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The equivalence of two conditions, condition (3) and condition (4) stated in Problem Statement section, regarding the existence of
stabilizing switching laws between two unstable linear systems first appeared in (Feron 1996). Although Feron never published this
result, it has been referenced in almost every survey on switched systems; see, for example, (Liberzon and Morse 1999). This paper
proposes another way to prove the equivalence of two conditions regarding the existence of stabilizing switching laws between
two unstable linear systems. One is effective for theoretical derivation, while the other is implementable, and a class of stabilizing
switching laws have been explicitly constructed by Wicks et al. (1994). With the help of the equivalent relation, a condition for the
existence of controllers and stabilizing switching laws between two unstabilizable linear control systems is then proposed. Then,
the study is further extended to the issue concerning the construction of quadratically stabilizing switching laws among𝑁 unstable
linear systems and 𝑁 unstabilizable linear control systems. The obtained results are employed to study the existence of control
laws and quadratically stabilizing switching laws within a class of unstabilizable linear control systems.The numerical examples are
illustrated and simulated to show the feasibility and effectiveness of the proposed methods.

1. Introduction

The study of switched systems and switching strategies has
recently attracted considerable attention (see, e.g., [1–40]).
A switched system is known as a hybrid dynamical system
comprising a family of continuous-time subsystems and a
rule that conducts the switching among them. This kind
of system arises from many practical applications such as
adaptive control, intelligent control, and the control of many
mechanical systems (see, e.g., [4, 5]). The key motivations for
having “multiple modalities” or “variable structure” during
the control period include the improvement of the transient
response of an adaptive system [2] and the existence of sys-
tems (such as nonholonomic systems) that cannot be asymp-
totically stabilizable by a single continuous feedback control
law [8, 41], which makes switch control technique especially
suitable. Recently, the fault-tolerant control (FTC) issues
with fault detection and diagnosis (FDD) schemes have been

largely discussed [38, 42–46]. Herein, the switching strategies
will also be applied in the active, passive, or data-driven
framework in the current and future works. Another example
in the real control application of an air-breathing hypersonic
aircraft with high complexity of the motion equations can
be achieved by applying a switched linear-parameter-varying
systems approach [32]. In mathematical modeling of physical
systems, Wu and Zheng explored the topics concerning
weighted 𝐻∞ model reduction for linear switched systems
with time-varying delay [18] and dissipativity-based sliding
mode control of switched stochastic systems [39]. Lian et al.
studied the dwell time method and exponential stability for
uncertain switched stochastic time-delay systems [37].

In general, the issue regarding stability and design of
switched systems is characterized into three categories [9].
The first is to find conditions that guarantee that the switched
system is asymptotically stable for any switching signal.
An intuitive approach for this category is to investigate
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the existence of common Lyapunov function for all sub-
systems [2, 6, 12]. Clearly, all subsystems in this case are
necessarily required to be stable. The second is to identify
those classes of switching signals for which the switched
system, with all subsystems being stable, is asymptotically
stable. A strategy to carry out the analysis is through the use
of multiple Lyapunov function technique [7]. On the other
hand, instead of assuming that all subsystems are stable, the
final category allowed them to be unstable. The objectives of
the final category are then to explore the existence conditions
for stabilizing switching signals and to explicitly construct
the signals, which makes the switched system asymptotically
stable [1]. In this paper, we only consider the issue of the final
category.

It is known that the switching among stable systems
might result in the system state being unbounded [9]. On the
other hand, with suitably selecting the switching signal, the
switching among unstable systems might have the property
that the system state converges to zero [1]. One of the
sufficient conditions regarding the existence of stabilizing
switching laws between two unstable linear systems is given
by (2) of Section 2 below. Though this condition is effective
for theoretical derivation, it does not provide any guidelines
for the design of switching laws. In 1994, Wicks et al. [1]
showed that a matrix pencil condition, as given by (3) of
Section 2, is also a sufficient condition for the existence of
stabilizing switching laws. Although they pointed out that
the latter condition is more restricted than the former one,
they had presented an algorithm to facilitate the checking
of the latter condition and a guideline to explicitly construct
the stabilizing switching laws [1]. Recently, there are so many
new research results about the switched systems that have
been proposed (e.g., see [11–14, 16]). However, as far as
the construction of quadratically stabilizing switching laws
among 𝑁 systems is concerned, there are so many detailed
and extendable parts which still need further discussion and
exploration.

The issue, concerning the existence of stabilizing switch-
ing laws between two unstable linear systems, has been stud-
ied by Feron [3] and Liberzon andMorse [9].The equivalence
of two conditions (condition (3) and condition (4) stated in
Section 2 below) regarding the existence of stabilizing switch-
ing laws between two unstable linear systems first appeared
in Feron (1996) [3]. Although Feron never published this
result, it has been referenced in almost every survey on
switched systems; see, for example, [9]. In this paper, we will
propose another way to show that the two conditions stated
above are indeed equivalent and then apply the equivalent
relation to explore the existence of controllers and stabilizing
switching laws between two unstabilizable linear control
systems in an implementable way. In addition, in order to
further understand the geometrical interpretations of the two
sufficient conditions, we also specialize the two existence
conditions to a planar case. Conditions involving eigenvalues
and eigenvectors for a planar system are then presented.

This paper is organized as follows. Section 2 introduces
the two sufficient conditions regarding the existence of
stabilizing switching laws between two unstable linear sys-
tems, stabilizing switching laws among 𝑁 unstable linear

systems, and the objectives of the paper. Section 3 discusses
another way to prove the equivalence of the two sufficient
conditions for two linear systems. Section 4 specializes the
existence condition to planar systems and gives a numerical
example. Section 5 extends the study to the application of the
equivalent relation to the design of controllers and stabilizing
switching laws among 𝑁 unstabilizable linear systems and
linear control systems and gives two numerical examples.
Finally, Section 6 summarizes the main results.

2. Problem Statement

Consider the two linear systems

ẋ = 𝐴
𝑖
x, 𝑖 = 1, 2, (1)

where we assume that neither of the two systems is stable; that
is, neither 𝐴

1
nor 𝐴

2
is a Hurwitz matrix. It is known that a

sufficient condition for the existence of stabilizing switching
laws between the two unstable systems can be stated as in
condition (2) as follows:

∃𝑃 > 0

such that
2

⋃

𝑖=1

{x | x𝑇 (𝐴𝑇
𝑖
𝑃 + 𝑃𝐴

𝑖
) x < 0} = R

𝑛

\ {0} .

(2)

Clearly, under this condition and by defining 𝑉(x) = x𝑇𝑃x,
one can find a proper switching law between the two systems
such that �̇� < 0 for all the time. It then results in x(𝑡) → 0 as
𝑡 → ∞. However, condition (2) does not provide a means to
obtain such a matrix 𝑃. In 1994, Wicks et al. [1] verified that
the matrix pencil condition as given by (3) is also a sufficient
condition for the existence of stabilizing switching laws:

∃𝛽 > 0 such that 𝐴
1
+ 𝛽𝐴
2
is a Hurwitz matrix. (3)

They also proposed an algorithm to determine the existence
of 𝛽 and to explicitly construct a class of stabilizing switching
laws if condition (3) holds. It was pointed out by [1] that
condition (2) is more general than condition (3).

In 1996, Feron [3] proved that the sufficient condition
(3) is also a necessary one for the existence of stabilizing
switching laws. At the same time, the study concerning
quadratic stabilizability was also extended to dynamic output
feedback with a robust detectability condition. In 2000,
Decarlo et al. [11] extended the sufficient condition (3) for two
systems [1] to the sufficient condition (4) for more than two
systems as follows:

∃𝛼
𝑖
> 0 and

𝑁

∑

𝑖=1

𝛼
𝑖
= 1

such that 𝐴
𝑒𝑞
:=

𝑁

∑

𝑖=1

𝛼
𝑖
𝐴
𝑖
is a Hurwitz matrix.

(4)

However, the literature search indicates that the implemen-
tation of stabilizing 𝑁 unstable linear systems needs to be
further explored.
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Therefore, the first goal of this paper is to propose another
way to show the equivalence of conditions (2) and (3) and
then to apply the equivalent relation to study the existence
of controllers and stabilizing switching laws between two
unstabilizable linear control systems in an implementable
way. Then, we propose a way to implement the abovemen-
tioned problem for 𝑁 unstable linear systems. Finally, we
employ the results to design control laws and quadratically
stabilizing switching laws among 𝑁 unstabilizable linear
control systems.

3. The Proof of Equivalence

To achieve the objectives as described in Section 2, we
introduce the following condition:

∃𝑃 > 0 and 𝛽 > 0 such that 𝐿
1
+ 𝛽𝐿
2
< 0, (5)

where

𝐿
𝑖
:= 𝐴
𝑇

𝑖
𝑃 + 𝑃𝐴

𝑖
, 𝑖 = 1, 2. (6)

In the following, we will show the equivalence of the three
conditions (2)–(5). Firstly, we have the relation between
conditions (3) and (5) as follows.

Lemma 1. Conditions (3) and (5) are equivalent.

Proof. Condition (3) holds

⇐⇒ ∃𝛽 > 0 and 𝑃 > 0

such that (𝐴
1
+ 𝛽𝐴
2
)
𝑇

𝑃 + 𝑃 (𝐴
1
+ 𝛽𝐴
2
) < 0

⇐⇒ ∃𝛽 > 0 and 𝑃 > 0

such that (𝐴𝑇
1
𝑃 + 𝑃𝐴

1
) + 𝛽 (𝐴

𝑇

2
𝑃 + 𝑃𝐴

2
) < 0.

(7)

This proves the result.

Next, we prove that “condition (3) ⇒ condition (2),”
which can also be found in [1].

Lemma 2. Condition (3)⇒ condition (2).

Proof. 𝐴
1
+ 𝛽𝐴
2
is Hurwitz

⇒ ∀𝑄 > 0, ∃𝑃 > 0

such that (𝐴
1
+ 𝛽𝐴
2
)
𝑇

𝑃 + 𝑃 (𝐴
1
+ 𝛽𝐴
2
) = −𝑄 < 0,

⇒ ∀x ̸= 0,

x𝑇 [(𝐴𝑇
1
𝑃 + 𝑃𝐴

1
) + 𝛽 (𝐴

𝑇

2
𝑃 + 𝑃𝐴

2
)] x = −x𝑇𝑄x < 0,

⇒ ∀x ̸= 0.

At least one of x𝑇 (𝐴𝑇
𝑖
𝑃 + 𝑃𝐴

𝑖
) x, 𝑖 = 1, 2, is less than zero.

(8)

The result then follows.

Finally, we will show that “condition (2)⇒ condition (5).”
Before the proof, we define two subsets of the unit sphere as
follows:

Ω
𝑖
:= {x | x𝑇𝐿

𝑖
x ≥ 0, ‖x‖ = 1} , 𝑖 = 1, 2. (9)

The two sets have the following properties.

Lemma 3. (a) Both sets Ω
1
and Ω

2
are symmetric about the

origin. That is, Ω
𝑖
= −Ω

𝑖
for 𝑖 = 1, 2, where −Ω

𝑖
:= {−x | x ∈

Ω
𝑖
}.
(b) Each unit eigenvector associated with unstable eigen-

values of 𝐿
𝑖
belongs to Ω

𝑖
(by unstable eigenvalues one means

those eigenvalues with nonnegative real parts).
(c) Either Ω

𝑖
is a connected set or it consists of two disjoint

connected sets Ω
𝑖
= Ω
+

𝑖
∪ Ω
−

𝑖
with Ω+

𝑖
= −Ω
−

𝑖
.

(d) If condition (2) holds, then Ω
1
∩ Ω
2
= 0 and 𝑆 \ {Ω

1
∪

Ω
2
} ̸= 0, where 𝑆 = {x | ‖x‖ = 1} denotes the unit sphere.

Proof. Parts (a), (b), and (d) are trivial, so we omit their
proofs.

We now prove part (c). Firstly, we assume that 𝐿
𝑖
is a

diagonal matrix having the following form:

𝐿
𝑖
= diag (𝜆+

1
, . . . , 𝜆

+

𝑚𝑖

, 𝜆
−

𝑚𝑖+1
, . . . , 𝜆

−

𝑛
) , (10)

where𝜆+
𝑗
≥ 0 for 𝑗 = 1, . . . , 𝑚

𝑖
and𝜆−

𝑗
< 0 for 𝑗 = 𝑚

𝑖
+1, . . . , 𝑛.

Clearly, the set

Γ
𝑖
:= {x = (𝑥

1
, . . . , 𝑥

𝑚𝑖
, 0, . . . , 0)

𝑇

| ‖x‖ = 1} ⊂ Ω
𝑖
, (11)

and Γ
𝑖
, a subset of the unit sphere, is either a connected set or

a union of two connected sets which are symmetric about the
origin. Now, x ∈ Ω

𝑖
means that

x𝑇𝐿
𝑖
x =
𝑚𝑖

∑

𝑗=1

𝜆
+

𝑗
𝑥
2

𝑗
+

𝑛

∑

𝑗=𝑚𝑖+1

𝜆
−

𝑗
𝑥
2

𝑗
≥ 0. (12)

This implies that

𝑚𝑖

∑

𝑗=1

𝜆
+

𝑗
𝑥
2

𝑗
+

𝑛

∑

𝑗=𝑚𝑖+1

𝜆
−

𝑗
(𝑡𝑥
𝑗
)
2

≥ 0, ∀0 ≤ 𝑡 ≤ 1, (13)

or

x𝑇
𝑡
𝐿
𝑖
x
𝑡
≥ 0, ∀0 ≤ 𝑡 ≤ 1, (14)

where x
𝑡
:= (𝑥
1
, . . . , 𝑥

𝑚𝑖
, 𝑡𝑥
𝑚1+1

, . . . , 𝑡𝑥
𝑛
)
𝑇. It follows that the

set

{
x
𝑡

x𝑡


| 0 ≤ 𝑡 ≤ 1} ⊆ Ω
𝑖
. (15)

Therefore, for any point x in Ω
𝑖
, there exists a smooth path

lying entirely insideΩ
𝑖
with an end point x and the other end

point in Γ
𝑖
. This means that Ω

𝑖
is also a connected set or a

union of two connected sets as that of Γ
𝑖
.

Next, if the symmetric matrix 𝐿
𝑖
is not a diagonal matrix,

then there exists an orthogonal matrix 𝑈 such that 𝑈𝑇𝐿
𝑖
𝑈
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is a diagonal matrix; say that 𝐷
𝑖
= 𝑈
𝑇

𝐿
𝑖
𝑈, and the set Ω

𝑖

is the image of Ωnew
𝑖

:= {y | y𝑇𝐷
𝑖
y ≥ 0, ‖y‖ = 1} under

the continuous transformation x = 𝑈y, since the image of
a connected set under a continuous transformation is also a
connected set. The result then follows.

Now, we are in the position to show that “condition (2)⇒
condition (5).”

Lemma 4. Condition (2)⇒ condition (5).

Proof. Since x𝑇𝐿
1
x ≥ 0 and x𝑇𝐿

2
x < 0 for all x ∈ Ω

1
, this

implies that

𝑔
1
(𝛽) := sup

x∈Ω1
x𝑇 (𝐿
1
+ 𝛽𝐿
2
) x (16)

is a decreasing function of 𝛽 and 𝑔
1
(0) ≥ 0. Since Ω

1

is a compact set, it follows that supx∈Ω1x
𝑇

𝐿
1
x = 𝑙

1
and

supx∈Ω1x
𝑇

𝐿
2
x = −𝑙

2
for some 𝑙

1
> 0 and 𝑙

2
> 0. Thus, 𝑔

1
(𝛽) <

0 for all 𝛽 > 𝑙
1
/𝑙
2
. By the Intermediate Value Theorem, there

exists a real number 𝛽∗
1
≥ 0 such that 𝑔

1
(𝛽
∗

1
) = 0. Similarly,

x𝑇𝐿
1
x < 0 and x𝑇𝐿

2
x ≥ 0 for all x ∈ Ω

2
yield that

𝑔
2
(𝛽) := sup

x∈Ω2
x𝑇 (𝐿
1
+ 𝛽𝐿
2
) x (17)

is an increasing function of 𝛽 and 𝑔
2
(0) < 0. If

supx∈Ω2x
𝑇

𝐿
2
x > 0, then there exists a real number 𝛽∗

2
> 0

such that 𝑔
2
(𝛽
∗

2
) = 0. On the other hand, if supx∈Ω2x

𝑇

𝐿
2
x =

0 (this corresponds to the case that all of the unstable
eigenvalues of 𝐿

2
are zero), then we define 𝛽∗

2
= ∞. From

the definitions of 𝛽∗
1
and 𝛽∗

2
, we have that

𝛽 > 𝛽
∗

1
⇐⇒ x𝑇 (𝐿

1
+ 𝛽𝐿
2
) x < 0, ∀x ∈ Ω

1
,

𝛽 < 𝛽
∗

2
⇐⇒ x𝑇 (𝐿

1
+ 𝛽𝐿
2
) x < 0, ∀x ∈ Ω

2
.

(18)

Next, we show that 𝛽∗
1
< 𝛽
∗

2
. Suppose, on the contrary,

that 𝛽∗
2
≤ 𝛽
∗

1
. Then, there exists a nonnegative 𝛽∗ satisfying

𝛽
∗

2
≤ 𝛽
∗

≤ 𝛽
∗

1
. From (18), there exist an x

1
∈ Ω
1
and an x

2
∈

Ω
2
such that x𝑇

1
(𝐿
1
+ 𝛽
∗

𝐿
2
)x
1
≥ 0 and x𝑇

2
(𝐿
1
+ 𝛽
∗

𝐿
2
)x
2
≥ 0.

It follows that

Ω
∗

∩ Ω
1
̸= 0, Ω

∗

∩ Ω
2
̸= 0, (19)

where Ω∗ = {x | x𝑇(𝐿
1
+ 𝛽
∗

𝐿
2
)x ≥ 0, ‖x‖ = 1}. Moreover,

since x𝑇𝐿
𝑖
x < 0 for all 𝑖 = 1, 2 and x ∈ 𝑆 \ (Ω

1
∪Ω
2
), we have

that x𝑇(𝐿
1
+ 𝛽
∗

𝐿
2
)x < 0 for all x ∈ 𝑆 \ (Ω

1
∪Ω
2
). This means

that

Ω
∗

⊆ Ω
1
∪ Ω
2
. (20)

The relations (19)-(20) then yield

Ω
∗

= (Ω
∗

∩ Ω
1
) ∪ (Ω

∗

∩ Ω
2
) . (21)

Since, by (d) of Lemma 3,Ω
1
∩ Ω
2
= 0, then (21) reveals that

Ω
∗ is the union of two disjoint sets which are not symmetric

about the origin. But this is impossible since, by Lemma 3,Ω∗

should also have the property that it is a connected set or it
consists of two disjoint connected sets which are symmetric
about the origin. This contradiction then implies that 𝛽∗

1
<

𝛽
∗

2
.
Finally, from (18), any 𝛽 with 𝛽∗

1
< 𝛽 < 𝛽

∗

2
will result in

x𝑇(𝐿
1
+ 𝛽𝐿
2
)x < 0 for all x ∈ Ω

1
∪ Ω
2
. In addition, since,

for all x ∈ 𝑆 \ (Ω
1
∪ Ω
2
), both x𝑇𝐿

1
𝑥 < 0 and x𝑇𝐿

2
x < 0, it

follows that x𝑇(𝐿
1
+ 𝛽𝐿
2
)x < 0 for any 𝛽 ∈ (𝛽∗

1
, 𝛽
∗

2
) and for

all x ∈ 𝑆. Thus, the matrix 𝐿
1
+ 𝛽𝐿
2
< 0 for any 𝛽 ∈ (𝛽∗

1
, 𝛽
∗

2
).

This completes the proof.

Theorem 5 below summarizes the conclusions.

Theorem 5. Condition (2)⇔ condition (3)⇔ condition (5).

We have shown that conditions (2)–(5) are equivalent.
We now investigate the relation of the unstable eigenpairs
of 𝐿
1
and 𝐿

2
under these conditions. Let {𝜆+

1
, . . . , 𝜆

+

𝑚1

} and
{𝜇
+

1
, . . . , 𝜇

+

𝑚2

} be the unstable eigenvalues of 𝐿
1
and 𝐿

2
,

respectively, let x+
1𝑖
be a unit eigenvector of 𝐿

1
associated with

𝜆
+

𝑖
, and let x+

2𝑗
be a unit eigenvector of 𝐿

2
associated with 𝜇+

𝑗
.

Define

𝛿
1𝑗
:= x+𝑇
2𝑗
𝐿
1
x+
2𝑗
, 𝑗 = 1, . . . , 𝑚

2
,

𝛿
2𝑖
:= x+𝑇
1𝑖
𝐿
2
x+
1𝑖
, 𝑖 = 1, . . . , 𝑚

1
.

(22)

Clearly, if condition (2) holds, then

𝛿
1𝑗
< 0, 𝛿

2𝑖
< 0 (23)

for all 1 ≤ 𝑖 ≤ 𝑚
1
and 1 ≤ 𝑗 ≤ 𝑚

2
. The following result is a

direct consequence of Theorem 5.

Corollary 6. Suppose that condition (2) holds. Then, 𝜆+
𝑖
𝜇
+

𝑗
<

𝛿
1𝑗
𝛿
2𝑖
for all 1 ≤ 𝑖 ≤ 𝑚

1
and 1 ≤ 𝑗 ≤ 𝑚

2
.

Proof. If condition (2) holds, then by Theorem 5 there exists
a 𝛽 > 0 such that 𝐿

1
+ 𝛽𝐿
2
< 0. It follows that

x+𝑇
1𝑖
(𝐿
1
+ 𝛽𝐿
2
) x+
1𝑖
= 𝜆
+

𝑖
+ 𝛽𝛿
2𝑖
< 0,

x+𝑇
2𝑗
(𝐿
1
+ 𝛽𝐿
2
) x+
2𝑗
= 𝛿
1𝑗
+ 𝛽𝜇
+

𝑗
< 0

(24)

for all 1 ≤ 𝑖 ≤ 𝑚
1
and 1 ≤ 𝑗 ≤ 𝑚

2
. This then implies that

𝜆
+

𝑖
< −𝛽𝛿

2𝑖
, 𝜇

+

𝑗
< −

𝛿
1𝑗

𝛽
, (25)

or 𝜆+
𝑖
𝜇
+

𝑗
< 𝛿
1𝑗
𝛿
2𝑖
for all 1 ≤ 𝑖 ≤ 𝑚

1
and 1 ≤ 𝑗 ≤ 𝑚

2
. This

completes the proof.

Remark 7. From Corollary 6 and (23), we have that

0 ≤ max
1≤𝑖≤𝑚1

{
−𝜆
+

𝑖

𝛿
2𝑖

} < min
1≤𝑗≤𝑚2

{

−𝛿
1𝑗

𝜇
+

𝑗

} . (26)

If we define

𝛽
1
:= max
1≤𝑖≤𝑚1

{
−𝜆
+

𝑖

𝛿
2𝑖

} , 𝛽
2
:= min
1≤𝑗≤𝑚2

{

−𝛿
1𝑗

𝜇
+

𝑗

} , (27)
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then 𝛽
1
< 𝛽
2
. Moreover, 𝛽 ∈ (𝛽

1
, 𝛽
2
) yields

x+𝑇
1𝑖
(𝐿
1
+ 𝛽𝐿
2
) x+
1𝑖
= 𝜆
+

𝑖
+ 𝛽𝛿
2𝑖
< 𝜆
+

𝑖
+ 𝛽
1
𝛿
2𝑖
< 0,

x+𝑇
2𝑗
(𝐿
1
+ 𝛽𝐿
2
) x+
2𝑗
= 𝛿
1𝑗
+ 𝛽𝜇
+

𝑗
< 𝛿
1𝑗
+ 𝛽
2
𝜇
+

𝑗
< 0.

(28)

This means that x𝑇(𝐿
1
+ 𝛽𝐿

2
)x is negative at all of the

eigenvectors associated with unstable eigenvalues of 𝐿
1
and

𝐿
2
. However,𝐿

1
+𝛽𝐿
2
might not be a negative definitematrix,

which will be discussed in more details in the following
section. From this observation, we then have the relation
𝛽
1
≤ 𝛽
∗

1
< 𝛽
∗

2
≤ 𝛽
2
.

4. Specialization to Planar Systems

In order to explore the geometrical interpretations of condi-
tions (2)-(3), (5), in this section, we focus the study on planar
systems.

Consider the two linear systems as given by (44) with
𝑛 = 2. Since neither 𝐴

1
nor 𝐴

2
is Hurwitz, we have that,

for any 𝑃 > 0, none of 𝐿
𝑖
= 𝐴
𝑇

𝑖
𝑃 + 𝑃𝐴

𝑖
, 𝑖 = 1, 2, is a

Hurwitz matrix. This means that both 𝐿
1
and 𝐿

2
contain

exactly one unstable eigenvalue if condition (2) holds. Denote
by (𝜆+
1
, x+
11
) and (𝜇+

1
, x+
21
) the unstable eigenpairs of 𝐿

1
and 𝐿

2
,

respectively, with ‖x+
11
‖ = ‖x+

21
‖ = 1 and

x+𝑇
11
x+
21
≥ 0. (29)

Then, by Corollary 6, a necessary condition for condition (2)
is

𝜆
+

1
𝜇
+

1
< 𝛿
11
𝛿
21
, (30)

where 𝛿
11

and 𝛿
21

are given by (22). Clearly, condition (30)
implies that

𝜆
+

1
𝜇
+

1
< 𝜆
−

1
𝜇
−

1
, (31)

where 𝜆−
1
and 𝜇−

1
denote stable eigenvalues of 𝐿

1
and 𝐿

2
,

respectively. Condition (30) or (31) is only a necessary one
for condition (2). However, if we add an extra condition as
described in (32), we have a necessary and sufficient one for
condition (2).

Theorem 8. Consider the two systems as given by (44) with
𝑛 = 2. Then, condition (2) holds if and only if condition (30) or
(31) holds and

cos2𝜃 <
𝜆
+

1
𝜇
+

1
+ 𝜆
−

1
𝜇
−

1
− 2√𝜆

+

1
𝜇
+

1
𝜆
−

1
𝜇
−

1

(𝜆
+

1
− 𝜆
−

1
) (𝜇
+

1
− 𝜇
−

1
)

𝑜𝑟

𝜃 > cos−1(
√𝜆
−

1
𝜇
−

1
− √𝜆
+

1
𝜇
+

1

√(𝜆
+

1
− 𝜆
−

1
) (𝜇
+

1
− 𝜇
−

1
)

) ,

(32)

where 𝜃 is the angle between x+
11
and x+
21
.

Proof. It is not difficult to see that the angles of the two-sided
cones {x | x𝑇 diag(𝜆+

1
, 𝜆
−

1
)x ≥ 0} and {x | x𝑇 diag(𝜇+

1
, 𝜇
−

1
)x ≥

0} are 2tan−1√−𝜆+
1
/𝜆
−

1
and 2tan−1√−𝜇+

1
/𝜇
−

1
, respectively.

These angles are invariant under orthogonal transformation.
Moreover, since 𝐿

1
and 𝐿

2
are symmetric matrices, they

possess complete orthonormal set of eigenvectors. Thus,

condition (2) holds

⇐⇒ 𝜃 > tan−1(√−
𝜆
+

1

𝜆
−

1

) + tan−1(√−
𝜇
+

1

𝜇
−

1

)

⇐⇒ cos 𝜃 < cos
{

{

{

tan−1(√−
𝜆
+

1

𝜆
−

1

) + tan−1(√−
𝜇
+

1

𝜇
−

1

)
}

}

}

⇐⇒ cos 𝜃 <
√𝜆
−

1
𝜇
−

1
− √𝜆
+

1
𝜇
+

1

√(𝜆
+

1
− 𝜆
−

1
) (𝜇
+

1
− 𝜇
−

1
)

.

(33)

The result then follows.

From the previous Theorem 8, it requires not only the
relation of eigenvalues having the relation (31) but also the
angle of eigenvectors satisfying (32) for two unstable planar
systems to match condition (2). However, if both 𝐿

1
and 𝐿

2

are diagonal matrices or have the same set of eigenvectors
with x+

11
= ±x−
21
and x+
21
= ±x−
11
, where x−

11
and x−
21
denote unit

eigenvectors of 𝐿
1
and 𝐿

2
associated with stable eigenvalues,

then condition (32) is automatically true and condition (30)
or (31) is then a necessary and sufficient one for condition (2)
as described by the following result.

Corollary 9. Suppose that 𝐿
1
and 𝐿

2
have the same set of

eigenvectors with x+
11
= ±x−
21
and x+

21
= ±x−
11
. Then, condition

(2) holds if and only if condition (30) or (31) holds.

4.1. Application to Unstabilizable Linear Control Systems.
Consider the two linear control systems

ẋ = 𝐴x + 𝐵
𝑖
u
𝑖
, 𝑖 = 1, 2. (34)

Here, 𝐴 ∈ R𝑛×𝑛, 𝐵
1
∈ R𝑛×𝑚1 , and 𝐵

2
∈ R𝑛×𝑚2 , and we

assume that neither of the two control systems is stabilizable.
Although neither of the two control systems is stabilizable by
any linear state feedback, it is still possible to have a set of
controllers u

1
= 𝐾
1
x and u

2
= 𝐾
2
x and stabilizing switching

laws between the two systems, which makes x(𝑡) → 0 as
𝑡 → ∞. In this section, we will study the existence condition
and implement it through the equivalent relation as described
in Section 3.

According to the results of Section 3, there exist 𝐾
1
and

𝐾
2
and a stabilizing switching law between the two control

systems given in (34) if there exists 𝛽 > 0 such that

(𝐴 + 𝐵
1
𝐾
1
) + 𝛽 (𝐴 + 𝐵

2
𝐾
2
) is a Hurwitz matrix, (35)
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or, equivalently, if there exist 𝑃 > 0 and 𝛽 > 0 such that

[(𝐴 + 𝐵
1
𝐾
1
)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵
1
𝐾
1
)]

+ 𝛽 [(𝐴 + 𝐵
2
𝐾
2
)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵
2
𝐾
2
)] < 0.

(36)

If we choose

𝐾
1
= −𝐵
𝑇

1
𝑃, 𝐾

2
= −𝐵
𝑇

2
𝑃, (37)

then inequality (36) becomes

(𝐴
𝑇

𝑃 + 𝑃𝐴 − 2𝑃𝐵
1
𝐵
𝑇

1
𝑃)

+ 𝛽 (𝐴
𝑇

𝑃 + 𝑃𝐴 − 2𝑃𝐵
2
𝐵
𝑇

2
𝑃) < 0

(38)

or

𝐴
𝑇

𝛽
𝑃 + 𝑃𝐴

𝛽
− 2𝑃𝐵

𝛽
𝐵
𝑇

𝛽
𝑃 < 0, (39)

where 𝐴
𝛽
:= (1 + 𝛽)𝐴 and 𝐵

𝛽
:= (𝐵

1

...√𝛽𝐵
2
). Note the

existence of 𝑃 > 0 and 𝛽 > 0 such that inequality (39)
holds if and only if (𝐴

𝛽
, 𝐵
𝛽
) is stabilizable. We, thus, have the

following result.

Theorem 10. Consider the two linear control systems as given
by (34). Suppose that neither of the two control systems is

stabilizable, but (𝐴, 𝐵) is stabilizable, where 𝐵 = (𝐵
1

...𝐵
2
).

Then, there exist 𝐾
1
∈ R𝑚1×𝑛, 𝐾

2
∈ R𝑚2×𝑛, and a stabilizing

switching law between the two systems𝐴+𝐵
1
𝐾
1
and𝐴+𝐵

2
𝐾
2
.

Moreover,𝐾
1
and𝐾

2
can be chosen in the form of (37), and 𝑃

is solved by the following Riccati equation:

(𝐴
𝑇

𝑃 + 𝑃𝐴 − 2𝑃𝐵
1
𝐵
𝑇

1
𝑃)

+ 𝛽 (𝐴
𝑇

𝑃 + 𝑃𝐴 − 2𝑃𝐵
2
𝐵
𝑇

2
𝑃) = −𝐻,

(40)

where𝐻 > 0 and 𝛽 > 0.

Proof. The theorem can be easily verified by noting the
following fact that (𝐴

𝛽
, 𝐵
𝛽
) is stabilizable if and only if (𝐴, 𝐵)

is stabilizable and the discussions before this theorem.

After deriving the control laws for the two control systems
given in (34), the stabilizing switching laws between the two
control systems can then be implemented through an existing
algorithm proposed by [1]. To demonstrate the use of the
result, we give an example as follows.

4.2. A Numerical Example

Example 1. Consider the two linear control systems given by
(34) with

𝐴 = (

−32 −14 14

−70 −27 29

−140 −58 60

) , 𝐵
1
= (

2

5

10

) , 𝐵
2
= (

0

−1

−1

) .

(41)

4

2

0

−2

−4

−6

−8

−10

0 1 2 3 4 5 6

St
at

es

Time

X1

X2

X3

(a)

5

0

−5

−10

0
−2

−4
−6 −8 −2 −1 0 1 2 3

X1
X
2

X
3

(b)

Figure 1: (a) Timing response of the three states and (b) state space
trajectory.

By direct checking, neither (𝐴, 𝐵
1
) nor (𝐴, 𝐵

2
) is stabilizable,

but (𝐴, 𝐵) is stabilizable, where 𝐵 = (𝐵
1

...𝐵
2
). The solution of

the Riccati equation given by (40) with 𝛽 = 2 and 𝐻 being
the identity matrix is found to be

𝑃 = (

36.4 18.1 −18.2

18.1 21.1 −15.1

−18.2 −15.1 12.1

) . (42)

Choose𝐾
1
and𝐾

2
in the formof (37); thenwe have two linear

systems with system matrices 𝐴
𝑖
= 𝐴 + 𝐵

𝑖
𝐾
𝑖
, 𝑖 = 1, 2, where

𝐴
1
= (

5.7 4.1 −5.3

24.2 18.3 −19.3

48.5 32.6 −36.7

) ,

𝐴
2
= (

−32.0 −14.0 14.0

−69.9 −33.0 31.9

−139.9 −64.0 62.9

) .

(43)

Clearly, neither of the two systems is stable, while, by
Theorem 10, they will satisfy condition (3). A stabilizing
switching law can then be constructed through the algorithm
proposed by [1]. Figure 1 demonstrates the timing response
of the three states and phase trajectory with initial (2, −1, 1)𝑇.
The three states are observed to converge to zero, which
agrees with the theoretical results.

5. Switching among 𝑁 Linear Systems

In this section, we extend the derivation stated above to the
equivalence of two sufficient conditions for the existence of
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quadratically stabilizing switching laws among 𝑁 linear sys-
tems. Consider the𝑁 𝑛-dimensional unstable linear systems

ẋ = 𝐴
𝑖
x, 𝑖 = 1, 2, . . . , 𝑁, (44)

where x ∈ R𝑛 and 𝐴
𝑖
∈ R𝑛×𝑛, and we assume that all 𝐴

𝑖
, 𝑖 =

1, . . . , 𝑁, are unstablematrices; that is, none of the𝑁matrices
is a Hurwitz matrix. It is known that a sufficient condition
for the existence of quadratically stabilizing switching laws
among the 𝑁 unstable systems can be stated as in condition
(45) as follows:

∃𝑃 > 0

such that
𝑁

⋃

𝑖=1

{x | x𝑇 (𝐴𝑇
𝑖
𝑃 + 𝑃𝐴

𝑖
) x < 0} = R

𝑛

\ {0} .

(45)

However, condition (45) does not provide a means to obtain
such amatrix𝑃. On the other hand, Decarlo et al. [11] verified
that the matrix pencil condition as given by (4) is also a
sufficient condition for the existence of stabilizing switching
laws.They also proposed an algorithm to determine the exis-
tence of 𝛼

𝑖
and to explicitly construct a class of quadratically

stabilizing switching laws if condition (4) holds. However,
it is not difficult to prove that condition (4) is equivalent to
condition (45).

5.1. Implementation for Switching among 𝑁 Systems. To
achieve the second objective as described in Section 2, an
LMI condition is proposed in this section to implement the
existence of 𝛼

𝑖
given in (4). To this end, if we can find 𝛼

𝑖
> 0

and ∑𝑁
𝑖=1
𝛼
𝑖
= 1 such that 𝐴

𝑒𝑞
:= ∑
𝑁

𝑖=1
𝛼
𝑖
𝐴
𝑠

𝑖
is a Hurwitz

matrix, where 𝐴𝑠
𝑖
:= (𝐴

𝑖
+ 𝐴
𝑇

𝑖
)/2, then it can be inferred by

Lemma 2 below that the quadratically stabilizing switching
for systems (44) is feasible.

Lemma 2 (see [47]). For any𝐴
𝑖
∈ R𝑛×𝑛, 𝑖 = 1, 2, . . . , 𝑁, there

exists𝐴
𝑖
= (𝐴
𝑖
+𝐴
𝐻

𝑖
)/2+(𝐴

𝑖
−𝐴
𝐻

𝑖
)/2, where (𝐴

𝑖
+𝐴
𝐻

𝑖
)/2 ≡ 𝐴

𝑠

𝑖

means the symmetric part of𝐴
𝑖
. By the Rayleigh quotient of𝐴𝑠

𝑖
,

one can derive that

Re [𝜆 (𝐴
𝑖
)] ⊆ [𝜆min (𝐴

𝑠

𝑖
) , 𝜆max (𝐴

𝑠

𝑖
)] . (46)

Proof. It is trivial; thus, it is omitted here.

According to (46), condition (4) can be turned into the
following LMIs:

𝐴
𝑠

𝑒𝑞
= 𝛼
1
𝐴
𝑠

1
+ 𝛼
2
𝐴
𝑠

2
+ ⋅ ⋅ ⋅ + 𝛼

𝑁
𝐴
𝑠

𝑁
< 0. (47)

From Lemma 2 and letting 𝛽
𝑘

:= 𝛼
𝑘+1
/𝛼
1
,

𝑘 = 1, 2, . . . , 𝑁 − 1, if we can find positive constants
𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑁−1
such that

𝐴
𝑠

𝑒𝑞
= 𝐴
𝑠

1
+ 𝛽
1
𝐴
𝑠

2
+ ⋅ ⋅ ⋅ + 𝛽

𝑁−1
𝐴
𝑠

𝑁
< 0, (48)

then condition (4) automatically holds. Although condition
(48) is less general than condition (4), it can be solved by LMI
toolbox in MATLAB to carry out the implementation.

5.2. Switching among𝑁Unstabilizable Control Systems. Con-
sider the𝑁 linear control systems

ẋ = 𝐴x + 𝐵
𝑖
u
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, (49)

where 𝐴 ∈ R𝑛×𝑛 and 𝐵
𝑖
∈ R𝑛×𝑚𝑖 , and we assume that each

of (𝐴, 𝐵
𝑖
) is unstabilizable. Although neither of the (𝐴, 𝐵

𝑖
)

is stabilizable by any linear state feedback, it is still possible
to have a set of controllers u

𝑖
(x) = 𝐾

𝑖
x and quadratically

stabilizing switching laws among the𝑁 systems, whichmakes
x(𝑡) → 0 as 𝑡 → ∞. In this section, we will study the
existence condition and implement it through the equivalent
relation of condition (4) and condition (2).

According to the abovementioned equivalence result,
there exist 𝐾

1
, . . . , 𝐾

𝑁
and stabilizing switching laws among

the 𝑁 control systems given in (49) if there exist positive
constants 𝛽

1
, . . . , 𝛽

𝑁−1
such that

(𝐴 + 𝐵
1
𝐾
1
) +

𝑁−1

∑

𝑘=1

𝛽
𝑘
(𝐴 + 𝐵

𝑘
𝐾
𝑘
) (50)

is a Hurwitz matrix or, equivalently, if there exist 𝑃 > 0 and
positive constants 𝛽

1
, . . . , 𝛽

𝑁−1
such that

[(𝐴 + 𝐵
1
𝐾
1
)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵
1
𝐾
1
)]

+

𝑁−1

∑

𝑘=1

𝛽
𝑘
[(𝐴 + 𝐵

𝑘
𝐾
𝑘
)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵
𝑘
𝐾
𝑘
)] < 0.

(51)

If we choose

𝐾
𝑖
= −𝐵
𝑇

𝑖
𝑃, (52)

then inequality (51) becomes

(𝐴
𝑇

𝑃 + 𝑃𝐴 − 2𝑃𝐵
1
𝐵
𝑇

1
𝑃)

+

𝑁−1

∑

𝑘=1

𝛽
𝑘
(𝐴
𝑇

𝑃 + 𝑃𝐴 − 2𝑃𝐵
𝑘
𝐵
𝑇

𝑘
𝑃) < 0,

(53)

or

𝐴
𝑇

𝛽
𝑃 + 𝑃𝐴

𝛽
− 2𝑃𝐵

𝛽
𝐵
𝑇

𝛽
𝑃 < 0, (54)

where

𝐴
𝛽
:= (1 +

𝑁−1

∑

𝑘=1

𝛽
𝑘
)𝐴, (55)

𝐵
𝛽
= (𝐵
1

...√𝛽
1
𝐹
2

... ⋅ ⋅ ⋅
...√𝛽
𝑁−1
𝐵
𝑁
) . (56)

Note the existence of 𝑃 > 0 and positive constants
𝛽
1
, . . . , 𝛽

𝑁−1
such that inequality (56) holds if and only if

(𝐴
𝛽
, 𝐵
𝛽
) is stabilizable. We, thus, have the following result.

Theorem 3. Consider a class of 𝑁 linear control systems as
given by (49). Suppose that none of the N control systems is sta-

bilizable, but (𝐴, 𝐵
𝑖
) is stabilizable, where 𝐵 = (𝐵

1

...𝐵
2

... ⋅ ⋅ ⋅
...𝐵
𝑁
).
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Then, there exist 𝐾
𝑖
∈ R𝑚𝑖×𝑛 and a quadratically stabilizing

switching law among systems 𝐴 + 𝐵
𝑘
𝐾
𝑘
, 𝑘 = 1, 2, . . . , 𝑁.

Moreover,𝐾
𝑘
can be chosen in the form of (52), and 𝑃 is solved

by the following Riccati equation:

𝐴
𝑇

𝛽
𝑃 + 𝑃𝐴

𝛽
− 2𝑃𝐵

𝛽
𝐵
𝑇

𝛽
𝑃 = −𝐻, (57)

where𝐻 > 0 and 𝛽 > 0.

Proof. To prove the theorem, we just need to prove that
(𝐴
𝛼
, 𝐵
𝛼
) is stabilizable if and only if (𝐴, 𝐵) is stabilizable,

where 𝐴
𝛼
= (∑
𝑁

𝑖=1
𝛼
𝑖
)𝐴 = 𝛼𝐴, 𝐵

𝛼
= (√𝛼1𝐵1

... ⋅ ⋅ ⋅
...√𝛼𝑁𝐵𝑁),

and 𝐵 = (𝐵
1

... ⋅ ⋅ ⋅
...𝐵
𝑁
). If (𝐴, 𝐵) is stabilizable, then 𝐾 =

(𝐾
1

... ⋅ ⋅ ⋅
...𝐾
𝑁
)
𝑇 must exist such that 𝐴 + 𝐵𝐾 is Hurwitz

and 𝐴 + 𝐵𝐾 = 𝐴 + ∑
𝑁

𝑖=1
𝐵
𝑖
𝐾
𝑖
. We select 𝐾 =

((𝛼/√𝛼1)𝐾1

... ⋅ ⋅ ⋅
...(𝛼/√𝛼𝑁)𝐾𝑁)

𝑇, and then we can get

𝐴
𝛼
+ 𝐵
𝛼
𝐾 = 𝐴

𝛼
+

𝑁

∑

𝑖=1

√𝛼
𝑖
𝐵
𝑖

𝛼

√𝛼𝑖

𝐾
𝑖

= 𝛼𝐴 +

𝑁

∑

𝑖=1

𝛼𝐵
𝑖
𝐾
𝑖
= 𝛼(𝐴 +

𝑁

∑

𝑖=1

𝐵
𝑖
𝐾
𝑖
) .

(58)

Since 𝐴+∑𝑁
𝑖=1
𝐵
𝑖
𝐾
𝑖
is a Hurwitz matrix and 𝛼 > 0, therefore,

(𝐴
𝛼
, 𝐵
𝛼
) is stabilizable, and then we can find 𝑃 by (57).

After the determination of 𝐾
𝑖
, the stabilizing switching

law can be implemented by the results of Section 5.1.

5.3. Numerical Examples

Example 1. Consider the three unstable matrices in the form
of (44) with

𝐴
1
= (

0 −10 −10

2 0 6

−9 −4 0

) ,

𝐴
2
= (

−10 0 −4

−1 −10 −9

−1 −10 5

) ,

𝐴
3
= (

7 −8 −2

1 −1 4

7 3 −9

) .

(59)

Indeed, we have that 𝜆(𝐴
1
) = {10.3039, −5.1520 ±

5.7990𝑖}, 𝜆(𝐴
2
) = {−9.5994, −15.0750, 9.6744}, and 𝜆(𝐴

3
) =

{−1.7049, 3.8525 ± 4.0791𝑖}. By using the results of Section 3,
we can easily find that 𝛽

1
= 4.2349 and 𝛽

2
= 4.1726 via

solving (48). It follows fromLemma 1 that𝐴
𝑒𝑞
:= 𝐴
1
+𝛽
1
𝐴
2
+

𝛽
2
𝐴
3
is a Hurwitz matrix and

𝐴
𝑒𝑞
= (

−13.1408 −43.3808 −35.2848

1.9377 −46.5215 −15.4237

15.9733 −33.8312 −16.3788

) . (60)
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Figure 2: (a) Timing response of the three states and (b) switching
sequences.

By solving the Lyapunov equation 𝐴𝑇
𝑒𝑞
𝑃 + 𝑃𝐴

𝑒𝑞
+ 𝐼 = 0, we

have that

𝑃 = (

0.0605 0.0073 −0.0173

0.0073 0.0194 −0.0253

−0.0173 −0.0253 0.0660

) . (61)

The quadratically stabilizing switching law is then eas-
ily derived by the algorithm presented by [1]. Figure 2(a)
describes the three states response with initial (2, −1, 1)𝑇.
The three states are observed to converge to zero. Figure 2(b)
shows the switching sequences. Figure 3 describes the phase
plane trajectory of the switched systems. The trajectory is
observed to converge to the origin. The simulation results
agree with the theoretical results.

Example 2. Consider the three linear control systems in the
form of (49) with

𝐴 = (

33 −32 −32

8 −7 −8

16 −16 −15

) , 𝐵
1
= (

−5

4

−6

) ,

𝐵
2
= (

11

5

1

) , 𝐵
3
= (

−21

−1

−16

) .

(62)

By direct checking, neither of (𝐴, 𝐵
1
), (𝐴, 𝐵

2
), and (𝐴, 𝐵

3
) is

stabilizable, but (𝐴, 𝐵) is stabilizable, where 𝐵 = (𝐵
1

...𝐵
2

...𝐵
3
).
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Figure 3: Phase plane trajectory of the three systems.

The solution of the Riccati equation given by (57) with 𝛽 = 2
and𝐻 being the identity matrix is found to be

𝑃 = (

125.814 −153.305 −178.213

−153.305 307.177 224.444

−178.213 224.444 294.794

) . (63)

Choose𝐾
1
,𝐾
2
, and𝐾

3
in the form of (52); thenwe have three

linear systems with system matrices 𝐴
𝑖
= 𝐴 + 𝐵

𝑖
𝐾
𝑖
, 𝑖 = 1, 2,

and 3, where

𝐸
1
= 10
3

∗ (

−0.8320 3.2108 0.0684

0.7000 −2.6013 −0.0883

−1.0220 3.8754 0.1055

) ,

𝐸
2
= 10
3

∗ (

−4.7984 −0.8457 5.9446

−2.1881 −0.3769 2.7087

−0.4232 −0.0900 0.5283

) ,

𝐸
3
= 10
4

∗ (

−0.3483 −0.1674 −1.2177

−0.0133 −0.0073 −0.0494

−0.0494 −0.1067 −0.7788

) .

(64)

Of course, all of the three matrices 𝐴
1
, 𝐴
2
, and 𝐴

3
are

not stable, while, by Theorem 3, they satisfy condition (4).
A quadratically stabilizing switching law can then be con-
structed through the algorithm proposed by [1]. Figure 4(a)
demonstrates the three states response which are observed to
converge to zero. Figure 4(b) shows the switching sequences.
Figure 5 describes the phase plane trajectory with initial
(2, −1, 1)

𝑇.The phase plane trajectory is observed to converge
to the origin.The simulation results agree with the theoretical
results.

6. Conclusions

In this study, we propose away to show the equivalence of two
sufficient conditions for the existence of stabilizing switching
laws between two unstable linear systems. One of the condi-
tions is powerful for theoretical derivation, while the other
is easily implemented through an existing algorithm. By the
use of the equivalent relation, a simple existence condition
of controllers and stabilizing switching laws between two
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Figure 4: (a) Timing response of three states and (b) switching
sequences.
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Figure 5: Phase plane trajectory of the three control systems.

unstabilizable linear control systems is then proposed and
found to be easily implemented. An illustrative example has
demonstrated the use and benefit of the equivalent relation.
In addition, the existence conditions are also specialized
to planar systems to facilitate the understanding of their
geometrical interpretations. It requires not only the relation
between the eigenvalues of the associated matrices but also
the angles between the unstable eigenvectors to match the
existence condition. Moreover, we have discussed a feasible
way to construct the quadratically stabilizing switching laws
among 𝑁 unstable linear systems and extended the result
to organize the controllers and the quadratically stabilizing
switching laws of a class of 𝑁 unstabilizable linear control
systems. The illustrative examples and simulation results
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demonstrate the feasibility and effectiveness of the proposed
method for switching control issues.
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Boston, Mass, USA, 2003.

[14] J. Zhao and G. M. Dimirovski, “Quadratic stability of a class of
switched nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 49, no. 4, pp. 574–578, 2004.

[15] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear
control systems,” Automatica, vol. 41, no. 2, pp. 181–195, 2005.

[16] Z. Ji, L. Wang, and G. Xie, “Quadratic stabilization of switched
systems,” International Journal of Systems Science, vol. 36, no. 7,
pp. 395–404, 2005.

[17] M. Margaliot and J. P. Hespanha, “Root-mean-square gains of
switched linear systems: a variational approach,” Automatica,
vol. 44, no. 9, pp. 2398–2402, 2008.

[18] L. Wu and W. X. Zheng, “Weighted 𝐻∞ model reduction for
linear switched systems with time-varying delay,” Automatica,
vol. 45, no. 1, pp. 186–193, 2009.

[19] Z. Ji, H. Lin, and T. H. Lee, “A new perspective on criteria
and algorithms for reachability of discrete-time switched linear
systems,” Automatica, vol. 45, no. 6, pp. 1584–1587, 2009.

[20] Z. H. Huang, C. Xiang, H. Lin, and T. H. Lee, “Necessary
and sufficient conditions for regional stabilisability of generic
switched linear systems with a pair of planar subsystems,”
International Journal of Control, vol. 83, no. 4, pp. 694–715, 2010.

[21] L. Zhang and H. Gao, “Asynchronously switched control of
switched linear systems with average dwell time,” Automatica,
vol. 46, no. 5, pp. 953–958, 2010.

[22] C.-H. Lien, K.-W. Yu, Y.-J. Chung, H.-C. Chang, L.-Y. Chung,
and J.-D. Chen, “Exponential stability and robust 𝐻

∞
control

for uncertain discrete switched systems with interval time-
varying delay,” IMA Journal of Mathematical Control and
Information, vol. 28, no. 1, pp. 121–141, 2011.

[23] H. R. Karimi, “Robust delay-dependent 𝐻
∞

control of uncer-
tain time-delay systems with mixed neutral, discrete, and
distributed time-delays and Markovian switching parameters,”
IEEE Transactions on Circuits and Systems I, vol. 58, no. 8, pp.
1910–1923, 2011.

[24] C.-H. Lien, J.-D. Chen, K.-W. Yu, and L.-Y. Chung, “Robust
delay-dependent H∞ control for uncertain switched time-delay
systems via sampled-data state feedback input,” Computers and
Mathematics with Applications, vol. 64, no. 5, 2012.

[25] X. Zhao, L. Zhang, P. Shi, andM. Liu, “Stability and stabilization
of switched linear systems with mode-dependent average dwell
time,” IEEE Transactions on Automatic Control, vol. 57, no. 7, pp.
1809–1815, 2012.

[26] X. Zhao, L. Zhang, P. Shi, and M. Liu, “Stability of switched
positive linear systems with average dwell time switching,”
Automatica, vol. 48, no. 6, pp. 1132–1137, 2012.

[27] Z. Sun, “Robust switching of discrete-time switched linear
systems,” Automatica, vol. 48, no. 1, pp. 239–242, 2012.

[28] M. A. Müller and D. Liberzon, “Input/output-to-state stability
and state-norm estimators for switched nonlinear systems,”
Automatica, vol. 48, no. 9, pp. 2029–2039, 2012.

[29] G. Zhang, C. Han, Y. Guan, and L. Wu, “Exponential stability
analysis and stabilization of discrete-time nonlinear switched
systems with time delays,” International Journal of Innovative
Computing, Information andControl, vol. 8, no. 3, pp. 1973–1986,
2012.

[30] L.Wu,W.Zheng, andH.Gao, “Dissipativity-based slidingmode
control of switched stochastic systems,” IEEE Transactions on
Automatic Control, vol. 58, no. 3, pp. 785–791, 2012.

[31] S. B. Attia, S. Salhi, andM. Ksouri, “Static switched output feed-
back stabilization for linear discrete-time switched systems,”
International Journal of Innovative Computing, Information and
Control, vol. 8, no. 5, pp. 3203–3213, 2012.

[32] Q. Lu, L. Zhang, P. Shi, and H. R. Karimi, “Control design for
a hypersonic aircraft using a switched linear parameter varying
system approach,” Journal of Systems and Control Engineering,
vol. 227, no. 1, pp. 85–95, 2012.



Abstract and Applied Analysis 11

[33] M. Rajchakit and G. Rajchakit, “Mean square exponential
stability of stochastic switched system with interval time-
varying delays,” Abstract and Applied Analysis, vol. 2012, Article
ID 623014, 12 pages, 2012.

[34] Y. Sun, “Delay-independent stability of switched linear systems
with unbounded time-varying delays,” Abstract and Applied
Analysis, vol. 2012, Article ID 560897, 11 pages, 2012.

[35] S. Huang, Z. Xiang, and H. R. Karimi, “Stabilization and
controller design of 2D discrete switched systems with state
delays under asynchronous switching,” Abstract and Applied
Analysis, vol. 2013, Article ID 961870, 12 pages, 2013.

[36] C. A. Ibanez, M. S. Suarez-Castanon, and O. O. Gutierrez-Frias,
“A Switching controller for the stabilization of the damping
inverted pendulum cart system,” International Journal of Inno-
vative Computing, Information, and Control, vol. 9, no. 9, pp.
3585–3597, 2013.

[37] J. Lian, P. Shi, and Z. Feng, “Passivity and passification for a
class of uncertain switched stochastic time-delay systems,” IEEE
Transactions on Cybernetics, vol. 43, no. 1, pp. 3–13, 2013.

[38] D. Du, B. Jiang, P. Shi, and H. R. Karimi, “Fault detection for
continuous-time switched systems under asynchronous switch-
ing,” International Journal of Robust and Nonlinear Control,
2013.

[39] Z. Wu, M. Cui, P. Shi, and H. R. Karimi, “Stability of stochas-
tic nonlinear systems with state-dependent switching,” IEEE
Transactions on Automativc Control, vol. 58, no. 8, pp. 1904–
1918, 2013.

[40] X. Li, Z. Xiang, and H. R. Karimi, “Asynchronously switched
control of discrete impulsive switched systems with time
delays,” Information Sciences, vol. 249, pp. 132–142, 2013.

[41] R.W.Brockett, “Asymptotic stability and feedback stabilization,”
in Differential Geometric Control Theory, vol. 27, pp. 181–191,
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