. The factors that affect machining precision such as chord
error, feedrate fluctuation, and machine kinematics constraints
are considered simultaneously. The method first finds out crucial
points as the basis of feedrate scheduling and splits a NURBS
curve at breakpoints into several NURBS sub-curves. Therefore,
the divergence of PCI interpolation method can be avoided.
Accordingly, the unique feedrate profile constrained by chord
tolerance, acceleration and jerk limitations for a NURBS curve is
constructed. In the real-time process, it only needs to perform
PCI algorithm for updating path parameter and the Cox-de Boor
algorithm for generating interpolation point. Taking the advantage
of the proposed method, the complicated and heavy calculation of
backtracking process in real time can be avoided while maintaining
the desired precision within machine kinematics constraints.

2. NURBS curves and interpolation algorithms

A NURBS curve C(u) can be expressed as follows [1]:

Xn: N; p (W) w;P;
cwy=" (1)
Z Ni,p(u)wi
i=0

where P; is the control point, w; is the corresponding weight of
P;, (n + 1) is the number of control points, and p is the degree
of a NURBS curve. N; ,(u) is the pth-degree B-spline basis function
defined on the non-uniform knot vector U = {ug, U1, ..., Uptpt1}.
The pth-degree B-spline basis function is recursively defined as
follows

)1 ifu <u<upy
Nio(u) = {0 otherwise (2)
u—uj U‘+ +1 — u
NipW) = ————Nip1 (W) + ————Niy1p—1(1)
Uitp — Ui Uitp+1 — Uit
i=01,...,n (3)

For generating a motion trajectory of parametric curve C(u),
the first step is to determine the curve parameter u. Taylor
series expansion method is adopted in most NURBS interpolation
algorithms. By employing Taylor’s expansions of u(t) att = t; and
neglecting high-order terms, the second-order Taylor interpolation
algorithm is given as [6]:

o V(ui)'Ts
e N TSTOS]
! o) ), G\ T
T low (A(”’) )P V(”')> 2 ®

where V (u;), A(u;), Ts, C'(u;) and C” (u;) are the feedrate, accelera-
tion, sampling time, first and second derivatives of a NURBS curve,
respectively.

For further reducing feedrate fluctuation, the PCI method [7] is
chosen to update the parameter u in this paper. In the predictor
stage, the interpolation command at the next sampling time is
estimated using the equation:

Uipr = 3 — 3Uj_1 + Ujp. (5)

In the correct stage, the following equations are utilized to
repeatedly update u;;; within sampling period until the specified
feedrate accuracy is satisfied.

u? =~ —ul) 4 V=1 (6)
o= i 7)
* G=1 *
—BV=Vi )+,
et -l
viTh = (8)

T

where u; is the value of parameter u at time ¢;, ”1‘(21 is the value of
parameter u after j iteration step at time t;, 1, § is the correctional
coefficient, V;* is the desired feedrate command at u; and Vi(’_l) is
the current feedrate command computed at u; after (j— 1) iteration,
respectively. The termination condition for the corrector is chosen
as

(-1
Vi =V
A

1

< épql 9)

where ¢gpq is the tolerance of feedrate command error.
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Fig. 1. The flowchart of feedrate scheduling method.

3. Off-line curve scanning

In order to plan the feedrate profile of any given NURBS curve,
an off-line process for curve scanning and feedrate scheduling is
developed as a pre-processor, which releases the computational
burden in real-time task. The flowchart of the proposed feedrate
scheduling method is shown in Fig. 1. In the stage of curve
scanning, the breakpoints with G° continuity are detected by
checking the multiplicity of knots in the knot vector of a NURBS
curve, and the curve is split into several NURBS sub-curves.
The adaptive-feedrate with curvature-based feedrate interpolation
algorithm [18] is utilized to scan a NURBS curve for determining
critical points with large curvatures. Furthermore, the suitable
feedrate V; at each breakpoint is adjusted according to the limits
of velocity variation on motion axes. The suitable feedrate V; at
each critical point is evaluated with the constraints of chord error,

centripetal acceleration and jerk limitations. Consequently, the
NURBS curve is divided into small NURBS blocks after determining
the breakpoints and critical points, which are called crucial
points. The curve parameters u; of crucial points are recoded
simultaneously. The length S; of each NURBS block between
two adjacent crucial points is estimated by the adaptive Lobatto
quadrature method [25]. Finally, the scanning data (u;, V;, S;) for
each NURBS sub-curve and block are obtained and ready for the
next stage of feedrate scheduling presented in Section 4.

3.1. Kinematic constraints

To generate smooth tool path for NURBS curves, jerk-limited
feedrate profile should be planned in terms of acceleration and
jerk limits. Here, Apmax and Jmax are denoted as acceleration and
jerk limits on each axis for CNC machine, respectively. The limits
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Fig. 2. The hat curve.
Table 1

Parameters of a hat curve.

Parameters Items

(0,0,0); (=150, 50, 0); (=50, 50, 0); (0, 150, 0);
(150, 150, 0); (150, 0, 0); (50, —50, 0); (50, —150, 0);

Control points:Pgy3

(0,0,0)
Knot vector:Uy 12 0,0,0,1/6,1/3,1/3,2/3,2/3,5/6,1,1,1
Weights:w1xg 1,2,3,1,07071,1,3,2,1
Degree:p 2

of acceleration and jerk in the normal and tangent directions are
set as

Ap = At = Amax
Jn =Jt = Jmax

where Ap, A¢,Jn and J; are the centripetal acceleration, tangent
acceleration, centripetal jerk and tangent jerk, respectively. It
demonstrates that if the feedrate profile is planned with the
constraints of maximum centripetal and tangent accelerations, the
acceleration on each axis would not exceed the limitation and the
same token for jerk. Therefore, tool chattering or system vibration
due to high jerk can be avoided when adopting the settings.

(10)

3.2. NURBS curve splitting on breakpoints

The function of curve splitting plays an important role in the
off-line curve scanning method. Since G! continuity is necessary
for calculating curve length accurately by numerical integration
method, if a pth-degree NURBS curve has p repeated knots in the
knot vector except first and last (p + 1) knots, the curve should be
split into at least two sub-curves. If a knot has multiplicity r = p, a
breakpoint with G° continuity may occur. After inserting (p—r+1)
knots at the knot with multiplicity r, an original NURBS curve can
be split into two NURBS sub-curves using the recursive algorithm
of knot refinement [1].

A hat curve is provided here to illustrate the concept of
curve splitting. The curve is a degree two NURBS curve with 9
control points shown in Fig. 2. The parameters of the curve are
listed in Table 1 unless stated otherwise. Since its knot vector
U =1{0,0,0,1/6,1/3,1/3,2/3,5/6, 1, 1, 1} has two knots with
multiplicity 2 at the parameter u i.e., 1/3 or 2/3, two breakpoints
represented by D and E are detected. Therefore, the curve is split
into three new NURBS sub-curves such as AD, DE and EA shown in
Fig. 2. In this paper, the values of two knots and two breakpoints
are recorded in a curve scanning algorithm. The scanning data will
be used to adjust the feedrate profile and to estimate the length of
a NURBS curve in Sections 3.3 and 3.5, respectively.

Fig. 3. Velocity variations of two axes across a breakpoint.

3.3. Feedrate adjusting at breakpoints with G° continuity

While the tool moves across breakpoints with G° continuity, it
may result in violent change of acceleration or jerk on each axis.
To maintain the continuity of acceleration at the breakpoints, it is
inefficient that the feedrate in one of the axes should approach
to zero. The method in [26] for limiting velocity variation at
breakpoints is adopted to solve this problem. As shown in Fig. 3,
P;_1, P; and P, are the current position, breakpoint and next
position, F is the feedrate command across the breakpoint, 6;_1 is
the angle between the line P;_;P; and x-axis, 6; is the angle between
the line P;P; 1 and x-axis. Therefore, the velocity variation on x-axis
and y-axis are given as

AVy = F| cos6; — cos6;_1]
AV, = F|sinf; — sin6;_q].

If the velocity variation on any axis is larger than the
limit of velocity variation AV, it is necessary to adjust the

feedrate command F to meet the constraints of velocity variation,
acceleration and jerk using the following equations:

(11)

AVpax = min (Amasz,]maszz/z)
Ry = max(AVy, AVy)/AVmax

Vi— F _ min (Amasz,]maszz/z)
! R, max(| cos 0; — cos 6;_1], | sinf; — sin6;_1])

where Anax, Jmax and R, are the maximum acceleration and jerk
on each axis, and scaling factor, respectively. Here, AV, is set as
min (AmaxTs, JmaxT2/2). Eq. (12) illustrates that the acceleration or
jerk on any axis caused by velocity variation should never exceed
the limits of acceleration and jerk within one sampling time. The
curve parameter u; and suitable feedrate V; at each breakpoint are
recorded and will be used to plan the jerk-limited feedrate profile
in Section 4.

(12)

3.4. Feedrate adjusting at critical points with large curvatures

Although feedrates at breakpoints have been adjusted accord-
ing to kinematic property in Section 3.3, sharp corners with large
curvatures in a NURBS curve still could violate kinematic prop-
erty for high-speed machining. To find out critical points which are
generally called sharp corners and determine their corresponding
feedrates, three constraints of chord error, centripetal acceleration
and jerk are considered simultaneously in Eq. (13). The critical cur-
vature i for identifying the critical points is given as

. 88 An Jn
Kee=mMm\ —m—m——————, —» (13)
(Vrnax N Ts)z + 452 Vr% V3

ax max
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Fig. 4. The geometry and kinematic properties of a hat contour (a) curvature profile of hat curve; (b) critical points in Cases I and VI; (c) critical points in Cases Il and III; (d)

critical points and breakpoints in Case II.

where §,T; and V. are chord tolerance, sampling time and
maximum feedrate, respectively. In Eq. (13), the first condition is
derived from the adaptive-feedrate interpolation algorithm [10];
the second and third conditions are derived from the equations
of centripetal acceleration and jerk in [17]. Any interpolation
point with its curvature «; being larger than the critical curvature
is defined as a candidate point since it exceeds one of three
constraints. The point which has the local maximum curvature
among the candidate points is defined as a critical point and
its suitable feedrate V; is modified according to the following
equation.

2 |1 1 2 A
Vi=min — 7—(*—8), J,SJ%
T K; Kj Ki K;

where «; is the curvature of the critical point. The hat curve is
provided to further demonstrate the concept. The contour and
curvature profiles of the hat curve are shown in Figs. 2 and 4(a),
respectively. In general, one could expect that four points marked
as B, C, F and G should be identified as critical points because the
curvatures at these points are local maximum. In fact, the points
C and F might satisfy three constraints under some geometry and
kinematic conditions, only the points B and G need to be regarded
as critical points. In order to demonstrate how many critical points
are detected under different conditions, four cases are tested
and the corresponding parameters are listed in Table 2. Case |
includes the following default values suchas § = 1 pm, Vi =
100 mm/s, A, = 800 mm/s? and J, = 26 400 mm/s. In Case I,
two critical points of B and G are detected as shown in Fig. 4(a) and
(b). The critical curvature (k. = 0.08) is determined by the second

(14)

condition in Eq. (13), and the suitable feedrates at the critical
points are constrained by centripetal acceleration. When the given
feedrate increases to 250 mmy/s in Case II, four critical points of B,
C, Fand G are obtained as shown in Fig. 4(c). The critical curvature
(ke = 0.0128) is still determined by the second condition. As
compared with Case I, if the chord tolerance is reduced from 1 um
to 0.1 pwm in Case III, four critical points of B, C, F and G are
detected. The critical curvature (k. = 0.02) is determined by
the first condition. The suitable feedrates are limited by chord
tolerance. As compared with Case I, if the centripetal acceleration
increases to 2000 mmy/s? in Case VI, only two critical points marked
as B and G are detected. The critical curvature (x, = 0.0162)
is determined by the third condition. The suitable feedrates are
constrained by centripetal jerk. Finally, the curve parameters u;
and suitable feedrates V; at the critical points are stored and will
be utilized in Sections 3.5 and 4.

3.5. The length estimation of NURBS blocks

After detecting all breakpoints and critical points within
a NURBS curve, their parameters u; and suitable feedrate V;
are obtained; the curve is divided into small NURBS blocks
corresponding to the scanning data (u;, V;). For example, the hat
curve is divided into seven NURBS blocks AB, BC, CD, DE, EF, FG
and GA shown in Fig. 4(d). The length of each NURBS block is
required for feedrate scheduling. However, it is difficult to calculate
the length by integrating NURBS parametric equation. The adaptive
Lobatto quadrature method [25] is adopted to estimate the length
of each NURBS block accurately. Given a tolerance of length error ¢,
the length of each block S; is calculated over the parameter interval
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Table 2
The parameters of four test cases for the hat curve (fixed J, = 26 400 mm/s?).

Chord tolerance § (m) Feedrate Vi.x (mm/min)

Centripetal acceleration A, (mm/s?) Critical curvature k¢ (1/mm)

Case ] 1.0 100
Casell 1.0 250
Case III 0.1 100
Case VI 1.0 100

800 min(0.20, 0.08, 0.162)

800 min(0.032, 0.0128, 0.041)

800 min(0.02, 0.08, 0.162)
2000 min(0.199, 0.20, 0.162)

Vi v
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NURBS block
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Ve (u,V,8))
8
_g Feedrate scheduling data:
D
&V VoV, NN,

Ve

t
N,T, NT N,T.
t z o z, z,

Fig. 5. Feedrate scheduling for a NURBS block.

[uf, u¢] using the following equation:

uf
S~ / C'wduzte (15)
5

where iis the index of each NURBS block and u§ /uf are the start/end
curve parameters of ith block. After performing the procedure of
curve scanning, the scanning data (u;, V;, S;) for each NURBS block
will be provided to the feedrate scheduling algorithm which is
presented in the next section.

4. Feedrate scheduling algorithm

When the process of curve scanning is finished, the scanning
data (u;, Vi, S;) are obtained and stored. In the stage of feedrate
scheduling, the goal is to construct a jerk-limited feedrate profile
for each NURBS block through the scanning data. Its concept is
shown in Fig. 5, where C(u;) and C(u;;1) are the start and end
points in each NURBS clock, V; and V;,; are the corresponding
feedrates at the start/end points, S; is the length of each NURBS
block. Vi, V. and Vi denote the start, end, and constant feedrate
after feedrate scheduling, respectively. N;, N, and Ny are the
number of sampling time in the ACC, constant feedrate (CF)
and DEC sections of feedrate profile. Finally, the feedrate profile
and corresponding parameters (Vs, Vi, Ve, Ny, Nc, Ng) of a NURBS
curve are obtained by connecting those feedrate profiles for each
NURBS block.

4.1. Sine-curve velocity profile

Since sine-curve velocity profile shown in Fig. 6 is more
continuous than trapezoid and blended spline velocity profile, it
is chosen to generate the feedrate profile for each NURBS block in
this paper and its velocity equation is given as [27]:

Vian(t)

Ve—Vi[ . [(t—t 1
sin — 1 Vi, th<t<t
2 [ T[( Ta 2>+}+5 0= =k
= st t; <t<t (16)
Vi =V, . t—t 3
fsz e[smn( Tdc—2>+1]+ve, t.<t<t

Vf\'
o
s
o
8
=V
v,

N,

Acceleration
|
N N
~

N
3 ~

Jerk

Fig. 6. Sine-curve velocity profile.
where T, = N, - T; and Ty = Ny - Ts. Differentiating Eq. (16) yields
the acceleration equation,

Ve — Vs m t—t 1
s osn( O—), to <t <t

Zc
T, T, 2
Awn(t) = 10 ts<t<t (17)
Vs — Ve t—t 3
5" cosn C_2), t<t<t,.
2 T, T, 2

Differentiating Eq. (17), one obtains the jerk equation,

Jean (0)
Ve — Vs (7)\° t—tp 1
_EZE () sing 0o __ to <t <t
2 T, T, 2

=10 t; <t <t (18)

2
Ve -V (T t—t 3
_E T (2 sing C_2), t<t<t,.
2 T, T, 2

The limits of tangent acceleration and jerk can be determined
by setting the feedrate Vi = Vinax:

Ve —Vomr t— ¢ 1
[Atan (t)] = M*COST[ L=
2 T, T, 2
< uz <At
< > TS
Jian(t) = VeV (m 2sinyr -6 1 1)
fan 2 T, T, 2
2
< VfSZ Vs <T£> <J
a
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4.2. Feedrate profile generation for each NURBS block

In this section, the procedure of feedrate scheduling for each
NURBS block is shown in Fig. 7 and the details are illustrated
schematically as follows.

Step 1.

In the first step, it needs to calculate the number of sampling
time N, and Ny in the ACC/DEC sections of sine-curve profile. For
given start feedrate V;, allowable feedrate Vj; = Vipax and limits of
tangent acceleration and jerk, the number N, can be derived from
Eq.(19),

Ve—V, Ve — Vi1 [7)\?
N, = max £ : , L s—(—) . (20)

2 AT 2 e \T;

The process for calculating Ny is similar to that of calculating
N,. The areas under the ACC/DEC sections of sine-curve profile are

derived as
" _ _
s Vmax - Vs . t— tO 1
Sqe = ——— |sinmw - = 1 Vs ¢ dt
‘ »/f\o 2 L ( Ta 2) + . + S}

(Vs + Vmax) : NaTs

2
. _ -
¢ Vmax - VE,’ . t - tC 3
—— |sinw - = 1 Ve ¢ dt
/fc 2 | (Td 2>+_+e}
(Ve + Vmax) . Nde
-
Therefore, the number of sampling time in the CF section of
sine-curve profile is obtained:
Si—S.— S
N, = 21— 2e > (22)
VmElXTS
If N, > 0, it means that the length of NURBS block S; is long
enough to plan the CF section with maximum feedrate Vj,.x, and
the feedrate profile is planned as Fig. 7(a). Otherwise, the process
goes to Step IL.

Step 1.

For the feedrate profile without CF section, it is necessary to
reduce the feedrate from maximum feedrate V,,x to allowable
feedrate V. It is represented as

Ng—1 .
Zﬂ Vs—=Vo) [ . jo1
{ % |:Sln7T <N7 — 5 +1 TS + VSNaTS

Sa

j=0 a
Ng—1 .
(st - Ve) . J 3
——|SinT | — — = 1 T,
+ { > Ll
+ VeNgTs + VN Ts = Si. (23)

Simplifying Eq. (23), one obtains the allowable feedrate Vg as

[ _ BT 3@V +bVe) — Vo — Vel .
B= @b 4N,

where a = Y [sin 7 (- — 1)+ 1]and b = Z}V:dgl[sinn(NLd _
%) + 1]. If the Vj is greater than max (V;, Ve), the process goes to
feedrate scheduling without CF section as shown in Fig. 7(b). In this
case, Ny and Ny are calculated using Eq. (20), and N, is equal to zero.
There are three cases according to the relation between V; and V,
(ie., Vs > Ve or Vs < V, or Vs = V,). Otherwise, the acceleration or
jerk may exceed the limitation, so that feedrate scheduling must
be performed further and the process goes to Step III for the case of
Vi < max(Vs, Ve).

Step 1I1.

If the allowable feedrate Vi is greater than min (V;, V), the
feedrate profile with only ACC or DEC section is considered as
shown in Fig. 7(c). In this case, the Vy is set as max (V, V), and
the parameter N, or Ny is evaluated from Eq. (20). Eq. (24) is used
to calculate the V. Note that if V; > V,, the parameters Nq, N. and
a in Eq. (24) are set to zero; otherwise, the parameters Ny, N; and
b are set to zero.

If the Vj; is smaller than min (Vs, V,) or equal to min (Vs, V), the
acceleration or jerk still could exceed the limitation. Therefore, it
needs to perform feedrate scheduling further and goes to Step IV.

Step IV.

For the case of Vi < min(V;, V), the feedrate profile with only
CF section is adopted as shown in Fig. 7(d). The feedrates V; and V,
are all set as min (Vs, V,). Therefore, the length of NURBS block S;
is the only condition for feedrate scheduling. The V is determined
through Eq. (24) where the parameters Ng, Ng4, a and b are set to
zero, and the process of feedrate scheduling for each NURBS block
is finished.

In summary, the concept of feedrate scheduling for each NURBS
block is summarized as follows:

1. By the constraints of tangent acceleration and jerk, the numbers
of sampling time in the ACC/DEC section of sine-curve velocity
profile can be evaluated from Eq. (20).

2. According to the length of NURBS block, the allowable feedrate
Vs after feedrate scheduling is evaluated from Eq. (24).

3. Finally, the feedrate scheduling data (Vs, Vg, Ve, Ng, N, Nyg) are
determined by the feedrate scheduling algorithm.

4.3. Short NURBS block determination and prior handling

In the process of feedrate scheduling proposed in the last
section, the boundary condition V; or V, may be changed in some
situations. This problem may cause jump and discontinuity at the
junction of two feedrate profiles corresponding to two adjacent
NURBS blocks. Furthermore, the acceleration and jerk could exceed
the limitation.

For example, if the length of NURBS block is too short, its
feedrate profile could be changed from the form of Fig. 7(b) to the
form of Fig. 7(c) or (d) in the process of feedrate scheduling, so
Vs or V, is changed, too. Therefore, one hope to determine how
“short” NURBS block the boundary condition may be changed. As
shown in Fig. 8, the criterion length of NURBS block satisfied V; =
max(Vs, V) can be derived as

1
E(Vs + Ve)NaTs + VeNdTSa Vs < Ve

Sstd = (25)

1
E(Vs + Ve)Nde + VsNaTs, Vs > Ve

(Na + Nd)VsTs Vs = Ve.

Through Eq. (25), if S; > Sg4, the boundary condition is not
changed after feedrate scheduling process and the corresponding
NURBS block is called a “long” NURBS block. Otherwise, the NURBS
block is called a “short” NURBS block. For avoiding the jump and
discontinuity at the junction of two feedrate profiles, it is necessary
to check if the next NURBS block is “short” or not before scheduling
the feedrate profile for ith NURBS block. If so, searching all of
the following short NURBS blocks is performed in priority, e.g.,
(i + 1th, (i + 2)th, ..., (i + k)th block are short. After feedrate
scheduling for those short NURBS blocks and ith NURBS block
is performed in the opposite direction, e.g. (i + k)th, (i + k —
Dth, ..., (i + 1)th, ith, the work of feedrate scheduling is moved
to (i+ k)th block and goes on. The concept of feedrate rescheduling
for short NURBS blocks is illustrated in Fig. 9.
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4.4. Terminal error compensation of NURBS block

The work of off-line feedrate scheduling for the whole NURBS
curve is over up to here. Since the length S; of each NURBS block is
estimated by the adaptive Lobatto quadrature method, estimation
error exists between actual moving length and estimated length,
and it may cause a problem of terminal error after interpolation.
The actual moving length Siitr after interpolation and the estimation
error AS; are calculated using the following equations:

Fig. 8. The criterion of short NURBS block.

Nitr
itr __
S =
=1
AS; =S —s;

> |Cuipn) = Cp

(26)

(27)

where i is the index of NURBS block and Ny, is the number of
interpolation points within the ith block. To solve the terminal
error problem, the error distance is compensated by designing
a compensated feedrate curve for distributing it in the last Neom
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Table 3
Parameters of kinematic constraints and feedrate scheduling method.
Parameters Symbols Units
Sampling time Ts 0.002 s
Chord error § 1pum
Maximum feedrate Vinax 250 mm/s
Maximum acceleration Amax 800 mm/ s2
Maximum jerk Jimax 26400 mm/s>
Length estimation error e 0.1 um
Feedrate error of PCI £pl 0.1%
The correctional coefficient of PCI B 0.9
The number of feedrate compensation Neom 50
sampling time. The sine-curve interior [—Z%, 22 ] is utilized as the

compensated feedrate curve shown at the bottom of Fig. 1. Its
equation is represented as

. AVcom . 2] 1
AV () = — |:smn (ﬁ - 5) + 1:| . (28)

Let the area under the compensated feedrate curve be equal to
AS;, and represented as

NC(J\"I'li‘1

> AVOYT (29)

=0

AS; =

where N, is the number of sampling time of the compensated
feedrate curve. The parameter AV.y, can be obtained from
Eqgs. (28) and (29). If AV o is positive, the actual moving length
of NURBS block is larger than the estimated length, i.e. AS; > 0;
otherwise, the actual moving length is smaller than the estimated
length, i.e. AS; < 0.

To calculate the error distance, the interpolation should be
performed for each NURBS block. The sum of the original
feedrate profile and compensated feedrate profile becomes the
new feedrate command profile which is used in the final Ncom
times interpolation. It is noted that only N, sampling points
need to backtrack, and the compensated feedrate curve generates
new curve points in real-time interpolation process. Finally, the
problem of terminal error is eliminated via the process of feedrate
compensation.

5. Simulation and experimental verification

In the following, analytical simulations and experiments are
performed to demonstrate the feasibility and applicability of
the proposed feedrate scheduling method. The performance
evaluation among first-order Taylor, second-order Taylor and PCI
interpolation algorithms are also performed to verify the efficiency
of the proposed method.

5.1. Efficiency and accuracy analysis

The environment of simulation consists of Intel Core i7-860
2.8 GHz personal computer with Windows XP operating system,
and the proposed feedrate scheduling method is developed by

Table 4
Arithmetic operations of various NURBS interpolation methods.

MATLAB. The PCI interpolation algorithm in [7] is applied to
generate curve parameter. Even though PCI has a disadvantage of
stability problem that corrector may not converge at breakpoints
with G° continuity, it still works in this paper since the NURBS
curve which contains the breakpoints has been split into several
NURBS sub-curves. In this section, two free-form curves are chosen
to simulate and to compare the efficiency and accuracy among
the first-order Taylor, second-order Taylor and PCI interpolation
algorithms. The parameters of kinematic constraints and feedrate
scheduling method are presented in Table 3 unless stated
otherwise.

To illustrate the computing efficiency, the number and total
clock cycles of arithmetic operations required to realize various
interpolation techniques are summarized in Tables 4 and 5,
respectively. The degree of NURBS curve p, the number of motion
axes N, and the iteration number of PCI N; are considered as
performance influencing factors. To improve feedrate accuracy,
PCI algorithm requires to perform Egs. (6)-(9) recursively. Since
the Cox-de Boor algorithm needs % times of function calls to
generate an interpolation point C (), the total number of ADD, SUB,
MUL and DIV operations for PCl increases proportional to the factor
(N; — 1)Na"(pz—“) in [29]. In contrast to PCI, since the Taylor series
methods only need to calculate the first and second derivatives of
a NURBS curve in Eq. (4) using the Cox-de Boor algorithm, the total
number for the first- and second-order Taylor methods increases
proportional to the factors Na@ and N,(p — 1)2, respectively.
Therefore, the computation of PCI algorithm consumes the most
clock cycles as compared with the others shown in Table 5. In the
hat case withp = 2,N, = 3,N; = 2, the total clock cycles
consumed by PCI is about 4.08 and 6.63 times of that consumed
by the first- and second-order Taylor methods, respectively.

Although computing efficiency of PCI algorithm is not better
than the Taylor series methods, it is still worth to apply PCI method
to reduce feedrate fluctuation for high-speed machining. There-
fore, the hat and butterfly curves are tested to prove the accuracy
and feasibility of the proposed feedrate scheduling algorithm with
PCI method. The adaptive-feedrate interpolation algorithm (ADA),
adaptive-feedrate with curvature-based feedrate interpolation al-
gorithm (ADACB) and proposed feedrate scheduling method (FS)
are adopted to plan the feedrate profile of a NURBS curve; the first-
and second-order Taylor methods, and PCI methods are applied to
generate an interpolation point. The comparisons of feedrate errors
among various NURBS interpolation algorithms are summarized
in Table 6. It is clear that the PCI method achieves the best fee-
drate accuracy as compared with the Taylor methods for the two
curves. Furthermore, the FS with PCI method can outperform all
of the other algorithms both in maximum and root mean square
of feedrate accuracy. The corresponding feedrate error is within
the tolerance 0.1%, and root mean square of feedrate error is only
0.04%. It is noted that the ADA algorithm with first-order Taylor
method is not suitable for high-speed machining since the max-
imum feedrate fluctuations are over a hundred percent of given
feedrate command. In the following sections, simulations are con-
ducted to demonstrate the feasibility and applicability of the pro-
posed feedrate scheduling method.

Arithmetic operation First-order Taylor

Second-order Taylor PCI

ADD Ng + Nop(p — 1)/2 No(p — 1)? + Ny +2 (Nj = D) [Nap® + 1)/2+ Ny + 1] + No(P* +p + 1)
SUB 3Nep(p — 1)/2 3Ne(p — 1)* + 1 (Nj—1) [Nap( 4+ 1)/2 + Ny + 3]+ Na(3p* +3p+ 1) +2
MUL Ne(@® —p+ 1) +1 2No(p — 1? + N, + 13 (N = D [Na@*+p+1) +2] + Na(@p? +2p+ 1) + 2
DIV Nep(p — 1)/2 4+ 1 No(p — 1)* + 4 (N; — 1) [Nap(® + 1)/2 + 3] + Na(p* + p) + 2

SQRT 1 1 N;

Note. ADD: Addition, SUB: Subtraction, MUL: Multiplication, DIV: Division, SQRT: Square Root, p: the degree of NURBS curve, N,: the number of motion axes, N;: the number

of iterations for PCL
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Fig. 9. The rescheduling process for short NURBS blocks.

Table 5
Total clock cycles of various NURBS interpolation methods (fixed N, = 3, N; = 2).

NURBS curve First-order Taylor Second-order Taylor PCI
Hat(p = 2) 225 366 1492
Butterfly (p = 3) 501 780 2680

Note. The clock cycles for performing double-precision arithmetic operations on
Intel Core i7 chip are given as ADD(3), SUB(3), MUL(5), DIV(24), SQRT(34) in [28].

5.2. Simulations of hat curve

The first NURBS curve is a hat contour shown in Fig. 2 and the
parameters of simulations are listed in Table 3. The hat curve has
nine control points and its degree is two. Fig. 10(b) illustrates that
the proposed algorithm detects three breakpoints, i.e., A, D, and
E, and divides the curve into three NURBS sub-curves (AD, DE and
EA) using the curve splitting method. Furthermore, the proposed
method obtains four zones where the curvatures are larger than
the critical curvature «,, = 0.0128 as shown in Fig. 10(c). It also
finds out four critical points, i.e., B, C, F, and G, and further divides
the curve into seven NURBS blocks such as AB, BC, CD, DE, EF, FG
and GA based on the breakpoints and critical points. Finally, the
sine-curve feedrate profile for the hat curve is planned as shown
in Fig. 10(d). As shown in Fig. 11(a)-(c), the profiles of chord error,
acceleration and jerk generated by the proposed method are all
constrained on the values of 1 jum, 800 mm/s? and 26 400 mm/s>,
respectively. As shown in Fig. 11(d)-(f), the velocity, acceleration
and jerk profiles of x-axis and y-axis are also constrained on
the given limits of 250 mm/s, 800 mm/s?> and 26 400 mm/s>,
respectively. From the simulation results, it demonstrates that the
precision and the kinematic constraints of CNC machine are all
satisfied.

It is obvious that the curve consists of two breakpoints D and
E with G° continuity within the curve. Since the directions of

the motion path change instantaneously while crossing these two
breakpoints, the feedrate variation would cause the individual
motion axis to exceed the constraints of acceleration and jerk if the
feedrates are not adjusted. This example shows that not only the
proposed algorithm can correct the feedrates at two breakpoints of
D and E to suitable values using Eq. (12), but also the acceleration
and jerk are bounded. Besides, the feedrates at four critical points
of B, C, F, and G are adjusted according to Eq. (14). Note that
the conditions for the breakpoints with G° continuity are stricter
than those for critical points with G continuity. That is why the
feedrates at the breakpoints of D and E are far less than those at
the critical points of B, C, F, and G shown in Fig. 10(d).

5.3. Simulations of butterfly curve

To further illustrate the merits of the proposed feedrate
scheduling method, one considers the second NURBS curve which
is more complex than the hat curve. The butterfly curve has
51 control points and its degree is three in [29]. Fig. 12(a)-(d)
show the butterfly contour, its sub-curves and blocks, its cur-
vature and feedrate profile, respectively. For the given param-
eters listed in Table 3, the critical curvature k. is obtained as
0.0128, the proposed method identifies 31 critical points marked
as Cy to C3; as shown in Fig. 12(b)-(c), and the curve is divided
into 32 NURBS blocks including CoC] , C1Gy, C2C3, C3C4, e C30C31
and C31Cy. The algorithm further estimates the length of each
block and plans the sine-curve feedrate profile for each block.
It is noted that the curve detects ten short blocks such as
C4Gs, CgCy, CyCio, C13C14, C14Cis, Ci5Ci6, C16C17, Cr2Ca3, Cp3Cagand
C,5Cy9 utilizing the criterion of short NURBS block in Eq. (25).
Therefore, the short blocks are combined with the nearby long
blocks through the feedrate rescheduling process as shown in
Fig. 9. For example, since the block C4Cs is too short and its end
velocity V, is too low, its deceleration profile cannot be planned

Table 6
Feedrate errors of various NURBS interpolation algorithms (fixed Vip.x = 250 mm/s).
NURBS curve Interpolation algorithm ADA ADACB FS (proposed)
MAX/RMS (%) MAX/RMS (%) MAX/RMS (%)
First-order Taylor 137.00/10.81 32.72/10.58 15.44/4.20
Hat Second-order Taylor 134.94/10.80 31.60/10.57 12.79/4.10
PCI 0.10/0.04 0.10/0.04 0.10/0.04
First-order Taylor 12.82/2.25 12.69/2.17 11.18/2.06
Butterfly Second-order Taylor 3.14/0.42 3.04/0.39 2.67/0.28
PCI 0.10/0.04 0.10/0.04 0.10/0.04

Note. ADA: Adaptive-feedrate interpolation algorithm, ADACB: Adaptive-feedrate with curvature-based feedrate interpolation algorithm, FS: The proposed feedrate
scheduling method.
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Table 7
Parameters of the servo control systems and motion controllers.
Quantity Symbol Value Units
X-axis y-axis z-axis
Servo system dynamics a 35.833 58.532 23.117 s
b 3.640 x 1073 4.094 x 1073 0.425 x 1073 mm/Volt
Position controller Kyp 148.200 153.128 145.242 1/s
Velocity controller Kyp 11.393 x 1072 10.285 x 1072 96.754 x 1072 Volts/mm
T; 8.172 x 103 7.323 x 103 8.720 x 103 1/s
Velocity feedforward controller Ky 0.95 0.95 0.95
o 500 500 500 Hz
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Fig. 10. The hat curve: (a) contour, (b) sub-curves and blocks, (c) curvature profile and (d) feedrate profile.

under the given jerk constraint. The proposed algorithm com-
bines the long block C3C4 and the short block C4Cs into one long
block C5Cs, and plans the deceleration profile for the block as
shown in Fig. 7(c.2). Finally, the algorithm reschedules the fee-
drate profile for each combined block shown in Fig. 12(d), and
the number of NURBS blocks decreases from 32 to 26. Comparing
Fig. 12(c) with Fig. 12(d), it illustrates that the feedrates at criti-
cal points Cs, Cg, Cyg, Cy3, C19, Ca2, Co4 and Cp7 with larger curva-
tures are lower than those of other critical points with smaller
curvatures.

Again, one can check that the feedrate profile of the butterfly
curve satisfies the constraints of chord error, acceleration and jerk
limitations shown in Fig. 13(a)-(c). As shown in Fig. 13 (d)-(f), the
profiles of velocity, acceleration and jerk for x-axis and y-axis are
also constrained on the given limits of 250 mm/s, 800 mm/s? and
26 400 mm/s>, respectively. From the simulation results, it demon-
strates that the proposed feedrate scheduling method achieves the

desired precision and satisfies the kinematic constraints of CNC
machine for high-speed machining.

5.4. Simulation comparisons among different NURBS interpolation
algorithms

In order to point out the differences among the proposed
method and previous researches including dynamic-based inter-
polator with real-time look-ahead algorithm (DBLA) in [18] and
adaptive-feedrate interpolation algorithm (ADA) in [10], some
simulations are performed as follows. The block diagram and spec-
ification of AC servo control systems are referred to [18]. The
parameters of servo control systems and motion controller are
listed in Table 7 unless stated otherwise.

For the hat case, since the DBLA and ADA algorithms cannot
detect the breakpoints D and E as shown in Fig. 2, they will
not suitably decrease the feedrate and consequently deteriorate
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Fig. 11. Feedrate scheduling for the hat curve: (a) chord error profile, (b) acceleration profile, (c) jerk profile, (d) x- and y-axes velocity profiles, (e) x- and y-axes acceleration

profiles and (f) x- and y-axes jerk profiles.

sharply in large chord, tracking and contouring errors around
the breakpoints D and E. However, since the proposed algorithm
can handle the problem of G° continuity in the off-line process,
the performance can meet the specifications. The hat curve with
1/4 scale and the feedrate command 1454 mm/s is adopted
to demonstrate the merits of the proposed method. Simulation
results are shown in Fig. 14. Statistical data are summarized in
Table 8 where the proposed method can reduce the maximum
contour error by 65.56% and 68.95% as compared to that of DBLA
and ADA algorithms, respectively. Furthermore, for both the hat
and butterfly cases, if the maximum feedrate command is given as
15 000 mm/min, the sampling time 2 ms, the constraints of chord

error, acceleration and jerk 1 wm, 800 mm/s? and 26 400 mm/s>,
respectively, the maximum allowable feedrate Fn,x for DBLA
algorithm can be determined as

Amax

1
Frax = 3 X (2 X Ty) X Amax = X Amax ~ 24.24 mm/s

max

1454.54 mm/ min

where T, is the maximum acceleration time of DBLA algorithm.
The DBLA algorithm constrained the maximum feedrate by
1454.54 mm/min, far less than the admissible feedrate. Never-
theless, the proposed feedrate scheduling method can achieve the
feedrate command 15 000 mm/min by planning the sine velocity
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Fig. 12. The butterfly curve: (a) contour, (b) sub-curves and blocks, (c) curvature profile and (d) feedrate profile.

Table 8

Performance comparisons of simulations among different NURBS interpolation algorithms for hat contour.

Feedrate command Interpolation Chord error (wm)  Tracking error (wm) Contour error (jum) Machining time (s)
(mm/min) algorithm
MAX RMS MAX (x/y-axis) RMS (x/y-axis) MAX RMS PRE MAC Total
ADA 0.203 0.010 150.512/61.178 10.526/9.097 74.330 5.395 0 8.908 8.908
1454 DBLA 0.060 0.007 128.752/60.309 10.025/8.922 67.000 4.856 0 9.110 9.110
FS 0.057 0.007 28.737/39.317 9.378/8.732 23.077 4.272 33.138 9.448 42.586

Note. MAX: maximum, RMS: root mean square, PRE: pre-process, MAC: machining.

profile through Eqgs. (16)-(19); the process of feedrate scheduling
is shown in Fig. 7.

5.5. Experimental results

In this section, experiments are performed on a three-axis
engraving machine with Panasonic MINAS-A4 servo drivers and
MSMDO042S1S servo motors. The drivers of servo motors are set to
torque mode. The off-line feedrate scheduling algorithm is imple-
mented on MATLAB, and the three-axis engraving machine shown
in Fig. 15(a) is controlled by a PC-based motion controller with Intel
Core i7-860 2.8 GHz microprocessor. The hat and butterfly curves
are tested under feedrate command of 15 000 mm/min. Since the
maximum velocities of servo drivers are limited to 120 mm/s, the
maximum feedrate for real machining is set to be 7200 mm,/min.
The feedrate scheduling method implemented as a pre-process
consumes about 8.881 s and 11.361 s for the hat and butterfly
cases, respectively. The real machining test of the butterfly curve
is shown in Fig. 15(b).

Some experiments are performed to do the comparative anal-
ysis among the ADA, the FS with and without real machining for

the butterfly curve. Since the DBLA cannot meet the specifica-
tion of maximum feedrate, only the ADA is used for comparison.
Experimental results are shown in Fig. 16. Statistical data are sum-
marized in Table 9. The ADA which only considers chord errors
cause high jerks, large tracking and contour errors at the criti-
cal points of C], C5, Cg, C]o, C13, C]g, C22, C24, C27, C31, as shown in
Fig. 16(b)-(d). The chord errors cannot be constrained by 1 um
using the ADA for high-speed machining as shown in Fig. 16(a).
Nevertheless, the FS detects the critical points in advance, and
plans a smoother feedrate profile under the given constraints
of chord error, acceleration and jerk as shown in Fig. 16(f).
Fig. 16(e)-(h) demonstrate that the proposed FS can improve the
chord, tracking and contour performances simultaneously as com-
pared with the ADA. As shown in Table 9, the total machining times
for performing the FS with and without real machining are 19.411s
and 11.361 s, respectively. The tracking and contour errors are
almost the same as expected between simulation and experimen-
tal results. The FS can reduce the maximum contour error by
76.52% as compared with the ADA, with a penalty of 464.27% more
machining time. The experimental results demonstrate the feasi-
bility of the proposed off-line feedrate scheduling method and the
applicability for real-time implementation.
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Fig. 13. Feedrate scheduling for the butterfly curve: (a) chord error profile, (b) acceleration profile, (c) jerk profile, (d) x- and y-axes velocity profiles, (e) x- and y-axes
acceleration profiles and (f) x- and y-axes jerk profiles.

Table 9
Performance comparisons among different NURBS interpolation algorithms for butterfly contour.
Feedrate command Interpolation Chord error (jum) Tracking error (jum) Contour error (jLm) Machining time (s)
(mm/min) algorithm
MAX RMS MAX (x/y-axis) RMS (x/y-axis) MAX RMS PRE MAC Total
ADA 2521 0.297 266.029/411.70 32.923/57.780 285.871 46.012 0 3.440 3.440
7200 FS (SIM) 0.411 0.155 116.736/186.611 18.945/21.252 58.000 18.638 11.361 0 11.361
FS (EXP) 0.411 0.155 96.630/183.020 19.523/23.315 67.119 19.628 11.361 8.050 19.411

Note. SIM: simulation, EXP: experiment.
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Fig. 14. Simulation results of ADA, DBLA and FS interpolation algorithms for the hat curve.

Fig. 15. The real machining test (a) three-axis engraving machine, (b) the butterfly contour.
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6. Conclusions

In this study, an off-line feedrate scheduling method con-
strained by chord tolerance, acceleration and jerk limitations is
proposed to construct a jerk-limited feedrate profile of NURBS
curve. In off-line process, scanning a NURBS curve in advance is
performed to find out the breakpoints with G° continuity, and the
curve is split into several NURBS sub-curves. The proposed method
also detects the critical points with large curvatures, and the curve
is further divided into small blocks. Furthermore, the suitable fee-
drates at breakpoints and critical points are determined based on
the constraints of chord tolerance, acceleration and jerk limita-
tions, and velocity variation. The length of each NURBS block is esti-
mated and stored as the scanning data. The feedrate profile for each
NURBS block is constructed by utilizing the results of curve scan-
ning. In addition, feedrate compensation method for short NURBS
block is established to make the whole feedrate profile more con-
tinuous and precise. The proposed method is realized as a pre-
processor, which avoids the complicated and heavy calculations
in real time. In real-time process, it is simple and efficient to per-
form the interpolation algorithm and to generate the curve point.
Finally, simulations and experiments are conducted to verify the
feasibility and applicability of the proposed feedrate scheduling
method.
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