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Bidirectionality in Bianistropic but Reciprocal
Photonic Crystals and Its Usage in Active Photonics

Shu-Wei Chang, Member, IEEE

Abstract—We show that the bidirectionality of optical modes
exists in general bianisotropic but reciprocal photonic crystals and
related structures. Using this property, we obtain an alternative
bidirectionality of modes with sources (gain) in active photonic
crystals. In the former, we conclude that degeneracies of modes
with complex anti-parallel wave vectors are always identical as
long as the structure is reciprocal. With the latter, we setup an
associated biorthogonality relation in the Rayleigh–Carson form
for modes in active photonic crystals.

Index Terms—Bianisotropy, bidirectionality, biorthogonality,
photonic crystal, reciprocity.

I. INTRODUCTION

THE bidirectionality in ordered photonic structures is the
symmetry between two groups of modes varying spatially

along opposite directions. It serves as the foundation in many
applications [1]–[9] such as mode expansions and excitations
in waveguides. In homogeneous spaces and waveguides made
of isotropic media, the bidirectionality is analytically reflected
on the one-to-one correspondence between modes with wave
vectors ±k opposite in signs. The linkage between these modes,
nevertheless, becomes nontrivial even in one-dimensional (1-D)
bianisotropic waveguides and photonic crystals (PhCs) [10]–
[18]. The complication lies in that in absence of symmetries, for
example, the dissipation-free time-reversal symmetry (T) for
propagating modes [4], [17] (connected through the complex
conjugation and proper sign changes of fields, analogous to the
Kramers degeneracy in solids [19]–[21]) or inversion symmetry
(P), there are often no direct ways to link modes with antiparallel
wave vectors to each other in bianisotropic structures. Even
if both categories of modes exist, their field distributions and
polarization patterns may look unrelated, which complicates
analyses.

In this study, we explore the bidirectionality and associated
applications in general bianisotropic but reciprocal PhCs and re-
lated structures. First, we provide a a substitute approach to the
bidirectionality in these structures in addition to the argument
using fictitious analytic functions [12], [16] or a quite generic
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method based on scattering matrices of antenna [17]. Second,
utilizing the bidirectionality in reciprocal photonic structures,
we present an alternative bidirectionality for modes with sources
(gain) in active PhCs, which originate from a generalized eigen-
value (GE) problem aimed at active photonic devices [22], [23].
Based on this new bidirectionality, we develop an associated
mode biorthogonality relation in the Rayleigh-Carson form [24],
[25]. This relation can be useful in the source/mode expansions
and excitations in active PhCs.

Two points on the two aforementioned bidirectionalities in
reciprocal (active) photonic structures require clarifications:
(1) whether the existence of mode(s) at a wave vector k im-
plies the presence of the counterpart(s) at −k, and (2) if modes
at ±k both exist, are the two degeneracies identical (foundation
of biorthogonality between modes at ±k)? For the conventional
bidirectionality, these two issues are addressed with a special-
ized form of matrix representations. Despite the bianisotropy,
we can show that the degeneracies of modes with anti-parallel
wave vectors, regardless of being propagating, evanescent, at-
tenuated, or amplified, are identical as long as the structure is
reciprocal. As to the alternative bidirectionality for active PhCs,
by maintaining the reciprocity of photonic structures, we trans-
form the GE problem for active PhCs into an equivalent form
in which the conventional bidirectionality is applicable. In this
way, we assert that points (1) and (2) also hold positively for
this new bidirectionality.

In the later part of this study, we will utilize plane-wave
solutions in free spaces as an introduction of our approach to
the bidirectionality (Section III) and then generalize it to the
more complicated structures (Section IV). The procedure here
also indicates how to maintain the bidirectionality in certain
numerical calculations. In Section V, we present a 1-D chiral
PhC with two alternating reciprocal chiral layers but lacking
both T and P symmetries as an example of the bidirectionality.
In Section VI, we utilize the conventional bidirectionality in
reciprocal PhCs to obtain the alternative one and develop its
associated biorthogonality relation.

II. MAXWELL’S EQUATIONS IN SOURCE-FREE BUT

BIANISOTROPIC STRUCTURES

The frequency-domain Maxwell’s equations in source-free
but bianisotopic structures can be expressed in the following
matrix form as(

03 ∇×
∇× 03

)(
E(r)

η0H(r)

)
= i

(ω

c

)(−εr(r, ω) −ξr(r, ω)
ζr(r, ω) μr(r, ω)

)

×
(

E(r)
η0H(r)

)
(1)
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where 03 is the 3-by-3 null tensor; E(r) and H(r) are the elec-
tric and magnetic fields; ω is the frequency; c is the speed of light
in vacuum; η0 is the intrinsic impedance; εr(r, ω) and μr(r, ω)
are relative permittivity and permeability tensors, respectively;
and ζr(r, ω) and ξr(r, ω) are two dimensionless tensors in the
constitutive relations. For reciprocal environments, the four ten-
sors at the right-hand side (RHS) of (1) satisfy the following
relations when they are represented in terms of real orthogonal
unit vectors [26]:

εr(r, ω) = εT
r (r, ω), μr(r, ω) = μT

r (r, ω) (2a)

ζr(r, ω) = −ξT
r (r, ω) (2b)

where “T” means the matrix transpose. With these constraints,
the overall 6-by-6 tensor at RHS of (1) turns into a symmetric
matrix.

The matrix partial differential equation in (1) and properties
of various tensors in (2a) and (2b) serve as the foundation of our
formalism in Sections III and IV. It should be emphasized that
the resulted 6-by-6 symmetric tensor at RHS of (1) is essential to
the bidirectionality in ordered bianisotropic photonic structures
in which modes can be labeled with certain wave vectors k.

III. BIDIRECTIONALITY IN FREE SPACES

We utilize plane-wave solutions in bianisotropic but recip-
rocal free spaces as an introduction to our approach. In ho-
mogeneous spaces, fields have a spatial form of [E(r),H(r)] =
[E,H] exp(ik · r), where E and H are amplitudes of the respec-
tive fields, and k = kxx̂ + ky ŷ + kz ẑ is a complex wave vector
covering characteristics of propagating, evanescent, attenuated,
and amplified waves. With this ansatz, Maxwell’s equations in
(1) become
(

03 iC[k]

iC[k] 03

)( E
η0H

)
= i

(ω

c

) ( −εr(ω) −ξr(ω)

−ξT
r (ω) μr(ω)

)

×
( E

η0H

)
(3a)

C[k] = −CT[k] = −C[−k] =

⎛
⎜⎝

0 −kz ky

kz 0 −kx

−ky kx 0

⎞
⎟⎠ (3b)

where C[k] is a tensor due to actions of the curl operator (∇×)
on the factor exp(ik · r) and is antisymmetric in the cartesian
representation and odd in k; and we have dropped the position
(r) dependence on various tensors at RHS of (3a) due to homo-
geneous spaces. We further express (3a) more compactly with
the composite vector uT ≡ [ET , η0HT] as follows:

N[ω]u = −M[k]u (4a)

N[ω] =
(ω

c

)(
εr(ω) ξr(ω)
ξT

r (ω) −μr(ω)

)
(4b)

M[k] =

(
03 C[k]

C[k] 03

)
. (4c)

Note that the 6-by-6 matrix N[ω] is symmetric (NT[ω] =
N[ω]) while M[k] is antisymmetric (MT[k] = −M[k]) and in
particular, MT[k] = M[−k].

Suppose that for a given frequency ω and possible wave
vector k, we have found all dk(ω) [dk(ω) ≥ 1] solutions un

[n = 1 to dk(ω)] to (4a), namely, dk(ω) is the degeneracy cor-
responding to the wave vector k. These vectors un , in fact,
span the kernel (null space) of the matrix N[ω] + M[k]. From
this point, the degeneracy dk(ω) is the dimension of this kernel
(nullity). If we further utilize the matrix properties of N[ω] and
M[k] and the fact that nullities (also ranks) of a matrix and its
transpose are identical [27], we may rewrite dk(ω) as

dk(ω) = dim [ker{N[ω] + M[k]}]
= dim

[
ker{NT[ω] + MT[k]}

]
= dim [ker{N[ω] + M[−k]}] (5)

where ker{X} means the kernel of matrix X; dim[V ] is the
dimension of vector space V . The last line on (5) indicates
that there exist exactly dk(ω) vectors u′

n [n = 1 to dk(ω)] that
span the kernel of N[ω] + M[−k], and therefore these dk(ω)
vectors u′

n are just the plane-wave solutions at −k. Thus, for the
composite amplitude u′T ≡ [E ′T , η0H′T] satisfying the matrix
equation at −k:

N[ω]u′ = −M[−k]u′ (6)

the corresponding degeneracy d−k(ω) must be the same as the
counterpart dk(ω) at k, namely,

d−k(ω) = dk(ω). (7)

(7) indicates that in bianisotropic but reciprocal homogeneous
spaces, mode degeneracies at wave vectors ±k are identical to
each other, and the bidirectionality in such spaces is proven. On
the other hand, the proof says nothing about the explicit link-
age between two solution groups of the composite amplitudes
u (E and H) and u′ (E ′ and H′) at ±k. In fact, their polarization
patterns may bear no trivial connections.

IV. BIDIRECTIONALITY IN PHOTONIC CRYSTALS

AND RELATED STRUCTURES

The key step toward the bidirectionality in reciprocal homo-
geneous spaces is the construction of two operation matrices:
one is symmetric (N[ω] in (4b)), and the other, when evaluated at
−k, is identical to its transpose at k (M[k] in (4c)). We may fol-
low the same scenarios for the bidirectionality in bianisotropic
but reciprocal PhCs. Since these structures are inhomogeneous,
we no longer have the simple case of free spaces. Rather, we
need to construct the two matrices with a certain set of basis
functions which expand the fields E(r) and H(r). The resulted
operation matrices have sizes proportional to the number of ba-
sis functions included in the construction. If the symmetry and
antisymmetry (as well as oddness in k) of the two respective
operation matrices are properly maintained as the number of ba-
sis functions increases, the bidirectionality of bianisotropic but
reciprocal PhCs would follow naturally in the limit of infinitely
many basis functions.
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There are many candidate sets of basis functions, but not
each set can bring about desired matrix conditions. The failure
in one basis set does not, however, mean that the bidirection-
ality is absent. As long as there exists one particular set that
fulfills the requirement in its representations of the matrices, the
bidirectionality in bianisotropic but reciprocal PhCs is granted.
Representations in terms of other basis sets can be properly
transformed into those of the very set that fulfills desired matrix
conditions through some similarity transformations. Thus, the
bidirectionality may be already embedded in the matrix equa-
tion regardless of the basis sets adopted, even though it is not
always transparent from appearances of constructed matrices.

Let us consider a three-dimensional (3D) bianisotropic
but reciprocal PhC of which the unit cell is characterized
by three primitive vectors Rm (m = 1 to 3). The tensors
εr(r, ω),μr(r, ω), and ξr(r, ω) = −ζT

r (r, ω) are periodic with
respect to Rm , namely,

εr(r + Rm , ω) = εr(r, ω), μr(r + Rm , ω) = μr(r, ω)

ξr(r + Rm , ω) = ξr(r, ω). (8)

From the Bloch theorem, the fields E(r) andH(r) can be written
in the Bloch form as

E(r) = eik·re(r), e(r + Rm ) = e(r) (9a)

H(r) = eik·rh(r), h(r + Rm ) = h(r) (9b)

where k is a complex wave vector, which are not necessarily
real and restricted to the first Brillouin zone (BZ) at this stage;
and e(r) and h(r) are the Bloch periodic parts of E(r) and
H(r), respectively. Corresponding to Rm , the primitive recip-
rocal vectors Qn (n = 1 to 3) in the reciprocal space are

Qn = 2π
Ru × Rv

R1 · (R2 × R3)
(10)

where (n, u, v) are cyclic of (1, 2, 3); and Rm · Qn = 2πδmn .
Substituting (9a) and (9b) into (1), we obtain the matrix form

of partial differential equations for e(r) and h(r) as follows:(
03 C[k]

C[k] 03

) (
e(r)

η0h(r)

)
= i

(
03 ∇×
∇× 03

)(
e(r)

η0h(r)

)

+
(ω

c

) ( −εr(r, ω) −ξr(r, ω)

−ξT
r (r, ω) μr(r, ω)

)

×
(

e(r)

η0h(r)

)
. (11)

Analogous to the case of free spaces, we rewrite (11) with the
composite amplitude uT(r) ≡ [eT(r), η0hT(r)] as

F[r,∇, ω]u(r) = −M[k]u(r) (12a)

F[r,∇, ω] ≡ −i

(
03 ∇×
∇× 03

)
+ N[r, ω] (12b)

N[r, ω] =
(ω

c

) (
εr(r, ω) ξr(r, ω)

ξT
r (r, ω) −μr(r, ω)

)
. (12c)

The amplitude u(r) and tensor N[r, ω] are spatially periodic,
and additionally, N[r, ω] is symmetric (N[r, ω] = NT[r, ω]).

Our goal is to find a basis set which makes the matrix represen-
tation of F[r,∇, ω] symmetric and that of MT[k] identical to
the counterpart of M[−k].

A choice of basis sets is the collection of plane waves
{exp(iKl · r)} commonly adopted in plane-wave expansions
of PhC modes, where Kl is the reciprocal wave vector labeled
by index l = (l1 , l2 , l3), (l1 , l2 , l3 ∈ Z):

Kl = l1Q1 + l2Q2 + l3Q3 . (13)

A quick observation reveals, however, that the basis exp(iKl · r)
does not make the representation of F[r,∇, ω] symmetric. The
failure arises partly from the action of matrix curl operator on
exp(iKl · r) at RHS of (12b):

−i

(
03 ∇×
∇× 03

)
→

(
03 C[Kl]

C[Kl] 03

)

= M[Kl] = −MT[Kl] (14)

which appears antisymmetric in its diagonal blocks. In addition,
the representation of N[r, ω] is not always symmetric in this
basis set. Both factors potentially make the representation of
F[r,∇, ω] asymmetric, and we need to check whether other
basis sets can make both the representations of the matrix curl
operator and N[r, ω] symmetric.

Rather than the plane-wave set, we adopt collections of
cosines and sines as our basis set:

{√
2 cos(Kl · r)√

1 + δl,0

}′

,
{√

2 sin(Kl · r)
}′

l 	=0
(15)

where the prime (′) means that only half the wave vectors Kl

in the reciprocal space is included because cos(Kl · r) and
cos(K−l · r) [sin(Kl · r) and sin(K−l · r)] are linearly depen-
dent; and the presence of Kronecker’s delta δl,0 for the basis
function cos(K0 · r) = 1 is to make the spatial normalization
of basis functions independent of index l. We then expand the
composite amplitude u(r) with cosine and sine functions as

u(r) =
∑

l

′
√

2 cos(Kl · r)√
1 + δl,0

U(c)
l +

∑
l 	=0

′√2 sin(Kl · r)U(s)
l

(16)
where U(c)

l and U(s)
l are the expansion vectors for cosine and

sine functions, respectively; and primes again indicate that only
half of the wave vectors Kl in the reciprocal space is included
in the summation. For conveniences, we define a new amplitude
UT

l ≡ [U(c)T
l ,U(s)T

l ] for the subspace of l 	= 0 and demand

U0 ≡ U(c)
0 . The representation U of the amplitude u(r) in

terms of the basis set of cosine and sine functions is then defined
as

UT ≡ [...,UT
l1 ,U

T
l2 ,U

T
l3 , ...]. (17)

For the operation of an arbitrary 6-by-6 spatially periodic
tensor operator T[r,∇] on the amplitude u(r), we may similarly
expand the resulted amplitude v(r) ≡ T[r,∇]u(r) and define



CHANG: BIDIRECTIONALITY IN BIANISTROPIC BUT RECIPROCAL PHOTONIC CRYSTALS AND ITS USAGE IN ACTIVE PHOTONICS 13

its representation V as

v(r) ≡ T[r,∇]u(r)

=
∑

l

′
√

2 cos(Kl · r)√
1 + δl,0

V(c)
l +

∑
l 	=0

′√2 sin(Kl · r)V(s)
l

VT
l = [V(c)T

l ,V(s)T
l ], (l 	= 0),V0 = V(c)

0

VT ≡ [...,VT
l1 ,V

T
l2 ,V

T
l3 , ...]. (18)

The representation V can be generally expressed as V = T U ,
where the matrix T is composed of infinitely many submatrices
T l,l′ which connect V l to U l′ :

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . column l . . . column l′ . . .

row l
. . . . . . T l,l′ . . .

. . . . . .
. . . . . . . . .

row l′ T l′,l . . .
. . . . . .

. . . . . . . . . . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

The matrix T is taken as the representation of the tensor T[r,∇]
in terms of cosine and sine functions. By observing the relation
between the submatrix T T

l′,l and T l,l′ , we can then determine
whether the representation matrix T is symmetric, antisymmet-
ric, or asymmetric.

We first consider the action of the tensor operator F[r,∇, ω]
on u(r). From (12b), we need to find representations of the
matrix curl operator and N[r, ω] which constitute F[r,∇, ω].
Acting the matrix curl operator on u(r) and noting that the
differential operator converts cos(Kl · r) into − sin(Kl · r) and
sin(Kl · r) into cos(Kl · r), respectively, we obtain(

03 ∇×
∇× 03

)
u(r) =

∑
l 	=0

′√2 cos(Kl · r)M[Kl]U
(s)
l

+
∑
l 	=0

′√2 sin(Kl · r)(−1)M[Kl ]U
(c)
l .

(20)

Denote the representation for the matrix curl operator as C. A
close inspection of (20) reveals that its submatrix Cl,l′ is

Cl,l′ = δl,l′

(
06 M[Kl]

−M[Kl] 06

)
, l, l′ 	= 0

CT
l,0 = C0,l = (06 06 ), l 	= 0

C0,0 = 06 (21)

where 06 is the 6-by-6 null matrix. Due to the antisymmetry
M[Kl] = −MT[Kl], the transposed submatrix CT

l′,l (l, l′ 	= 0)
is identical to Cl,l′ :

CT
l′,l = δl′,l

(
0T

6 −MT[Kl′ ]

MT[Kl′ ] 0T
6

)

= δl,l′

(
06 M[Kl]

−M[Kl] 06

)
= Cl,l′ , l, l′ 	= 0. (22)

In addition, submatrics C0,l,Cl,0 (l 	= 0), and C0,0 in (21) ex-
hibit the same symmetry property. Therefore, the representation
matrix C of the matrix curl operator is symmetric in terms of
cosine and sine functions, namely,

CT = C. (23)

The property in (23) is a crucial step toward the symmetric ma-
trix representation of the tensor operator F[r,∇, ω], in contrast
to the construction in the plane-wave basis.

For the operator N[r, ω], we expand N[r, ω]u(r) in terms
of cosine and sine series and obtain its representation N [ω].
The detail is presented in appendix A, and the corresponding
submatrix N l,l′ [ω] indicates that N [ω] is symmetric:

N T
l′,l[ω] = N l,l′ [ω], N T[ω] = N [ω]. (24)

With symmetric matrix representations C and N [ω], we then
define a symmetric representation F [ω] for the tensor operator
F[r,∇, ω] in terms of cosine and sine functions as

F [ω] = −iC + N [ω], FT[ω] = F [ω] (25a)

F l,l′ [ω] = −iCl,l′ + N l,l′ [ω], FT
l′,l[ω] = F l,l′ [ω]. (25b)

It remains to show that the representation M[k] of the tensor
operator M[k] does have the required properties. Since the ten-
sor M[k] affects amplitudes U(c)

l and U(s)
l rather than cosine

and sine functions, it can be directly shown that the correspond-
ing submatrix Ml,l′ [k] is

Ml,l′ [k] = δl,l′

(
M[k] 06

06 M[k]

)
, l, l′ 	= 0

MT
l,0 [k] = M0,l[k] = (06 06 ), l 	= 0

M0,0 [k] = M[k]. (26)

With MT[k] = M[−k] = −M[k], one sees that the submatrix
Ml,l′ [k] exhibits the following properties

MT
l′,l[k] = Ml,l′ [−k] = −Ml,l′ [k]. (27)

Therefore, we do have the desired property for the representation
M[k]:

MT[k] = M[−k] = −M[k]. (28)

With matrix representations in terms of cosine and sine func-
tions, the matrix partial differential equation in (11) turns into a
matrix form with an infinite size:

F [ω]U = −M[k]U . (29)

In real computations, we can only include finitely many co-
sine and sine functions in the expansion. In other words, only
a subset L of all possible indices l (excluding the redun-
dancy from ±l) can be taken into account. Denote the ma-
trices, C(L) ,N (L) [ω],F (L) [ω],M(L) [k], and vector U (L) as
the counterparts of C,N [ω],F [ω],M[k], and U , respectively,
when only the basis functions in L are used. These smaller
matrices exhibit the same symmetry properties and k depen-
dence as their infinitely-dimensional counterparts do because
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their submatrices are identical, in particular,

F (L)T [ω] = F (L) [ω] (30a)

M(L)T [k] = M(L) [−k]. (30b)

Suppose that at a give frequency ω and possible wave vec-
tor k(L) , we have found all dk(L ) (ω) solutions of U (L) to the
following matrix equation in the subset L:

F (L) [ω]U (L) = −M(L) [k(L) ]U (L) . (31)

By the same token as that of biansitropic but reciprocal free
spaces in Section III, the degeneracy dk(L ) (ω) is the nullity of
F (L) [ω] + M(L) [k(L) ] and is identical to that of F (L) [ω] +
M(L) [−k(L) ]:

dk(L ) (ω) = dim
[
ker

{
F (L) [ω] + M(L) [k(L) ]

}]

= dim
[
ker

{
F (L)T [ω] + M(L)T [k(L) ]

}]

= dim
[
ker

{
F (L) [ω] + M(L) [−k(L) ]

}]
. (32)

On the other hand, the nullity of F (L) [ω] + M(L) [−k(L) ] is just
the degeneracy d−k(L ) (ω) of the solutions U (L)′ to the matrix
equation at −k(L) :

F (L) [ω]U ′(L) = −M(L) [−k(L) ]U ′(L) . (33)

Thus, the two degeneracies d±k(L ) (ω) corresponding to the sub-
set L are identical, namely,

dk(L ) (ω) = d−k(L ) (ω) (34)

and therefore, the bidirectionality of matrix representations is
always valid for any finite subsets L.

As the number of indices l in the subset L increases so that the
expansion in terms of cosine and sine series becomes more com-
plete, the wave vector k(L) approaches the exact vector k while
the degeneracies d±k(L ) (ω) turn into the true values d±k(ω),
where we have presumed that their limits in the infinitely-
dimensional expansion exist. Under such circumstances, the
real-space composite amplitudesu(r) andu′(r), which are solu-
tions of the Bloch parts in 3D bianisotropic but reciprocal PhCs
in (11), can be also accurately restored from U (L) and U ′(L) .
Since the bidirectionality is rigorously maintained as the subset
L becomes more complete, its presence in 3D bianisotropic but
reciprocal PhCs is expected.

For related structures such as (PhC) waveguides, the approach
to the bidirectionality follows the same route with some adjust-
ments of basis functions. For example, if the first primitive
vector R1 vanishes (translationally invariant along R̂1 , where
R̂1 is the unit vector along the direction of R1), we only keep
basis functions of which the corresponding indices l have their
components l1 = 0 so that Bloch parts have no position depen-
dence along R̂1 . On the other hand, if structures are aperiodic
along R̂1 (|R1 | → ∞, super cells), we require k · R̂1 = 0. The
cosine and sine expansions in the corresponding dimension turn
into continuous inverse Fourier cosine and sine transformations
in the limit |R1 | → ∞. An ambiguity on d±k(ω) → ∞ for un-
bounded modes in open structures may occur in this case, and it

Fig. 1. The schematic diagram of a unit cell in the 1-D bilayer chiral PhC.
The unit cell is repeated in the x direction.

becomes subtle to discuss whether two infinite degeneracies are
identical. The situation arises because some modes with differ-
ent wave vectors k at any finite R1 may merge into a continuum
mode distribution as |R1 | → ∞. However, the bidirectionality
at finite |R1 | indicates that two categories of modes around
±k should evolve into respective continuums in an identical
fashion as |R1 | → ∞. From this viewpoint, we expect that the
bidirectionality should remain valid even if the reciprocal struc-
ture is open. Except for this subtlety, all other settings do not
interfere with the required characteristics of operation matrices,
and therefore the bidirectionality should be present in general
bianistropic but reciprocal PhCs and related structures.

An accompanying remark is related to expansions based on
the plane-wave set {exp(iKl · r)}. Although this set does not
directly lead to the bidirectionality in our formalism, for a given
index l 	= 0, both subsets {exp(iKl · r), exp(−iKl · r)} and
{cos(Kl · r), sin(Kl · r)} expand the same subspace. There-
fore, in numerical computations using plane-wave expansions,
if two counter-propagating waves exp(±iKl · r) (l 	= 0) are al-
ways included in pairs, the bidirectionality of photonic modes
is automatically built in.

V. EXAMPLE: BILAYER CHIRAL PHOTONIC CRYSTAL

We utilize a 1-D PhC with alternating chiral slabs (biisotropic
but reciprocal) as an example of the bidirectionality. As shown
in Fig. 1, the unit cell of the bilayer PhC has a thickness a
and is repeated along the x direction. Layers w (w = 1, 2) in
the unit cell has a thickness aw (a = a1 + a2). In chiral struc-
tures, each tensor in the constitutive relation is diagonal and
characterized by a scalar. For simplicity, these scalars are set
frequency-independent. However, the relative permittivity εr,w
and permeability μr,w in layer w are set complex. In this way,
the existing gain or loss in this PhC breaks the T symmetry even
though under certain circumstances, the mode may still maintain
a fixed magnitude as propagating through the whole structure.
Also, in the constitutive relation, the scalar ξr,w in layer w is
replaced with the chiral parameter χr,w (ξr,w = iχr,w ). We note
that the spatial inversion P transforms the chiral structure to one
with the opposite chirality, and therefore, the structure lacks the
inversion symmetry. Hence, the bidirectionality in this PhC is
not directly foreseeable using the arguments of T/P symmetries.

In the following calculations, we set the thicknesses of lay-
ers 1 and 2 as a1 = 2a/3 and a2 = a/3, respectively. Other
parameters in layer 1 are set as follows: εr,1 = (1.4 − 0.07i)2 ;
μr,1 = (1 + 0.05i)2 ; and χr,1 = 0.2, and those in layer 2 are
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Fig. 2. Band diagrams (normalized frequency k0 a) and their iso-frequency
contours along the plane of the normalized wave vectors (kx a/π − ky a/π
plane) in the first BZ: (a) and (b), the band diagram and iso-frequency contour
of the first band, respectively; (c) and (d), the counterparts from the second band;
and (e) and (f), those of the third band. The three contours are all symmetric
with respect to the origin in the kx a/π − ky a/π plane, which is a sign of the
bidirectionality of modes in this chiral and reciprocal PhC.

εr,2 = (2.8 − 0.14i)2 ; μr,2 = (2 + 0.1i)2 ; and χr,2 = 0.3. The
permittivity and permeability in each layer are chosen so that the
electric gain exactly compensates the magnetic loss. In this way,
the wave vectors of the propagation modes in this PhC remain
real even if the system is time-irreversible. Here, we focus on
the propagating modes but keep in mind that the bidirectionality
still holds for evanescent ones. Also, since the slab structure is
biisotropic and homogeneous in the y − z plane, it is sufficient
to consider the modes propagating in the y direction and set kz

to null.
The detail on the bandstructure calculations of this chiral PhC

is presented in appendix B for interested readers. In Fig. 2, the
band diagrams and corresponding iso-frequency contours of the
first three bands in this PhC are depicted along the plane of nor-
malized wave vectors (kxa/π − kya/π plane) in the first BZ.
The frequency is also shown in a normalized form k0a, where
k0 = ω/c is the propagation constant in vacuum. The band dia-
grams can be further extended to ky → ±∞ because the chiral
PhC is translationally invariant except for the x direction. We
note that these three bands themselves are not further degener-
ate. From Fig. 2(a), (c), and (e), although the dispersion relations
of these three bands may look distinct, they all look symmetric
as the normalized frequency at (kx, ky ) are mapped to that at
(−kx,−ky ) (inversion in the k space). In other words, whenever

Fig. 3. The schematic diagram of a PhC unit cell. The function U (r) is unity
in Ωa but vanishes elsewhere.

there is a mode at wave vector k, another at −k must be present.
This property is more transparent from the corresponding iso-
frequency contours in Fig. 2(b), (d), and (f). These contours
all have the inversion symmetry on the kxa/π − kya/π plane.
These features are signs of the bidirectionality in this 1-D chiral
and reciprocal PhC, in which the T and P symmetries are absent.

VI. ALTERNATIVE BIDIRECTIONALITY AND ASSOCIATED

BIORTHOGONALITY RELATION

We further utilize the aforementioned bidirectionality in bian-
isotropic but reciprocal PhCs to demonstrate another type of
bidirectionality and its associated biorthogonality relation in
Rayleigh-Carson form for a GE problem developed for active
photonic devices [22]. The construction of this GE problem is
relevant to the mode expansion and source radiation in general
reciprocal PhCs. In addition, the eigenvalue of this GE problem
is directly related to the lasing threshold and coupling efficiency
of active photonic modes [23] and may provide a guidance on
how PhC structures should be designed for different applications
and purposes.

Let us consider Maxwell’s equations in bianisotropic but re-
ciprocal PhCs with electric current sources Js(r) and magnetic
counterparts Ms(r):{(

03 ∇×
∇× 03

)
+ iN[r, ω]

} (
E(r)

η0H(r)

)
=

(
η0Js(r)

−Ms(r)

)
.

(35)
For generic active photonic PhCs, sources (gain) which generate
radiation (amplification) are often confined in periodic active re-
gions Ωa occupying a fraction of each unit cell Ωuc , as indicated
in Fig. 3. In particular, we demand sources Js(r) and Ms(r) to
have a specific form as follows:
(

η0Js(r)

−Ms(r)

)
=−i

(ω

c

)
Δγ(ω)U(r)P[r, ω]

(
E(r)

η0H(r)

)
(36a)

U(r) =
{

1, r ∈ Ωa

0, otherwise
(36b)

P[r, ω] =
(

κr(r, ω) τ r(r, ω)
τT

r (r, ω) −νr(r, ω)

)
(36c)

where Δγ(ω) is a complex parameter; U(r) is a periodic indi-
cator function which is unity in Ωa but vanishes elsewhere; and
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P[r, ω] is a 6-by-6 periodic (P[r, ω] = P[r + Rm , ω]) and sym-
metric (PT[r, ω] = P[r, ω]) tensor composed of 3-by-3 ones
κr(r, ω),νr(r, ω), and τ r(r, ω), of which the two formers are
also symmetric:

κr(r, ω) = κr(r + Rm , ω) = κT
r (r, ω)

νr(r, ω) = νr(r + Rm , ω) = νT
r (r, ω)

τ r(r, ω) = τ r(r + Rm , ω). (37)

Substituting (36a) into RHS of (35), we obtain a GE prob-
lem in which parameter Δγ(ω) plays the role of eigenvalues.
The interpretation of Δγ(ω) is more transparent if we group
the tensor terms in N[r, ω] and P[r, ω] together. In this way,
parameter Δγ(ω) is the required amount of tensor variations
in Ωa that makes a certain PhC mode self oscillate at a real
frequency ω. The tensor variation is characterized by P[r, ω]
[κr(r, ω), τ r(r, ω), and νr(r, ω)]. For example, if the PhC is
originally passive, and we set κr(r, ω) = I3 (3-by-3 identity
matrix) but τ r(r, ω) = νr(r, ω) = 03 , parameter Δγ(ω) is just
the isotropic variation of the relative permittivity in Ωa that
enables the oscillation of a certain mode at ω, and its imagi-
nary part Im[Δγ(ω)] is related to the corresponding threshold
gain [22], [23]. We note that the symmetric tensor P[r, ω] main-
tains the reciprocal form of the Maxwell’s equation so that some
of the results in Section IV are applicable here.

For modes in these active PhCs, we express their fields and
sources in the following Bloch forms as(

E(r)

η0H(r)

)
= eik·r

(
ψnk(r, ω)

η0ϕnk(r, ω)

)
≡ eik·rΨnk(r, ω)

(
η0Js(r)
−Ms(r)

)
= eik·r

(
η0ςs,nk(r, ω)
−ιs,nk(r, ω)

)
≡ eik·rΣs,nk(r, ω)

Σs,nk(r, ω) = −i
(ω

c

)
Δγnk(ω)U(r)P[r, ω]Ψnk(r, ω) (38)

where n is the band label of Bloch modes; k is now re-
stricted to real vectors in the first BZ since sources (gain)
are present in the active region to sustain the field in each
unit cell; ψnk(r, ω),ϕnk(r, ω),Ψnk(r, ω) are Bloch periodic
parts of E(r),H(r), and composite amplitude, respectively; and
ςs,nk(r, ω), ιs,nk(r, ω), and Σs,nk(r, ω) are the counterparts of
Js(r),Ms(r), and composite source. With (38), we convert the
GE problem into the more compact form as{

i

(
03 ∇×
∇× 03

)
− N[r, ω] − M[k]

}
Ψnk(r, ω)

= iΣs,nk(r, ω)

= Δγnk(ω)U(r)
(ω

c

)
P[r, ω]Ψnk(r, ω) (39)

where the eigenvalue Δγnk(ω) is now labeled with band in-
dex n and wave vector k. Our investigations on the biorthog-
onality then turn into the search of connections between
(non)degenerate sets of eigenvalues Δγnk(ω) and Δγn−k(ω)
at ±k.

Suppose that at a real wave vector k in the first BZ, we have
exhausted all possible modes in a certain (non)degenerate set

n ≡ {nj}, of which the degeneracy and representative eigen-
value are Dnk(ω) and Δγnk(ω), respectively, namely, all eigen-
values Δγnj k(ω) [j = 1 to Dnk(ω)] of the modes in set n are
identical to Δγnk(ω). We may cast the GE problem in (39) into
the form of matrix differential equations in (12a) by defining
two tensor operators N′[r, ω] and F′[r,∇, ω] as

N′[r, ω] = N[r, ω] + Δγnk(ω)U(r)
(ω

c

)
P[r, ω] (40a)

F′[r,∇, ω] = −i

(
03 ∇×

∇× 03

)
+ N′[r, ω]. (40b)

Similar to N[r, ω], the tensor N′[r, ω] is also symmetric
(N′T[r, ω] = N′[r, ω]) and periodic. With these new operators,
(39) is rewritten as

F′[r,∇, ω]Ψnk(r, ω) = −M[k]Ψnk(r, ω). (41)

Since all of the Dnk(ω) solutions in set n have been iden-
tified, the enumeration of this/these (non)degenerate mode(s)
must be reflected on the degeneracy d′k(ω) corresponding to
the matrix differential equation in (41) (nullity of the operator
F′[r,∇, ω] + M[k]), namely,

d′k(ω) = Dnk(ω). (42)

On the other hand, the bidirectionality of PhC modes in
Section IV indicates that the counterpart d′−k(ω) at −k is iden-
tical to d′k(ω), and hence there are exactly Dnk(ω) solutions
Ψn−k(r, ω) for the matrix differential equation at −k:

F′[r,∇, ω]Ψn−k(r, ω) = −M[−k]Ψn−k(r, ω). (43)

Equivalently, Ψn−k(r, ω) is an eigenvector of the GE problem
with, however, an eigenvalue Δγnk(ω) at −k:

{
i

(
03 ∇×
∇× 03

)
− N[r, ω] − M[−k]

}
Ψn−k(r, ω)

= Δγnk(ω)U(r)
(ω

c

)
P[r, ω]Ψn−k(r, ω). (44)

In other words, there are Dnk(ω) eigenvectors Ψn−k(r, ω)
with their eigenvalues Δγn−k(ω) = Δγnk(ω) at −k. Except
for these Dnk(ω) eigenvectors, no additional ones at −k have
eigenvalues Δγnk(ω). Otherwise, the bidirectionality, when ap-
plied to these PhC modes at −k, would imply that the number
of eigenvectors Ψnk(r, ω) with an eigenvalue of Δγnk(ω) at
k exceeds Dnk(ω), which contradicts the presumption that all
mode(s) in set n have been enumerated.

From the reasoning above, we may also denote the set of these
Dnk(ω) modes Ψn−k(r, ω) at −k as n because they are closely
connected to their counterparts at k through the bidirectional-
ity. In this way, the degeneracy Dn−k(ω) and representative
eigenvalue Δγn−k(ω) of this (non)degenerate set n at −k are
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identical to their counterparts at k, respectively:

Dn−k(ω) = Dnk(ω) (45a)

Δγn−k(ω) = Δγnk(ω). (45b)

(45a) and (45b) is the bidirectionality of the GE problem
in active PhCs. As long as the PhCs and tensor variations in
active regions are both reciprocal, the eigenvalues Δγnk(ω) at k
would all repeat at −k and vice versa. The degeneracies of these
repeated eigenvalues at±k must be identical. Furthermore, from
(45b), these counter-propagating modes have the same threshold
(gain) regardless of their potentially distinct field (polarization)
patterns and geometries of the active region.

Since the new bidirectionality guarantees that the related
(non)degenerate sets at ±k have the same degeneracies (de-
grees of freedom), we may safely develop a biorthogonality
relation for eigenvectors from two parts. Following the deriva-
tion of the reciprocity theorem, we apply similar procedures to
various Bloch periodic parts with mode labels (n,k) and (n′,k′)
as follows [22]:∮

Su c

da ·
[
ψnk(r, ω) × ϕn ′k ′(r, ω)

− ψn ′k ′(r, ω) × ϕnk(r, ω)
]

= −
∫

Ωu c

dri(k + k′) ·
[
ψnk(r, ω) × ϕn ′k ′(r, ω)

− ψn ′k ′(r, ω) × ϕnk(r, ω)
]

−
∫

Ωu c

dr
{[

ψnk(r, ω) · ςs,n ′k ′(r, ω)

− ϕnk(r, ω) · ιs,n ′k ′(r, ω)
]

−
[
ψn ′k ′(r, ω) · ςs,nk(r, ω)

− ϕn ′k ′(r, ω) · ιs,nk(r, ω)
]}

(46)

where Suc is the surface of the unit cell. The surface integral at
the left-hand side of (46) is always zero because the integrand
repeats at any opposite sides of the unit cell while the corre-
sponding surface normals are antiparallel. If we further choose
k′ = −k, the first volume integral at RHS of (46) also vanishes.
The remaining volume integral, aside of a factor of η0 , can be
compactly expressed in terms of the Bloch periodic parts of
composite amplitudes Ψnk(r, ω) and Ψn ′−k(r, ω) as well as
sources Σs,nk(r, ω) and Σs,n ′−k(r, ω). The consequence is a
reciprocity relation in the Rayleigh-Carson form:

0 =
∫

Ωu c

dr
[
ΨT

nk(r, ω)Σs,n ′−k(r, ω)

− ΨT
n ′−k(r, ω)Σs,nk(r, ω)

]
. (47)

Further utilizing the form of Σs,nk(r, ω) [Σs,n ′−k(r, ω)] in (38)
and noting that P[r, ω] is symmetric, we obtain the following

integral identity:

0 = −i
(ω

c

)
[Δγn ′−k(ω) − Δγnk(ω)]

×
∫

Ωa

drΨT
nk(r, ω)P[r, ω]Ψn ′−k(r, ω) (48)

where the volume integral on the second line is now carried out in
Ωa within one unit cell due to the indicator function U(r). From
(48), if Δγn ′−k(ω) 	= Δγnk(ω), the volume integral in Ωa has
to vanish. On the other hand, if Δγn ′−k(ω) = Δγnk(ω), which
must occur for some band indices n and n′ belonging to a certain
(non)degenerate set n due to the bidirectionality of the GE
problem in (45b), we can still use the volume integral as a device
to biorthogonalize these modes at ±k. The biorthogonalization
can always proceed unambiguously because the numbers of
modes (degrees of freedom) in a (non)degenerate set n at ±k
are granted to be identical. In other words, after the proper
biorthogonalization, we can demand∫

Ωa

drΨT
nk(r, ω)P[r, ω]Ψn ′−k(r, ω) = δnn ′Λnk(ω) (49)

where δnn ′ is Kronecker’s delta; and Λnk(ω) is a normalization
constant. (49) is the biorthogonality relation in the Rayleigh-
Carson form for modes in bianisotopic but reciprocal PhCs with
sources (gain) in the active region.

VII. CONCLUSION

In conclusions, we have demonstrated that the bidirectional-
ity always exists in bianisotropic but reciprocal homogeneous
spaces, PhCs, and related structures. Our approach is based on
the construction of one symmetric operation matrix and another
one, which, when evaluated at −k, is identical to its transpose
at k for wave equations of photonic modes. We also utilize this
bidirectionality in reciprocal PhCs to show an alternative one for
a GE problem developed for modes in PhCs with sources (gain).
This new bidirectionality consolidates the usage of an associated
biorthogonality relation in the Rayleigh-Carson form.

APPENDIX A
MATRIX REPRESENTATION N [ω]

We denote the outcome of N[r, ω]u(r) as g(r):

g(r) =
∑

l

′
√

2 cos(Kl · r)√
1 + δl,0

N[r, ω]U(c)
l

+
∑
l 	=0

′√2 sin(Kl · r)N[r, ω]U(s)
l

≡
∑

l

′
√

2 cos(Kl · r)√
1 + δl,0

G(c)
l +

∑
l 	=0

′√2 sin(Kl · r)G(s)
l .

(50)

To obtain amplitudes G(c)
l and G(s)

l , we multiply g(r) with
some cosine or sine function, and use the orthogonality between
these basis functions when integrated over a unit cell Ωuc with a
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volume Vuc = R1 · (R2 × R3) to extract them (l 	= 0 forG(s)
l ):

G(c)
l =

∑
l′

′N (cc)
l,l′ [ω]U(c)

l′ +
∑
l′ 	=0

′N (cs)
l,l′ [ω]U(s)

l′ (51a)

G(s)
l =

∑
l′

′N (sc)
l,l′ [ω]U(c)

l′ +
∑
l′ 	=0

′N (ss)
l,l′ [ω]U(s)

l′ (51b)

where the four matrices N (cc)
l,l′ [ω],N (cs)

l,l′ [ω],N (sc)
l,l′ [ω], and

N (ss)
l,l′ [ω] are (l, l′ 	= 0 if associated with sine functions)

N (cc)
l,l′ [ω] =

2
Vuc

∫
Ωu c

drN[r, ω]
cos(Kl · r)√

1 + δl,0

cos(Kl′ · r)√
1 + δl′,0

N (cs)
l,l′ [ω] =

2
Vuc

∫
Ωu c

drN[r, ω]
cos(Kl · r)√

1 + δl,0
sin(Kl′ · r)

N (sc)
l,l′ [ω] =

2
Vuc

∫
Ωu c

drN[r, ω] sin(Kl · r)
cos(Kl′ · r)√

1 + δl′,0

N (ss)
l,l′ [ω] =

2
Vuc

∫
Ωu c

drN[r, ω] sin(Kl · r) sin(Kl′ · r). (52)

From (51a) and (51b), the submatrix N l,l′ [ω] of N [ω] is ex-
pressed as

N l,l′ [ω] =

(
N (cc)

l,l′ [ω] N (cs)
l,l′ [ω]

N (sc)
l,l′ [ω] N (ss)

l,l′ [ω]

)
, l, l′ 	= 0

N l,0 [ω] =

(
N (cc)

l,0 [ω]

N (sc)
l,0 [ω]

)
, l 	= 0

N 0,l[ω] =
(

N (cc)
0,l [ω] N (cs)

0,l [ω]
)

, l 	= 0

N 0,0 [ω] = N (cc)
0,0 [ω]. (53)

Due to the symmetry N[r, ω] = NT[r, ω], inspections of (52)
reveal

N (cc)T
l′,l [ω] = N (cc)

l′,l [ω] = N (cc)T
l,l′ [ω] = N (cc)

l,l′ [ω]

N (cs)T
l′,l [ω] = N (cs)

l′,l [ω] = N (sc)T
l,l′ [ω] = N (sc)

l,l′ [ω], l 	= 0

N (ss)T
l′,l [ω] = N (ss)

l′,l [ω] = N (ss)T
l,l′ [ω] = N (ss)

l,l′ [ω], l, l′ 	= 0. (54)

With (54), we then show N T
l′,l[ω] = N l,l′ [ω]. Only submatrices

with l′, l 	= 0 are examined, and those with indices related to 0
can be carried out in a similar fashion:

N T
l′,l[ω] =

(
N (cc)T

l′,l [ω] N (sc)T
l′,l [ω]

N (cs)T
l′,l [ω] N (ss)T

l′,l [ω]

)

=

⎛
⎝ N (cc)

l,l′ [ω] N (cs)
l,l′ [ω]

N (sc)
l,l′ [ω] N (ss)

l,l′ [ω]

⎞
⎠ = N l,l′ [ω]. (55)

(55) indicates that the representation N [ω] is symmetric.

APPENDIX B
BAND DIAGRAM OF BILAYER CHIRAL PHOTONIC CRYSTAL

To calculate the band diagrams of the 1-D chiral PhC in Fig. 1,
we use the free-space modes in each layer to expand the fields
within it and apply the phase boundary condition with a phase
factor exp(ikxa) across one bilayer period. In this way, we can
obtain the characteristic equation for nontrivial solutions and
calculate the dispersion relations from it.

With a finite ky but null kz , there are four free-space modes
(labeled by m = 1 − 4) in layer w (w = 1, 2). Here, we only
consider their field components that are transverse to the x
direction because it is the transverse components of the total
fields that are continuous across the slab boundary:

⎛
⎜⎜⎜⎜⎝

Ey,w ,m (x, y)

Ez,w ,m (x, y)

η0Hy,w,m (x, y)

η0Hz,w ,m (x, y)

⎞
⎟⎟⎟⎟⎠=eiky y

[
eiβx , w , m xuw,m

]
(56a)

βx,w ,1(2) = ±β(+)
x,w = ±

√
β

(+)2
w − k2

y

βx,w ,3(4) = ±β(−)
x,w = ±

√
β

(−)2
w − k2

y (56b)

β(±)
w = k0(

√
εr,w μr,w ± χr,w ) (56c)

where βx,w ,m is the propagation constant of mode m in layer

w along the x direction; β
(±)
w are the two chiral propagation

constants; β
(±)
x,w are the corresponding x components; and uw,m

are the composite amplitudes transverse to the x direction. We
use uw,m (m = 1 − 4) to construct a matrix Uw as

Uw = (uw,1 ,uw,2 ,uw,3 ,uw,4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− iβ
(+)
x,m

β(+)

iβ
(+)
x,m

β(+)

iβ
(−)
x,m

β(−) − iβ
(−)
x,m

β(−)

1 1 1 1

− β
(+)
x,m

ηr,w β(+)

β
(+)
x,m

ηr,w β(+) − β
(−)
x,m

ηr,w β(−)

β
(−)
x,m

ηr,w β(−)

− i

ηr,w
− i

ηr,w

i

ηr,w

i

ηr,w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(57)

where ηr,w =
√

μr,w /εr,w is the relative impedance in layer w.
Dropping the exponential factor exp(iky y), we first expand

the transverse composite fields at the rightmost boundary of
layer 1 as

∑4
m=1 u1,m A1,m = U1A1 , where A1,m is the ex-

pansion coefficient of mode m and also the mth element of
vector A1 . We then convert the vector of expansion coefficients
A1 into that A2 of layer 2 by demanding the continuity of
the transverse composite amplitude through the boundary. By
propagating A2 through layer 2 in the +x direction, converting
it back to the expansion vector of layer 1 in the next period,
propagating it again to the rightmost boundary, and applying
the phase boundary condition with phase factor exp(ikxa), we
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obtain the following matrix equation:[
U1Q1(a1)U−1

1 U2Q2(a2)U−1
2

]
U1A1 = eikx aU1A1 (58)

where Qw (aw ) is the propagation matrix with matrix ele-
ments [Qw (aw )]mm ′ = δmm ′ exp(iβx,w ,m aw ) in layer w. To
have nontrivial solutions for the matrix equation in (58), we
demand the following determinant to vanish:

det
∣∣U1Q1(a1)U−1

1 U2Q2(a2)U−1
2 − eikx aI4

∣∣ = 0 (59)

where I4 is the 4-by-4 identity matrix. (59) is then numerically
solved to obtain the band diagrams in Fig. 2.
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