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An atom embedded inside photonic crystals can form a photon-atom bound state if the emission frequency of the excited atom
is lying inside the photonic-band gap of photonic crystals. We studied the dynamics of the energy relaxation and decoherence of
a QPAB, qubit made by a photon-atom bound state in photonic crystals. Dynamics of these measurements are solved analytically
through the fractional calculus which has been shown to be appropriate mathematical method for the optical systems with non-
Markovian dynamics. From these dynamics, we find that the losses of energy, coherence, and information of a QPAB are inhibited.
As compared with those qubits without forming photon-atom bound states, the energy relaxation and decoherence rates of these
QPABs are strongly suppressed. Other systems suitable for realizing these properties are discussed.

1. Introduction

A central tenet in quantum computing is to create and
manipulate qubits in a controllable way. Many novel methods
have been proposed to generate controllable qubit states by
changing the surrounding environment of the qubits [1–
3]. When a qubit made by a two-level atom is embedded
inside a structured reservoir with the photon density of
state (DOS) different from that of free space, the dynamics
of the qubit states are affected by the environment and
exhibit non-Markovian behavior [4–6]. When strong cou-
pling between the qubit and the structured reservoir is
concerned, these non-Markovian dynamics are characterized
by the memory effect that the information of the system is
preserved for a long-time period. This characterization has
recently constructed a number of experimental measures for
exploring non-Markovianity in a variety of different system-
environment models [7–11].

However, it is the interaction between a qubit and its sur-
rounding environment that causes the energy relaxation and
decoherence of the qubit. Since the quantum technologies
rely on controlling quantum states with long-time coherence,
it has become increasingly important to effectively suppress

the energy relaxation and decoherence rates of quantum
states. To achieve this goal, various schemes have been used
to store quantum states with high fidelity through effectively
controlling the energy relaxation and decoherence rates [12–
16]. Here we introduce a structured reservoir made by a
photonic crystal (PhC) whose photonic density of states
(DOS) possesses a photonic-band gap (PBG). An excited
atom embedded inside this reservoir is possible to form
a photon-atom bound state [5] if the emitted frequency
is lying inside the PBG. A qubit made by a photon-atom
bound state in PhCs, which we abbreviate as a QPAB, exhibits
some non-Markovian dynamics of the energy relaxation and
decoherence of the QPAB. Systems with the forbidden bands
in the structured reservoirs such as omnidirectional waveg-
uides [17], tunable artificial crystals [18, 19], and frequency
dispersive media [20] are also suitable for the realization of
these non-Markovian dynamics.

In this paper, we shall show that the energy relaxation
and decoherence rates of the QPAB are strongly suppressed
and the long-time period of the coherence and information
preservation of a qubit can be achieved via this structured
reservoir. The steady states, shown by the polarization and
von Neumann entropy of the QPAB, exhibit nonzero values
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for a very long-time period, indicating that the losses of
energy and coherence of the QPAB are suppressed in this
structured reservoir.The corresponding rates of energy relax-
ation and decoherence exhibit a fast decaying behavior that
further manifests this suppressing phenomenon. This kind
of structured reservoir provides qubits with a controllable
environment that can preserve the qubit information for a
long time.

The PhCs are ordered crystals with periodic variation of
refractive index that show forbidden bands in their disper-
sion relation. Light-matter interactions in these periodical
structures are drastically enhanced because they provide the
photons with a reservoir with a threshold-like DOS near
the forbidden band edges [21, 22]. As an excited atom is
embedded (doped) in a PhC, the emitted photon in this
structured reservoir behaves very differently from that in free
space. The appearance of photon-atom bound states [23–26],
enhanced quantum interference [27], and non-Markovian
effects [28–30] exist especially in this optical system. With
the enhanced light-matter interactions, PhCs have been
demonstrated theoretically and experimentally [31, 32] that
they can be effectively used to inhibit spontaneous emission
(SE) because of the existence of the photon-atom bound
states.

In the studies on the photon-atom bound states in the
doped PhCs, Singh controlled the SE cancellation of the PhCs
doped with five-level nanoparticles by moving the resonance
energies between the energy band and energy gap where
bound states are formed [25]. Generalizing the properties
of the PhCs to the dispersive media, Rupasov and Singh
studied the quantum electrodynamics of a single two-level
atom placed in a frequency dispersive medium (DM) and
found a polariton-atom bound state with an eigenfrequency
lying within the gap of the polariton spectrum [20, 23]. This
generalization arises the intriguing question about whether
the quantum optical phenomena observed in PhCs can also
be expected in dispersive media and vice versa. We discuss
this question through comparing our findingswith the results
found in the dispersive media in Section 2.3.

When a practical three-dimensional (3D) PhC is con-
sidered, the dispersion relation near the forbidden band
edge exhibits a directional-dependent property and thus
has been expressed as a vector form by the effective-mass
approximation [33]. This 3D material with the anisotropic
band structure possesses a DOS different from the free-space
one and proportional to √𝜔 − 𝜔

𝑐
Θ(𝜔 − 𝜔

𝑐
), where 𝜔

𝑐
is

the band-edge frequency and Θ(𝜔 − 𝜔
𝑐
) is the Heaviside

step function. States with frequencies lying below the band
edge 𝜔

𝑐
are forbidden. In this forbidden region, the emission

of a photon from a qubit, constructed by an excited two-
level atom, is inhibited, so a photon-atom bound state [5]
is formed when the qubit interacts with its surrounding
reservoir strongly.

This paper is organized as follows. In Section 2, the
theoretical model for the system of a qubit in an anisotropic
PhC is depicted through the Hamiltonian and the wave
function. The kinetic equation of the qubit can be writ-
ten as a fractional Langevin equation and solved by the
fractional calculus, a mathematical method appropriate for
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Figure 1: (a) A qubit with excited state |1⟩ and ground state |0⟩. The
transition frequency 𝜔

10
is nearly resonant with the frequency range

of the PhC reservoir. (b) Directional dependent dispersion relations
near band edge expressed by the effective-mass approximation with
the edge frequency 𝜔

𝑐
as solid and dashed curves. (c) Photon DOS

𝜌(𝜔) of the anisotropic PhC reservoir exhibiting forbidden photon
mode below the edge frequency 𝜔

𝑐
.

solving the system with non-Markovian dynamics [6, 28], to
construct the reduced density matrix of the qubit. Dynamics
of the energy relaxation rate, polarization, and von Neumann
entropy are calculated and analyzed based on the elements of
this density matrix. Systems of omnidirectional waveguides,
tunable artificial crystals, and dispersive media suitable for
realizing this property are briefly discussed at the end of this
section. Finally, we summarize our results in Section 3.

2. Dynamics of a Qubit in an Anisotropic PhC

When we consider a system of a qubit formed by an excited
atom embedded inside a structured reservoir of an ani-
sotropic PhC shown in Figure 1, the Hamiltonian can be
expressed as

𝐻 = ℏ𝜔
10
| 1⟩ ⟨1| + ∑

⃗
𝑘

ℏ𝜔 ⃗
𝑘
𝑎
+

⃗
𝑘

𝑎 ⃗
𝑘

+ 𝑖ℏ∑
⃗
𝑘

𝑔 ⃗
𝑘
(|0⟩ ⟨1| ⊗ 𝑎

+

⃗
𝑘

+ h.c.) .
(1)

Here 𝜔
10

is the qubit transition frequency between the
excited state |1⟩ and ground state |0⟩. The photon mode with
frequency 𝜔 ⃗

𝑘
is created and annihilated by the operators

𝑎+
⃗
𝑘

and 𝑎 ⃗
𝑘
. Coupling strength associated with the qubit and
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the photon mode with frequency 𝜔 ⃗
𝑘
is specified by 𝑔 ⃗

𝑘
=

(𝜔
10
𝑑
10
/ℏ)[ℏ/2𝜖

0
𝜔 ⃗
𝑘
𝑉]1/2𝑒 ⃗

𝑘
⋅ 𝑢̂
𝑑
with the fixed qubit dipole

moment ⃗𝑑
10

= 𝑑
10
𝑢̂
𝑑
, sample volume 𝑉, dielectric constant

𝜖
0
, and polarization unit vector 𝑒 ⃗

𝑘
of the photon mode

with frequency 𝜔 ⃗
𝑘
. If we use the coordinate (𝜃, 𝜙) on the

Bloch sphere to parameterize the state of the qubit with
(0, 𝜙) for the excited state and (𝜋, 𝜙) for the ground state,
then the initial state of the total system can be written as
|𝜓(0)⟩ = [𝑒𝑖𝜙0 cos(𝜃

0
/2)|1⟩ + sin(𝜃

0
/2)|0⟩] ⊗ |0 ⃗

𝑘
⟩ with the

initial coordinate (𝜃
0
, 𝜙
0
) on the Bloch sphere. Here the

vacuum state and one-excitation state of the PhC reser-
voir are expressed as |0 ⃗

𝑘
⟩ = |0

1
, 0
2
, . . . , 0 ⃗

𝑘
, 0 ⃗
𝑘+1

, . . .⟩ and
|1 ⃗
𝑘
⟩ = |0

1
, 0
2
, . . . 0 ⃗
𝑘−1

, 1 ⃗
𝑘
, 0 ⃗
𝑘+1

, . . .⟩, respectively. As the
system evolves, the quantum state of the system in the single
photon sector can be written as

󵄨󵄨󵄨󵄨𝜓 (𝑡)⟩ = [𝑢
𝑝
(𝑡) 𝑒
−𝑖𝜔10𝑡𝑒

𝑖𝜙0 cos(
𝜃
0

2
) |1⟩

+ 𝑢
𝑑
(𝑡) sin(

𝜃
0

2
) |0⟩] ⊗

󵄨󵄨󵄨󵄨0 ⃗𝑘⟩

+∑
⃗
𝑘

𝐶 ⃗
𝑘
(𝑡) 𝑒
−𝑖𝜔
𝑘⃗
𝑡

|0⟩ ⊗
󵄨󵄨󵄨󵄨1 ⃗𝑘⟩

(2)

with initial condition 𝑢
𝑝
(0) = 1, 𝑢

𝑑
(0) = 1, and 𝐶 ⃗

𝑘
(0) = 0.

Here 𝑢
𝑝
(𝑡) and 𝑢

𝑑
(𝑡) stand for the excited-state and ground-

state probability amplitudes of the qubit with the vacuum
state of the PhC reservoir while𝐶 ⃗

𝑘
(𝑡) is the probability ampli-

tude of the photonic state at 𝑘⃗.This quantum state can also be
expressed as |𝜓(𝑡)⟩ = {𝑒𝑖𝜙(𝑡) cos[𝜃(𝑡)/2]|1⟩ + sin[𝜃(𝑡)/2]|0⟩} ⊗
|0 ⃗
𝑘
⟩ + ∑ ⃗

𝑘
𝐶 ⃗
𝑘
(𝑡)|0⟩ ⊗ |1 ⃗

𝑘
⟩ with the time-dependent Bloch

parameters [𝜃(𝑡), 𝜙(𝑡)] when we discuss the change of the
qubit’s state on the Bloch sphere.

By substituting the quantum state in (2) for the time-
dependent Schrödinger equation, we obtain the equations of
motion for the amplitudes as

𝑑

𝑑𝑡
𝑢
𝑝
(𝑡) = −

1

𝑒𝑖𝜙0 cos (𝜃
0
/2)

∑
⃗
𝑘

𝑔 ⃗
𝑘
𝐶 ⃗
𝑘
(𝑡) 𝑒
−𝑖Ω
𝑘⃗
𝑡

, (3a)

𝑑

𝑑𝑡
𝐶 ⃗
𝑘
(𝑡) = 𝑔 ⃗

𝑘
𝑢
𝑝
(𝑡) 𝑒
𝑖𝜙0 cos(

𝜃
0

2
) 𝑒
𝑖Ω
𝑘⃗
𝑡

, (3b)

𝑑

𝑑𝑡
𝑢
𝑑
(𝑡) = 0 (3c)

with detuning frequencyΩ ⃗
𝑘
= 𝜔 ⃗
𝑘
− 𝜔
10
. The last equation of

motion yields 𝑢
𝑑
(𝑡) = 𝑢

𝑑
(0) = 1 meaning that the ground-

state probability of a qubit will not evolve with time, that is, a
constant of time.The other two equations can be combined as
(𝑑/𝑑𝑡)𝑢

𝑝
(𝑡) = − ∫

𝑡

0

𝐺(𝑡 − 𝜏)𝑢
𝑝
(𝜏)𝑑𝜏 with the memory kernel

𝐺(𝑡 − 𝜏) = ∑ ⃗
𝑘
𝑔2
⃗
𝑘

𝑒−𝑖Ω𝑘⃗(𝑡−𝜏). This equation of motion reveals
that the time dependence of the qubit state is determined
by all previous states, called the long-time memory effect or
non-Markovian behavior, through thememory kernel. As the
qubit is put in the free space, the memory kernel becomes a
Dirac delta function 𝐺(𝑡 − 𝜏) ∝ 𝛿

𝑑
(𝑡 − 𝜏) corresponding to

continuous photon DOS. In this case, the reservoir manifests

its memory effect only at an instant time 𝜏 = 𝑡 which leads
to the excited amplitude of the qubit decaying exponentially
with time. This Markovian result in free space manifests that
the qubit loses all memory of its past and decays quickly to its
ground state.

For the anisotropic PhC reservoir discussed here, the
memory kernel manifests its memory effect within the entire
time interval (0, 𝑡) through 𝐺(𝑡 − 𝜏) = ((𝛽1/2/𝑓3/2)/(√𝜋(𝑡 −

𝜏)3/2))𝑒−𝑖[3𝜋/4−𝛿(𝑡−𝜏)] with the coupling constant 𝛽1/2 =

(𝜔2
10
𝑑2
10
√𝜔𝑐)/(16𝜋𝜖0ℏ𝑐

3) and the detuning frequency 𝛿 =
𝜔
10

− 𝜔
𝑐
of the qubit transition frequency 𝜔

10
from the

band edge frequency 𝜔
𝑐
[6]. This memory kernel is derived

from the anisotropic dispersion relation of a practical three-
dimensional PhC. Near the band edge frequency 𝜔

𝑐
, the dis-

persion relation has a vector form and could be expressed by
the effective-mass approximation as [34]𝜔 ⃗

𝑘
≈ 𝜔
𝑐
+𝐴(𝑘⃗ − 𝑘⃗

𝑐
)
2

,
where the curvature 𝐴 ≅ 𝑓𝜔

𝑐
/𝑘2
𝑐
= 𝑓𝑐2/𝜔

𝑐
signifies its differ-

ent values in different directions through the scaling factor
𝑓. This anisotropic dispersion relation leads to the memory
kernel expressed by the cut-off photon DOS 𝜌(𝜔) through
𝐺(𝑡 − 𝜏) = (𝜔2

10
𝑑2
10
/4𝜖
0
ℏ) ∫
∞

0

𝑑𝜔(𝜌(𝜔)/𝜔)𝑒−𝑖(𝜔−𝜔10)(𝑡−𝜏) with

𝜌(𝜔) = (1/4𝜋2)√((𝜔 − 𝜔
𝑐
)/𝐴3)Θ(𝜔 − 𝜔

𝑐
) and the Heaviside

step function Θ(𝜔 − 𝜔
𝑐
) charactering the cut-off behavior.

With this memory kernel for the anisotropic PhC reservoir
and making the transformation 𝑢

𝑝
(𝑡) = 𝑒𝑖𝛿𝑡𝑈

𝑝
(𝑡), the

equation of motion becomes

𝑑

𝑑𝑡
𝑈
𝑝
(𝑡) + 𝑖𝛿𝑈

𝑝
(𝑡) =

𝛽1/2𝑒𝑖𝜋/4

√𝜋𝑓3/2
∫
𝑡

0

𝑈
𝑝
(𝜏)

(𝑡 − 𝜏)3/2
𝑑𝜏. (4)

Conventionally, this integrodifferential equation is solved
through Laplace transform which leads to the fractal phe-
nomenon of the system from this memory kernel in Laplace
image [35]. This fractal phenomenon would result in the
stochastic nature of the dynamical behavior of the system
which appears as the non-Markovian dynamics. These non-
Markovian dynamics can be solved accurately through frac-
tional calculus which we have shown its appropriateness by
comparing the obtained results with the experimental ones
and finding their consistence [6, 28].

In the following, we shall use fractional calculus to solve
the non-Markovian dynamics of the system analytically. In
particular, the fractional time derivative, one of the operators
of fractional calculus, is used to express the integral term
of the kinetic equation (4). In the well-known Riemann-
Liouville definition, the fractional time derivative operator
𝑑]/𝑑𝑡] is expressed as [36]

𝑑]

𝑑𝑡]
𝑓 (𝑡) =

1

Γ (𝑛 − ])

𝑑𝑛

𝑑𝑡𝑛
∫
𝑡

𝑎

𝑓 (𝜏)

(𝑡 − 𝜏)]−𝑛+1
𝑑𝜏 (5)

for 𝑛−1 ≤ ] < 𝑛 and Γ(𝑥) being the gamma function.Through
expressing the right-hand-side term of (4) as the fractional
time derivative operator with order 𝑛 = 1/2 and applying the
appropriate fractional operations to this kinetic equation, we
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arrive at the fractional kinetic equation of this qubit-reservoir
interacting system as

𝑑1/2

𝑑𝑡1/2
𝑈
𝑝
(𝑡) + 𝑖𝛿

𝑑−1/2

𝑑𝑡−1/2
𝑈
𝑝
(𝑡) +

2𝛽1/2𝑒𝑖𝜋/4

𝑓3/2
𝑈
𝑝
(𝑡) =

𝑡−1/2

√𝜋
.

(6)

The fractional time derivative in this fractional differential
equation indicates a subordinated stochastic process direct-
ing to a stable probability distribution [37]. The evolution
equation governing the future of the qubit is expressed as
the form of a fractional Langevin equation because of its
interaction with the PhC reservoir. Our aim of studying the
quantum dynamics of relaxation, decoherence, and entropy
for the qubit system can be achieved by solving this equation
through the Laplace transform for the fractional operators.
The basic formula used here is

𝐿{
𝑑]

𝑑𝑡]
𝑓 (𝑡)} ≡ ∫

∞

0

𝑒
−𝑠𝑡

𝑑]

𝑑𝑡]
𝑓 (𝑡) 𝑑𝑡

= 𝑠
]
𝐿 {𝑓 (𝑡)} −

𝑛−1

∑
𝑚=0

𝑠
𝑚

[
𝑑]−𝑚−1

𝑑𝑡]−𝑚−1
𝑓 (𝑡)]

𝑡=0

(7)

with 𝑠 denoting the Laplace variable. The procedure of per-
forming the Laplace transform on the fractional Langevin
equation leads to 𝑈̃

𝑝
(𝑠) = 1/(𝑠 + 𝑖𝛿 + 2𝛽1/2𝑒𝑖𝜋/4𝑠1/2/𝑓3/2),

where 𝑈̃
𝑝
(𝑠) is the Laplace transform of 𝑈

𝑝
(𝑡). This equation

can be further expressed as a sum of partial fractions as the
roots of the indicial equation 𝑌2 + 2𝛽1/2𝑒𝑖𝜋/4𝑌/𝑓3/2 + 𝑖𝛿 =

0 are found with the variable 𝑠1/2 having been converted
into 𝑌. As 𝛽/𝑓3 ̸= 𝛿, we have the different roots of the
indicial equation which leads to the partial-fractional form
of 𝑈̃
𝑝
(𝑠) = [(1/(√𝑠 − 𝑌

1
)) − (1/(√𝑠 − 𝑌

2
))](1/(𝑌

1
− 𝑌
2
))

with 𝑌
1

= 𝑒𝑖𝜋/4(−(𝛽1/2/𝑓3/2) + √(𝛽/𝑓3) − 𝛿) and 𝑌
2

=

𝑒𝑖𝜋/4(−(𝛽1/2/𝑓3/2) − √(𝛽/𝑓3) − 𝛿). For 𝛽/𝑓3 = 𝛿, the indi-
cial equation has degenerate root leading to 𝑈̃

𝑝
(𝑠) = 1/(√𝑠 +

(𝛽1/2𝑒𝑖𝜋/4/𝑓3/2))2.
The inverse Laplace transform of these partial-fractional

forms cannot be found in the conventional mathematical
table because the power of the variable 𝑠 is not an integer.
For the fractional power of 𝑠, we can find its inverse Laplace
transform in the book of fractional calculus [38] as𝐿−1{1/(𝑠]−
𝑎)} = ∑

𝑞

𝑗=1
𝑎𝑗−1𝐸
𝑡
(𝑗] − 1, 𝑎𝑞) and 𝐿−1{1/(𝑠] − 𝑎)2} =

∑
𝑞

𝑗=1
∑
𝑞

𝑚=1
𝑎𝑗+𝑚−2{𝑡𝐸

𝑡
((𝑗 +𝑚)]−2, 𝑎𝑞) − [(𝑗 +𝑚)]−2]𝐸

𝑡
((𝑗 +

𝑚)] − 1, 𝑎𝑞)} with ] = 1, 1/2, 1/3, . . . and 𝑞 = 1, 2, . . . , 1/].
Here we name the two-parameter function 𝐸

𝑡
(𝛼, 𝑎) as the

fractional exponential function with variable 𝑡, order 𝛼, and
constant 𝑎. It is defined as the fractional derivative of an
ordinary exponential function 𝐸

𝑡
(𝛼, 𝑎) ≡ (𝑑−𝛼/𝑑𝑡−𝛼)𝑒𝑎𝑡 =

𝑡𝛼∑
∞

𝑛=0
((𝑎𝑡)𝑛/Γ(𝛼 + 𝑛 + 1)) with the derivative formula

(𝑑𝜇/𝑑𝑡𝜇)𝐸
𝑡
(𝛼, 𝑎) = 𝐸

𝑡
(𝛼 − 𝜇, 𝑎). The functional form of

this fractional exponential function 𝐸
𝑡
(𝛼, 𝑎) will not be

changed after being performed on derivative operator with
fractional or integral order. A linear combination of the
fractional exponential functions is a potential solution of

the fractional differential equation. By applying these inverse
Laplace transforms to the partial-fractional forms of 𝑈̃

𝑝
(𝑠),

we obtain the analytical solution of the fractional differential
equation as

𝑈
𝑝
(𝑡) =

1

2𝑒𝑖𝜋/4√𝛽/𝑓3 − 𝛿

× [𝑌
2

1
𝐸
𝑡
(1/2, 𝑌

2

1
) − 𝑌
2

2
𝐸
𝑡
(1/2, 𝑌

2

2
)

+ 𝑌
1
𝑒
𝑌
2

1
𝑡

− 𝑌
2
𝑒
𝑌
2

2
𝑡

] ,

(8a)

𝑈
𝑝
(𝑡) = −2

𝛽3/2𝑒𝑖3𝜋/4

𝑓9/2
𝑡𝐸
𝑡
(
1

2
,
𝑖𝛽

𝑓3
)

−
𝛽1/2𝑒𝑖𝜋/4

𝑓3/2
𝐸
𝑡
(
1

2
,
𝑖𝛽

𝑓3
) + (1 +

2𝑖𝑡𝛽

𝑓3
) 𝑒
𝑖𝛽𝑡/𝑓

3

− 2
𝛽1/2𝑒𝑖𝜋/4

𝑓3/2√𝜋
𝑡
1/2

(8b)

for 𝛽/𝑓3 ̸= 𝛿 and 𝛽/𝑓3 = 𝛿, respectively. Here we have applied
the recursion relation of the fractional exponential function
𝐸
𝑡
(], 𝑎) = 𝑎𝐸

𝑡
(] + 1, 𝑎) + 𝑡]/Γ(] + 1) to these analytical

expressions. The time evolution of the wave function is thus
obtained as
󵄨󵄨󵄨󵄨𝜓 (𝑡)⟩

= [𝑢
𝑝
(𝑡) 𝑒
𝑖𝜙0 cos(

𝜃
0

2
) |1⟩ + 𝑢

𝑑
(𝑡) sin(

𝜃
0

2
) |0⟩] ⊗

󵄨󵄨󵄨󵄨0 ⃗𝑘⟩

+∑
⃗
𝑘

𝐶 ⃗
𝑘
(𝑡) |0⟩ ⊗

󵄨󵄨󵄨󵄨1 ⃗𝑘⟩

(9)

with 𝑢
𝑝
(𝑡) = 𝑒𝑖𝛿𝑡𝑈

𝑝
(𝑡) expressed through (8a) and (8b),

𝑢
𝑑
(𝑡) = 𝑢

𝑑
(0) = 1, and ∑ ⃗

𝑘
|𝐶 ⃗
𝑘
(𝑡)|2 = 1 − [𝑢

𝑝
(𝑡) cos(𝜃

0
/2)]2 −

[sin(𝜃
0
/2)]2.

By definition, the reduced density matrix of the qubit can
be directly obtained from this wave function through tracing
over the reservoir degrees of freedom. It gives

𝜌 (𝑡) = (

󵄨󵄨󵄨󵄨󵄨𝑢𝑝 (𝑡)
󵄨󵄨󵄨󵄨󵄨
2

cos2 (
𝜃
0

2
)

1

2
𝑢∗
𝑝
(𝑡) 𝑒−𝑖𝜙0 sin (𝜃

0
)

1

2
𝑢
𝑝
(𝑡) 𝑒𝑖𝜙0 sin (𝜃

0
) 1 −

󵄨󵄨󵄨󵄨󵄨𝑢𝑝 (𝑡)
󵄨󵄨󵄨󵄨󵄨
2

cos2 (
𝜃
0

2
)
)

≡ (
𝜌
11
(𝑡) 𝜌
10
(𝑡)

𝜌
01
(𝑡) 𝜌
00
(𝑡)
)

(10)

with the initial one

𝜌 (0) = (
cos2 (𝜃

0
/2) (1/2) 𝑒−𝑖𝜙0 sin (𝜃

0
)

(1/2) 𝑒𝑖𝜙0 sin (𝜃
0
) sin2 (𝜃

0
/2)

) . (11)

The elements in this matrix are associated with the polariza-
tion and probabilities of the qubit. In the following, we will
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study the quantum measurements of the energy relaxation,
decoherence, and von Neumann entropy based on these
elements.

2.1. Energy-Relaxation Rate. As the qubit spontaneously
emits a photon, the probability amplitude of the qubit under-
goes a quantum damping and becomes small. This ampli-
tude damping associated with the energy dissipation of the
qubit leads to the flow of energy from the qubit into the
environment through the emitted photon. How the energy
flows from the initially prepared qubit can be observed from
the excited-state probability of the qubit 𝑃(𝑡) through 𝑃(𝑡) =
|𝑢
𝑝
(𝑡)|2cos2(𝜃

0
/2) = |𝑈

𝑝
(𝑡)|2 (𝜃

0
= 0) shown in Figure 2(a).

The probability amplitude of a usual qubit [𝛿/𝛽 = (𝜔
10

−
𝜔
𝑐
)/𝛽 > 0] decays to zero quickly and the qubit has a short-

life time. For the QPAB [𝛿/𝛽 < 0], the probability dynamics
exhibit decay and oscillatory behavior before reaching a
steady nonzero value, indicating that the energy flow from
the QPAB to the PhC reservoir is inhibited and a photon-
atom bound state is formed. The rate of this energy flow can
be measured through the energy-relaxation rate Γrelax.(𝑡) =
− ̇𝜌
11
(𝑡)/𝜌
11
(𝑡) = −[(𝑈̇

𝑝
(𝑡)/𝑈
𝑝
(𝑡))+(𝑈̇∗

𝑝
(𝑡)/𝑈∗
𝑝
(𝑡))]with𝑈∗

𝑝
(𝑡)

being the complex conjugate of 𝑈
𝑝
(𝑡) in (8a) and (8b). In

Figure 2(b), we find that the energy-relaxation rates ofQPABs
and usual qubits decay to zero very quickly and slowly,
respectively.

Combining the dynamical behavior of the probability
amplitude and energy-relaxation rate of a qubit, we find
that the QPAB releases and preserves some of its energy at
the very beginning and at the end, respectively. The quick
stop of releasing energy results from the formation of the
bound state between the qubit and the localized photon.
The remaining energy continuously excites the atom leading
to the nondecaying dynamics of the probability amplitude
in Figure 2(a) and quick decaying of the energy-relaxation
rate in Figure 2(b). Note that, as the emitted frequency
of the QPAB is detuned deep inside the forbidden band
region (𝛿/𝛽 = −5 and −10), the energy-relaxation rates
exhibit negative values in the initial period of relaxation.
This negative energy-relaxation rate reveals that the qubit can
regain its energy in the PhC reservoir. That is, we observe the
released energy from the QPAB flowing back to the QPAB
during a certain time interval.This character of the long-time
memory effect also manifests the controllable relaxation of a
qubit inside the structured reservoir. On the other hand, for
a usual qubit, the energy-relaxation rate decays slowly and
remains a nonzero value for a long time in Figure 2(b). A
usual qubit releases its energy continuously and the emitted
photon from the qubit carries the energy and information
away.

When we use a Bloch vector in the Bloch sphere to
express the qubit state, the amplitude damping will perform
a transformation on the components of the Bloch vector with
the values related to the probability of losing the emitted
photon [39]. For the Markovian system of an usual qubit, the
large probability of losing the emitted photon will convert
the Bloch vector toward the ground-state point on the Bloch
sphere. The small probability of losing the emitted photon
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Figure 2: Dynamics of (a) the qubit’s excited-state probability 𝑃(𝑡)
and (b) relaxation rate Γrelax.(𝑡) of the qubit with different detuning
frequencies 𝛿/𝛽 = (𝜔

10
− 𝜔
𝑐
)/𝛽 from the band edge frequency 𝜔

𝑐
of

the PhC reservoir.

in the non-Markovian system of a QPAB will convert the
Bloch vector pointing towards the nonzero surface area near
the ground-state point on the Bloch sphere. The contracting
effect of the amplitude damping on the Bloch vector is
strongly suppressed in the non-Markovian system.

2.2. Decoherence and von Neumann Entropy. As a qubit cou-
ples with the reservoir, the polarization of the qubit is ran-
domized due to the reservoir. The coherence phase of a qubit
determined by the qubit polarization is also randomized
and leads to the quantum decoherence. As the qubit under-
goes the polarization randomization through this quantum
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Figure 3: (a) Polarization 𝑃𝑧(𝑡) = 𝜌
10
(𝑡) + 𝜌

01
(𝑡) and (b) von

Neumann entropy 𝑆(𝑡) = −Tr[𝜌(𝑡) log 𝜌(𝑡)] = −𝜆
+
log 𝜆
+
−

𝜆
−
log 𝜆
−
of the non-Markovian (𝛿/𝛽 < 0) andMarkovian (𝛿/𝛽 = 2)

systems.

decoherence, the off-diagonal elements of the reduced den-
sity matrix will decay with time. The completely loss of the
quantum coherence of one qubit will lead to the occurrence
of entanglement sudden death (ESD) in the multiple-qubit
system. That is, the time period in which the entanglement
could be usefully exploited in the multiqubit system is
limited.This limitation is related to the dynamics of the qubit
polarization shown in Figure 3(a) by defining the polarization
of a qubit as 𝑃𝑧(𝑡) = 𝜌

10
(𝑡) + 𝜌

01
(𝑡) = Re[𝑒𝑖𝛿𝑡𝑈

𝑝
(𝑡)] (if 𝜙

0
= 0,

𝜃
0
= 𝜋/2).
For a usual qubit with 𝛿/𝛽 = 2, the polarization of

the qubit exhibits a fast damping behavior implying that the
qubit loses all its polarization in the initial period of time

with 𝛽𝑡 < 4. This polarization damping results from the
qubit scattered inelastically by incoherent background fields
from the reservoir. The inelastic scattering randomizes the
orientation of the qubit polarization and leads to the decay
of the off-diagonal elements of the density matrix. The fast
damping of the qubit polarization reveals that the probability
of the qubit being scattered by incoherent photons of the
reservoir is large in the Markovian system.The photons from
the allowed band with a continuous DOS (see Figure 1(c))
provide the free-space-like environment to destroy the qubit.

On the other hand, the polarization of a QPAB exhibits
a nondecaying oscillation. The QPAB loses some of its
polarization at the very beginning and then preserves the
remaining polarization shown by the steady oscillation of
its polarization. This steady polarization ensures that the
probability of the QPAB scattered by incoherent photons of
the reservoir is greatly lowered in the non-Markovian system.
The PBG shown in the photon DOS of the PhC reservoir (see
Figure 1(c)) is expected to lower this scattering probability
and to lead to the preservation of phase information of the
qubit through the steady polarization. The QPAB with a
larger amplitude of polarization has less loss of coherence
information to the reservoir.

Entropy, a key concept of quantum information theory,
measures howmuch information exists in a state of a physical
system. The amount of information is changed with respect
to the correlation of a state and the reservoir. The correlation
between the environment and a state will transform the
initially purified state into a finally mixed state where the
state and its environment are entangled.We can thus estimate
the correlation between the qubit and reservoir through
the entropy of the quantum system, that is, von Neumann
entropy.The von Neumann entropy for a quantum state with
𝜌(𝑡) is defined as 𝑆(𝑡) = −Tr[𝜌(𝑡) log 𝜌(𝑡)] = −∑

𝑖
𝜆
𝑖
log 𝜆
𝑖

with 𝜆
𝑖
being the eigenvalues of thematrix 𝜌(𝑡).The vonNeu-

mann entropy predicts the upper bound of the information
that we will gain after we measure a quantum state. This gain
of information aftermeasurement corresponds to the amount
of information of a state. The value of this entropy stands
for the degree of entanglement between the qubit and the
reservoir. It has a maximal value 𝑆max = log(𝑑), 𝑑 being the
dimension of the matrix 𝜌(𝑡), for the maximally mixed state
and is zero for the pure state.

With the eigenvalues 𝜆
±

= (1/2){1 ±

√1 − 4cos4(𝜃
0
/2)[|𝑢

𝑝
(𝑡)|2 − |𝑢

𝑝
(𝑡)|4]} of the matrix in

(10), we show the von Neumann entropy in Figure 3(b)
for the initially excited qubit (𝜃

0
= 0). The entropy has its

minimal value zero at 𝑡 = 0 and reaches its maximal value
log 2 = 0.693 instantly. After a time on the order of the decay
rate, the entropy becomes steady and its value is nonzero
for a QPAB in the non-Markovian system (𝛿/𝛽 < 0) and
zero for a usual qubit in the Markovian system (𝛿/𝛽 = 2).
These results show that the initially purified qubit becomes
maximally mixed with the reservoir instantly. As the qubit
equilibrates with the PhC reservoir, the system becomes less
mixed. A usual qubit returns to its initially purified state
as it quickly disentangles from the reservoir. However, for
a QPAB, the long-time correlation with the PhC reservoir



Advances in Condensed Matter Physics 7

leads to the preservation of entanglement between the QPAB
and its reservoir.

Combining the results of Figures 3(a) and 3(b), we infer
that the coherence information of a qubit is partially lost and
preserved at the very beginning and on the long run, respec-
tively. In the QPAB of a non-Markovian case, the interaction
with the PhC reservoir does not result in the total loss of
the coherence but in the preservation of partial coherence
instead. The structured reservoir of a PhC reveals its unique
property in controlling the coherence of a qubit. A usual qubit
in PhCs exhibits a short-time coherence. But a QPAB shows a
property with strongly suppressed decoherence through the
steady oscillation of polarization and long-time preservation
of the mixed state.The greatly lowered probability of a QPAB
scattered by incoherent photons of the reservoir preserves the
coherence and information of a QPAB.

When we perform amultistage computation on the avail-
able information through the Markovian chain, the data pro-
cessing inequality of vonNeumann entropy, a basic inequality
of information theory, states that the information about the
output of the computation will decrease with time if the qubit
storing the information is correlated with the Markovian
environment [39]. This statement agrees with the result we
obtained here. In the Markovian system, the newly produced
mixed state by the correlation between the qubit and reservoir
recovers its initially pure state and loses the information
stored in the qubit. The pieces of information yielded by the
multistage computations will thus be independent of each
other. On the other hand, in the non-Markovian system, the
newly produced mixed state will preserve the information
about its output of the previous stage. The memory effect
of the PhC reservoir on the qubit’s previous state leads to
the preservation of the stored information in the mixed-state
qubit. Further computation operations on this mixed state
can be used to increase the amount of mutual information
between the outputs of the operations and the previous-stage
information about the qubit state.

2.3. Reservoirs with Forbidden Bands. Now we discuss the
systems suitable for realizing the behavior of strongly sup-
pressed relaxation and decoherence. Besides the anisotropic
PhC discussed in this section, reservoirs with forbidden
bands in their dispersion relation or threshold energy in
photonic DOS can be applied to exhibit these properties.
Here we briefly introduce the other three systems with this
kind of reservoirs including the omnidirectional waveguides
(ODWGs), tunable artificial crystals, and frequency disper-
sive media.

An ODWG, a waveguide structure based on the com-
plete reflection of one-dimensional (1D) PhCs, consists of a
dielectric (or air) layer of lower index 𝑛

𝑎
sandwiched by a

1D PhC with refractive indices 𝑛
2
and 𝑛

1
> 𝑛
𝑎
and variable

thicknesses ℎ
2
, ℎ
1
, and ℎ

𝑎
[17, 40, 41]. This structure can

exhibit complete reflection of radiation in a given frequency
range for all incident angles and polarizations which have
been proven both theoretically and experimentally [42–44].
Within the frequency range of omnidirectional reflection,
where the dispersion curve lies inside the photonic band gap

of the PhC, the electromagnetic (EM) wave is allowed to
propagate in thiswaveguide structurewith high transmission.
On the other hand, if the EM wave has its frequency lying
outside this frequency range of omnidirectional reflection,
it will find no propagation mode so that it cannot transmit
freely through this waveguide. With an embedded qubit with
frequency lying inside this forbidden range of the ODWG,
the system will exhibit the properties of strongly suppressed
relaxation and decoherence.

The second reservoir we introduce, a tunable artificial
crystal, is constructed by periodic arrays of circuit elements of
Josephson junction [45]. As the artificial crystals are built, the
interaction of the EM wave with these crystals can produce a
forbidden region in the band structure and DOS [19, 46].The
frequency range of this forbidden band is tunable through
the array parameters and applying external flux. When a
qubit is placed in the middle of such an array of artificial
crystals with its frequency lying inside the forbidden band
where no traveling modes are available, this system will
show the properties of strongly suppressed relaxation and
decoherence.

In contrast to the PhCs, frequency dispersive media such
as semiconductors and dielectrics have energy gaps caused
by photon couplings to a medium excitation, for example,
an exciton, optical photon, and so forth [47]. The spectrum
of these media consists of two branches of allowed states
separated by a gap in which propagating polariton modes
are completely forbidden. Studying the quantum electrody-
namics of a two-level atom placed in this medium in [20,
23], Rupasov and Singh found that if the atomic resonance
frequency lies within the gap, the spectrumof the system con-
tains a polariton-atom bound state with an eigenfrequency
lying within the gap. The radiation and medium polarization
of the bound state are localized in the vicinity of the atom.
They predicted that the SE of this polariton-atom system is
significantly suppressed due to the presence of the bound
state [20].These results about the polariton-atom bound state
in the dispersivemedia are similar to the photon-atom bound
state occurring in the PhCs.The suppression of relaxation and
decoherence rates of a QPAB is also valid for a qubit with
its frequency lying inside the polariton gap in a dispersive
medium.

3. Conclusion

A structured reservoir of an anisotropic PhC is introduced for
suppressing the relaxation and decoherence of an embedded
qubit. The dynamics of the qubit are obtained by applying
fractional calculus to solve the fractional Langevin equation
of the system analytically.There is a long-timememory effect
being characterized by the occurrence of a negative value of
the energy-relaxation rate on the dynamics of the relaxation
and decoherence of a qubit. The energy-relaxation rates of
QPABs andusual qubits decay to zero very quickly and slowly,
respectively. The polarization and entropy of a QPAB are
oscillating and decaying to a finite value, respectively.The fast
decaying of the energy-relaxation rate reveals the relaxation
property of a qubit being suppressed while the polarization
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oscillation and nonzero steady values of entropy manifest the
decoherence being suppressed. When the dynamical behav-
ior of the qubit formed by a photon-atom bound state is
compared with that formed without forming a bound state,
the suppressing effect on the relaxation and decoherence of a
QPAB is enhanced. Physical reasons for the suppressing effect
of the structured reservoir are discussed. Other systems suit-
able for the realization of this kind of structured reservoirs are
briefly illustrated, such as the omnidirectional waveguides,
tunable artificial crystals, and frequency dispersive media.
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