Disjoint cycles in hypercubes with prescribed vertices in each cycle ${ }^{\text {x }}$

Cheng-Kuan Lin ${ }^{\text {a }}$, Jimmy J.M. Tan ${ }^{\text {a }}$, Lih-Hsing Hsu ${ }^{\text {b }}$, Tzu-Liang Kung ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
${ }^{\mathrm{b}}$ Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan, ROC
${ }^{\text {c }}$ Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan, ROC

ARTICLE INFO

Article history:

Received 6 August 2012
Received in revised form 24 June 2013
Accepted 2 July 2013
Available online 2 August 2013

Keywords:

Spanning cycle
Hamiltonian cycle
Cyclable
Hypercube
Graph

Abstract

A graph G is spanning r-cyclable of order t if for any r nonempty mutually disjoint vertex subsets $A_{1}, A_{2}, \ldots, A_{r}$ of G with $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{r}\right| \leq t$, there exist r disjoint cycles $C_{1}, C_{2}, \ldots, C_{r}$ of G such that $C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ spans G, and C_{i} contains A_{i} for every i. In this paper, we prove that the n-dimensional hypercube Q_{n} is spanning 2-cyclable of order $n-1$ for $n \geq 3$. Moreover, Q_{n} is spanning k-cyclable of order k if $k \leq n-1$ for $n \geq 2$. The spanning r-cyclability of a graph G is the maximum integer t such that G is spanning r-cyclable of order k for $k=r, r+1, \ldots, t$ but is not spanning r-cyclable of order $t+1$. We also show that the spanning 2-cyclability of Q_{n} is $n-1$ for $n \geq 3$.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For those graph definitions and notations not defined here, we follow the standard terminology given in [12]. A pair of two sets $G=(V, E)$ is a graph if V is a finite set and E is a subset of $\{(a, b) \mid(a, b)$ is an unordered pair of elements of $V\}$. We say that $V=V(G)$ is the vertex set, and $E=E(G)$ is the edge set. Two vertices u and v are adjacent if $(u, v) \in E$. The neighborhood of vertex u in G, denoted by $\operatorname{Nbd}_{G}(u)$, is the set $\{v \in V \mid(u, v) \in E\}$. The degree of u in G, denoted by $\operatorname{deg}_{G}(u)$, is $\left|N b d_{G}(u)\right|$. A path is a sequence of adjacent vertices, written as $\left\langle v_{0}, v_{1}, \ldots, v_{m}\right\rangle$, in which all the vertices $v_{0}, v_{1}, \ldots, v_{m}$ are distinct except that possibly $v_{0}=v_{m}$.

A cycle of a graph G is a path with at least three vertices such that the first vertex is the same as the last one. A hamiltonian cycle is a spanning cycle in a graph. Until the 1970s, the interest in hamiltonian cycles had long been centered on their relationship to the 4 -color problem. Recently, some refined conditions for a graph to be hamiltonian were proposed by researchers $[8,17,18]$, and the study of hamiltonian cycles in general graphs has been fueled by the issue of computational complexity and practical applications. Furthermore, a number of variations were developed and research efforts have been dedicated to pancyclicity [4,9], super spanning connectivity [1,6,19,20], k-ordered hamiltonicity [17], and hamiltonian decomposition [2,21,22] among many other areas. In particular, hamiltonian cycles are a major requirement to design effective interconnection networks [12,14,25,26].

There are several directions of research based on the hamiltonian property. One direction involves the spanning property of cycles. For example, a 2 -factor of a graph G is a spanning 2-regular subgraph of G; that is, G has a 2-factor if it can be

[^0]a

b

Fig. 1. Illustration for Examples 1 and 2.
decomposed into several disjoint cycles. This notion can be applied to identify faulty units in a multiprocessor system. In particular, Fujita and Araki [7] proposed a three-round adaptive diagnosis algorithm by decomposing the hypercube into a fixed number of disjoint cycles such that the length of each cycle is not too small. The other direction addresses the cyclability of a graph G. Let S be a subset of $V(G)$. Then, S is cyclable in G if there exists a cycle C of G such that $S \subseteq V(C)$. Many results of cyclability are known $[3,5,11,13,23]$. In this paper, we study a new property which is a mixture of these two directions.

Now, we extend the concept behind hamiltonian graphs and consider two or more cycles spanning a whole graph. Let $A_{1}, A_{2}, \ldots, A_{r}$ be mutually disjoint nonempty vertex subsets of a graph G. Then G is cyclable with respect to $A_{1}, A_{2}, \ldots, A_{r}$ if there exist mutually disjoint cycles $C_{1}, C_{2}, \ldots, C_{r}$ of G such that C_{i} contains A_{i} for every i. Obviously, a graph is unlikely to be cyclable with respect to any r mutually disjoint vertex subsets if $r \geq 2$. For example, G cannot be cyclable with respect to $A_{1}=\{u, v\}$ and $A_{2}=V(G)-\{u, v\}$ for any two vertices u, v of G. To make this notion more reasonable, we impose one restriction on the order of $A_{1} \cup A_{2} \cdots \cup A_{r}$. To be precise, G is r-cyclable of order t if it is cyclable with respect to $A_{1}, A_{2}, \ldots, A_{r}$ for any r nonempty mutually disjoint subsets $A_{1}, A_{2}, \ldots, A_{r}$ of $V(G)$ such that $\left|A_{1} \cup A_{2} \cup \cdots A_{r}\right| \leq t$. In addition, if $C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ spans G, then G is spanning r-cyclable of order t. Here we have two parameters r and t. We can fix one of them and find the optimal value for the other. The (spanning) r-cyclability of G is t if G is (spanning) r-cyclable of order k for $k=r, r+1, \ldots, t$ but is not (spanning) r-cyclable of order $t+1$. On the other hand, the (spanning) cyclability of G of order t is r if G is (spanning) k-cyclable of order t for $k=1,2, \ldots, r$ but is not (spanning) ($r+1$)-cyclable of order t. According to the presented notion, the problem of finding hamiltonian cycles focuses on $r=1$. It is also noticed that not only is the set of disjoint spanning cycles of G a 2-factor, but also each cycle contains a designated vertex subset. Rather than 2-factors, the number of disjoint cycles is controlled. We give two examples to clarify the proposed notion.

Example 1. Fig. 1(a) depicts the Petersen graph. Since the Petersen graph is not hamiltonian, it is not spanning 1-cyclable of any order. However, it is 1 -cyclable of order 9 . To see that the Petersen graph is spanning 2 -cyclable of order 2 , we assume that $A_{1}=\{1\}$ and $A_{2}=\{i\}$ for $i \neq 1$. We set $C_{1}=\langle 1,2,3,4,5,1\rangle$ and $C_{2}=\langle 6,8,10,7,9,6\rangle$ if $i \in\{6,7,8,9,10\}$; we set $C_{1}=\langle 1,5,4,9,6,1\rangle$ and $C_{2}=\langle 2,3,8,10,7,2\rangle$ if $i \in\{2,3\}$; we set $C_{1}=\langle 1,2,3,8,6,1\rangle$ and $C_{2}=\langle 4,5,10,7,9,4\rangle$ if $i \in\{4,5\}$. Then C_{1} and C_{2} are two disjoint spanning cycles with $A_{1} \subset V\left(C_{1}\right)$ and $A_{2} \subset V\left(C_{2}\right)$, respectively.

Example 2. Let G be the graph shown in Fig. 1(b). Obviously, G is hamiltonian. Thus, it is spanning 1-cyclable of order 10. However, as an example, it is not 2-cyclable with respect to $A_{1}=\{i\}$ and $A_{2}=\{i+5\}$ for $i=0,1,2,3,4$. As a result, G is not spanning 2-cyclable of order 2.

In this paper, we limit ourself by considering the n-dimensional hypercube Q_{n} as the underlying graph and study its spanning 2-cyclability. We have the following results: (1) for $n \geq 3$, Q_{n} is spanning 2-cyclable of order $n-1$; (2) Q_{n} is spanning k-cyclable of order k if $k \leq n-1$ for $n \geq 2$.

2. Properties of hypercubes

Let $\mathbf{u}=u_{n} u_{n-1} \ldots u_{2} u_{1}$ be an n-bit binary string. The Hamming weight of \mathbf{u}, denoted by $w(\mathbf{u})$, is the number of indices $i, 1 \leq i \leq n$, such that $u_{i}=1$. Let $\mathbf{u}=u_{n} u_{n-1} \ldots u_{2} u_{1}$ and $\mathbf{v}=v_{n} v_{n-1} \ldots v_{2} v_{1}$ be two n-bit binary strings. The Hamming distance $h(\mathbf{u}, \mathbf{v})$ between \mathbf{u} and \mathbf{v} is the number of different bits in the corresponding strings. The n-dimensional hypercube, denoted by Q_{n} for $n \geq 1$, consists of all n-bit binary strings as its vertices, and two vertices \mathbf{u} and \mathbf{v} are adjacent if and only if $h(\mathbf{u}, \mathbf{v})=1$. Obviously, Q_{n} is a bipartite graph with bipartition $W=\left\{\mathbf{u} \in V\left(Q_{n}\right) \mid w(\mathbf{u})\right.$ is even $\}$ and $B=\left\{\mathbf{u} \in V\left(Q_{n}\right) \mid w(\mathbf{u})\right.$ is odd $\}$. For $i=0$, 1 , let Q_{n}^{i} denote the subgraph of Q_{n} induced by $\left\{\mathbf{u}=u_{n} u_{n-1} \ldots u_{2} u_{1} \mid u_{n}=i\right\}$. Obviously, Q_{n}^{i} is isomorphic to Q_{n-1} with $n \geq 2$. For any vertex $\mathbf{u}=u_{n} u_{n-1} \ldots u_{2} u_{1}$ of Q_{n}, we use $(\mathbf{u})_{j}$ to denote the bit u_{j}, where $1 \leq j \leq n$. Moreover, we use $(\mathbf{u})^{k}$ to denote the vertex $\mathbf{v}=v_{n} v_{n-1} \ldots v_{2} v_{1}$ with $u_{i}=v_{i}$ for $1 \leq i \neq k \leq n$ and $v_{k}=1-u_{k}$.

The hypercube Q_{n} is one of the most popular interconnection networks for parallel computer/communication systems [16]. In the following, we discuss some properties of the hypercube that will be used in this paper.

First, Theorem 1 states that Q_{n} is hamiltonian laceable and hyper-hamiltonian laceable.

Theorem 1 ([10,25]). Assume that n is any positive integer with $n \geq 2$. Then there exists a hamiltonian path of Q_{n} joining any two vertices from different partite sets. Moreover, there exists a hamiltonian path of $Q_{n}-\{\mathbf{x}\}$ joining \mathbf{y} to \mathbf{z} if \mathbf{x} is in one partite set whereas \mathbf{y} and \mathbf{z} are in the other partite set.

In particular, Lemmas 1 and 2 indicate that $Q_{n}-\{\mathbf{w}, \mathbf{b}\}$ remains hamiltonian laceable whenever \mathbf{w} and \mathbf{b} are vertices in different partite sets.

Lemma 1 ([24]). Let n be any positive integer with $n \geq 4$. Let W and B form the bipartition of Q_{n}. Assume that \mathbf{x} and \mathbf{w} are any two different vertices in W, whereas \mathbf{y} and \mathbf{b} are any two different vertices in B. Then there exists a hamiltonian path of $Q_{n}-\{\mathbf{w}, \mathbf{b}\}$ joining \mathbf{x} and \mathbf{y}.

Lemma 2 ([14]). Let n be any positive integer with $n \geq 4$. Assume that \mathbf{w} and \mathbf{b} are any two adjacent vertices of Q_{n}, and F is any edge subset of $Q_{n}-\{\mathbf{w}, \mathbf{b}\}$ with $|F| \leq n-3$. Then there exists a hamiltonian path of $\left(Q_{n}-\{\mathbf{w}, \mathbf{b}\}\right)-F$ joining any two vertices from different partite sets.

Theorem 2 generalizes the fault-tolerance of hamiltonian laceability for Q_{n}, and Theorem 3 gives two types of 2-disjointpath cover in Q_{n}.

Theorem 2 ([24]). Assume that $n \geq 3$. Let F_{v} be a union of f_{v} disjoint pairs of adjacent vertices in Q_{n}, and let F_{e} be a set consisting of f_{e} edges in Q_{n} with $f_{v}+f_{e} \leq n-3$. Then there exists a hamiltonian path of $Q_{n}-\left(F_{v} \cup F_{e}\right)$ joining any two vertices from different partite sets. Moreover, there exists a hamiltonian path of $Q_{n}-\left(F_{v} \cup F_{e} \cup\{\mathbf{x}\}\right)$ joining \mathbf{y} and \mathbf{z} if \mathbf{x} is in one partite set, and \mathbf{y}, \mathbf{z} are in the other partite set.

Theorem 3 ([15]). Let n be any positive integer with $n \geq 4$. Let W and B form the bipartition of Q_{n}. Assume that \mathbf{x} and \mathbf{w} are any two different vertices in W, \mathbf{y} and \mathbf{b} are any two different vertices in B. There are two disjoint paths P_{1} and P_{2} in Q_{n} such that (1) P_{1} is a path of length $2^{n-1}-1$ joining \mathbf{x} and \mathbf{y}, (2) P_{2} is a path of length $2^{n-1}-1$ joining \mathbf{w} and \mathbf{b}, and (3) $P_{1} \cup P_{2}$ spans Q_{n}. Moreover, there are two disjoint paths P_{3} and P_{4} in Q_{n} such that (1) P_{3} is a path joining \mathbf{x} and \mathbf{w}, (2) P_{4} is a path joining \mathbf{y} and \mathbf{b}, and (3) $P_{3} \cup P_{4}$ spans Q_{n}.

In the rest of this section, we apply the results introduced above to prove Lemmas 3 and 4, which specify 2-disjoint-path covers in Q_{n} that are able to contain the prescribed vertices. The two lemmas will be used in the proof of Lemma 5 , which is a key result presented in the next section for deriving the spanning 2-cyclability of Q_{n}.

Lemma 3. Let W and B form the bipartition of Q_{n} with $n \geq 4$. Suppose that \mathbf{x} and \mathbf{u} are two different vertices in W, whereas \mathbf{y} and \mathbf{v} are two different vertices in B. Let S be any nonempty subset of $V\left(Q_{n}\right)-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$ with $|S| \leq n-3$. Then there are two disjoint paths P_{1} and P_{2} such that (1) P_{1} joins \mathbf{x} to \mathbf{y}, (2) P_{2} joins \mathbf{u} to \mathbf{v}, (3) $S \subseteq P_{1}$, and (4) $P_{1} \cup P_{2}$ spans Q_{n}.

Proof. We prove this lemma by induction on n. We describe in Appendix A that this lemma holds for $n=4$. Since Q_{n} is vertex-transitive and edge-transitive, we assume, without loss of generality, that \mathbf{x} is in Q_{n}^{0}, and \mathbf{y} is in Q_{n}^{1}. For $i \in\{0,1\}$, we set $W_{i}=W \cap V\left(Q_{n}^{i}\right), B_{i}=B \cap V\left(Q_{n}^{i}\right)$, and $S_{i}=S \cap V\left(Q_{n}^{i}\right)$. We have the following cases.

Case 1: $\left|S_{0}\right| \geq 1$ and $\left|S_{1}\right| \geq 1$. Thus, $\left|S_{0}\right| \leq n-4$ and $\left|S_{1}\right| \leq n-4$.
Subcase 1.1: Both \mathbf{u} and \mathbf{v} are in Q_{n}^{i} for some $i \in\{0,1\}$. Without loss of generality, we assume that both \mathbf{u} and \mathbf{v} are in Q_{n}^{0}. Since $\left|B_{0}\right|=2^{n-2}>(n-3) \geq\left|S_{0} \cup\{\mathbf{v}\}\right|$ for $n \geq 5$, we can choose any vertex \mathbf{b} from $B_{0}-\left(S_{0} \cup\{\mathbf{v}\}\right)$. By induction, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins \mathbf{u} to \mathbf{v}, (3) $S_{0} \subseteq R_{1}$, and (4) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. By Theorem 1, there is a hamiltonian path H of Q_{n}^{1} joining $(\mathbf{b})^{n}$ to \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=R_{2}$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 2(a).

Subcase 1.2: \mathbf{u} is in Q_{n}^{0}, and \mathbf{v} is in Q_{n}^{1}. We set $T=\left\{\mathbf{p} \in V\left(Q_{n}^{0}\right) \mid(\mathbf{p})^{n} \in S_{1}\right\}$. Obviously, $\left|S_{0} \cup T\right| \leq\left|S_{0}\right|+|T|=\left|S_{0}\right|+\left|S_{1}\right|=$ $|S| \leq n-3$. Since $\left|B_{0}-\left(S_{0} \cup T\right)\right| \geq\left|B_{0}\right|-\left|S_{0} \cup T\right| \geq 2^{n-2}-(n-3) \geq 2$ for $n \geq 5$, we can choose two distinct vertices \mathbf{b}_{1} and \mathbf{b}_{2} in $B_{0}-\left(S_{0} \cup T\right)$. By induction, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}_{1}, (2) R_{2} joins \mathbf{u} to \mathbf{b}_{2}, (3) $S_{0} \subseteq R_{1}$, and (4) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. Moreover, there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins $\left(\mathbf{b}_{1}\right)^{n}$ to \mathbf{y}, (2) H_{2} joins $\left(\mathbf{b}_{2}\right)^{n}$ to \mathbf{v}, (3) $S_{1} \subseteq H_{1}$, and (4) $H_{1} \cup H_{2}$ spans $Q_{n}{ }^{1}$. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b}_{\mathbf{1}},\left(\mathbf{b}_{1}\right)^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2}, \mathbf{b}_{\mathbf{2}},\left(\mathbf{b}_{2}\right)^{n}, H_{2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 2(b).

Subcase 1.3: \mathbf{u} is in Q_{n}^{1}, and \mathbf{v} is in Q_{n}^{0}. We set $T=\left\{\mathbf{p} \in V\left(Q_{n}^{0}\right) \mid(\mathbf{p})^{n} \in S_{1}\right\}$. Similar to that shown in Subcase 1.2, we have $\left|B_{0}-\left(S_{0} \cup T \cup\left\{(\mathbf{u})^{n}\right\}\right)\right| \geq 1$ and $\left|W_{0}-\left(S_{0} \cup T \cup\left\{\mathbf{x},(\mathbf{y})^{n}\right\}\right)\right| g e$. Thus, there exists at least one vertex \mathbf{b} in $B_{0}-\left(S_{0} \cup T \cup\left\{(\mathbf{u})^{n}\right\}\right)$, and there exists at least one vertex \mathbf{w} in $W_{0}-\left(S_{0} \cup T \cup\left\{\mathbf{x},(\mathbf{y})^{n}\right\}\right)$. By induction, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins \mathbf{w} to \mathbf{v}, (3) $S_{0} \subseteq R_{1}$, and (4) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. Moreover, there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins (b) ${ }^{n}$ to \mathbf{y}, (2) H_{2} joins \mathbf{u} to (w) ${ }^{n}$, (3) $S_{1} \subseteq H_{1}$, and (4) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H_{2},(\mathbf{w})^{n}, \mathbf{w}, R_{2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 2(c).

Case 2: Either $\left|S_{0}\right|=0$ or $\left|S_{1}\right|=0$. Without loss of generality, we assume that $\left|S_{0}\right|=0$.
Subcase 2.1: Both \mathbf{u} and \mathbf{v} are in Q_{n}^{0}. Let \mathbf{b} be any vertex in $B_{0}-\{\mathbf{v}\}$. By Theorem 3, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins \mathbf{u} to \mathbf{v}, and (3) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. By Theorem 1 , there is a hamiltonian path

b

Fig. 2. Illustration for Case 1 of Lemma 3.

Fig. 3. Illustration for Case 2 of Lemma 3.
H of Q_{n}^{1} joining $(\mathbf{b})^{n}$ to \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=R_{2}$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 3(a).

Subcase 2.2: Both \mathbf{u} and \mathbf{v} are in $Q_{n}{ }^{1}$. Since $\left|W_{1}\right|>\operatorname{deg}_{Q_{n}^{1}}(\mathbf{v})=n-1>n-2 \geq|S \cup\{\mathbf{u}\}|$, there exists a vertex \mathbf{w} in $W_{1}-(S \cup\{\mathbf{u}\})$ such that $(\mathbf{v}, \mathbf{w}) \in E\left(Q_{n}\right)$. Since $\left|B_{1}\right|=2^{n-2}>n-3 \geq\left|S_{1} \cup\left\{(\mathbf{x})^{n}\right\}\right|$ for $n \geq 5$, there exists a vertex \mathbf{b} in $B_{1}-\left(S_{1} \cup\left\{(\mathbf{x})^{n}\right\}\right)$. By Theorem 2, there exists a hamiltonian path H of $Q_{n}^{1}-\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ joining \mathbf{b} to \mathbf{y}. By Theorem 3, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to $(\mathbf{b})^{n}$, (2) R_{2} joins $(\mathbf{u})^{n}$ to $(\mathbf{w})^{n}$, and (3) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. We set $P_{1}=\left\langle\mathbf{x}, R_{1},(\mathbf{b})^{n}, \mathbf{b}, H, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u},(\mathbf{u})^{n}, R_{2},(\mathbf{w})^{n}, \mathbf{w}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 3(b).

Subcase 2.3: \mathbf{u} is in Q_{n}^{0}, and \mathbf{v} is in $Q_{n}{ }^{1}$. Obviously, there exists a vertex $\mathbf{w}_{\mathbf{1}}$ in $W_{1}-S_{1}$ such that $\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right) \in E\left(Q_{n}^{1}\right)$. Let $\mathbf{w}_{\mathbf{2}}$ be a vertex in $W_{1}-\left\{\mathbf{w}_{\mathbf{1}}\right\}$. By Theorem 2, there exists a hamiltonian path H of $Q_{n}^{1}-\left\{\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right\}$ joining $\mathbf{w}_{\mathbf{2}}$ to \mathbf{y}. By Theorem 3, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to $\left(\mathbf{w}_{2}\right)^{n}$, (2) R_{2} joins \mathbf{u} to $\left(\mathbf{w}_{1}\right)^{n}$, and (3) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. We set $P_{1}=\left\langle\mathbf{x}, R_{1},\left(\mathbf{w}_{\mathbf{2}}\right)^{n}, \mathbf{w}_{\mathbf{2}}, H, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2},\left(\mathbf{w}_{1}\right)^{n}, \mathbf{w}_{\mathbf{1}}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 3(c).

Subcase 2.4: \mathbf{u} is in Q_{n}^{1}, and \mathbf{v} is in Q_{n}^{0}.
Suppose that $(\mathbf{u}, \mathbf{v}) \in E\left(Q_{n}\right)$. Let \mathbf{w} be any vertex in W_{0}. By Theorem 1 , there exists a hamiltonian path R_{1} of $Q_{n}^{0}-\{\mathbf{v}\}$ joining \mathbf{x} to \mathbf{w}, and there exists a hamiltonian path R_{2} of $Q_{n}{ }^{1}-\{\mathbf{u}\}$ joining $(\mathbf{w})^{n}$ to \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{w},(\mathbf{w})^{n}, R_{2}, \mathbf{y}\right\rangle$ and $P_{2}=\langle\mathbf{u}, \mathbf{v}\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 3(d).

Suppose that $(\mathbf{u}, \mathbf{v}) \notin E\left(Q_{n}\right)$. Let \mathbf{w} be any vertex in $W_{0}-\left\{\mathbf{x},(\mathbf{y})^{n}\right\}$. By Theorem 3, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{w}, (2) R_{2} joins $(\mathbf{u})^{n}$ to \mathbf{v}, and (3) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. By Theorem 1, there exists a hamiltonian path H of $Q_{n}^{1}-\{\mathbf{u}\}$ joining $(\mathbf{w})^{n}$ to \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{w},(\mathbf{w})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u},(\mathbf{u})^{n}, R_{2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 3(e).

Lemma 4. Let W and B form the bipartition of Q_{n} with $n \geq 5$. Let \mathbf{p}, \mathbf{x}, and \mathbf{y} be three different vertices in W, and let \mathbf{q}, \mathbf{u}, and \mathbf{v} be three different vertices in B such that $\{(\mathbf{p}, \mathbf{q}),(\mathbf{x}, \mathbf{u}),(\mathbf{x}, \mathbf{v})\} \subset E\left(Q_{n}\right)$. Then there exist two disjoint paths P_{1} and P_{2} in $Q_{n}-\{\mathbf{p}, \mathbf{q}\}$ such that (1) P_{1} joins \mathbf{x} to \mathbf{y}, (2) P_{2} joins \mathbf{u} to \mathbf{v}, and (3) $P_{1} \cup P_{2}$ spans $Q_{n}-\{\mathbf{p}, \mathbf{q}\}$.
Proof. Since $n \geq 5$, there exists an integer $1 \leq k \leq n$ such that $\mathbf{q} \neq(\mathbf{p})^{k}, \mathbf{u} \neq(\mathbf{x})^{k}$, and $\mathbf{v} \neq(\mathbf{x})^{k}$. By the symmetric property of Q_{n}, we can assume $k=n$. Without loss of generality, we consider that both \mathbf{p} and \mathbf{q} are in Q_{n}^{0}. For $i \in\{0,1\}$, we set $W_{i}=W \cap V\left(Q_{n}^{i}\right)$ and $B_{i}=B \cap V\left(Q_{n}^{i}\right)$. Note that $\{\mathbf{x}, \mathbf{u}, \mathbf{v}\} \subset V\left(Q_{n}^{i}\right)$ for some $i \in\{0,1\}$. We have the following cases.

Case 1: $\{\mathbf{x}, \mathbf{u}, \mathbf{v}\} \subset V\left(Q_{n}^{0}\right)$ and $\mathbf{y} \in V\left(Q_{n}^{1}\right)$. By Theorem 2, there exists a hamiltonian path R of $Q_{n}^{0}-\{\mathbf{p}, \mathbf{q}, \mathbf{x}\}$ joining \mathbf{u} and \mathbf{v}. By Theorem 1, there exists a hamiltonian path H of Q_{n}^{1} joining $(\mathbf{x})^{n}$ and \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x},(\mathbf{x})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=R$. Obviously, P_{1} and P_{2} form the required paths. See Fig. 4(a).

Case 2: $\mathbf{y} \in V\left(Q_{n}^{0}\right)$ and $\{\mathbf{x}, \mathbf{u}, \mathbf{v}\} \subset V\left(Q_{n}^{1}\right)$. Since $\left|B_{0}\right|=2^{n-2}>2$, there exists a vertex \mathbf{b} in $B_{0}-\left\{\mathbf{q},(\mathbf{x})^{n}\right\}$. By Theorem 2, there exists a hamiltonian path R of $Q_{n}^{0}-\{\mathbf{p}, \mathbf{q}\}$ joining \mathbf{b} and \mathbf{y}. By Theorem 3, there exist two disjoint paths H_{1} and H_{2} in

Fig. 4. Illustration for Lemma 4.
Q_{n}^{1} such that (1) H_{1} joins \mathbf{x} and (b) ${ }^{n}$, (2) H_{2} joins \mathbf{u} to \mathbf{v}, and (3) $H_{1} \cup H_{2}$ spans $Q_{n}{ }^{1}$. We set $P_{1}=\left\langle\mathbf{x}, H_{1},(\mathbf{b})^{n}, \mathbf{b}, R, \mathbf{y}\right\rangle$ and $P_{2}=H_{2}$. Obviously, P_{1} and P_{2} form the required paths. See Fig. 4(b).

Case 3: $\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\} \subset V\left(Q_{n}^{0}\right)$. By Theorem 2, there exists a hamiltonian path R of $Q_{n}^{0}-\{\mathbf{p}, \mathbf{q}, \mathbf{u}\}$ joining \mathbf{x} and \mathbf{y}. Without loss of generality, we write $R=\left\langle\mathbf{x}, R_{1}, \mathbf{w}, \mathbf{v}, \mathbf{z}, R_{2}, \mathbf{y}\right\rangle$. By Theorem 1, there exist two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins $(\mathbf{w})^{n}$ and $(\mathbf{z})^{n}$, (2) H_{2} joins $(\mathbf{u})^{n}$ to $(\mathbf{v})^{n}$, and (3) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{w},(\mathbf{w})^{n}, H_{1},(\mathbf{z})^{n}, \mathbf{z}, R_{2}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u},(\mathbf{u})^{n}, H_{2},(\mathbf{v})^{n}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the required paths. See Fig. 4(c).

Case 4: $\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\} \subset V\left(Q_{n}^{1}\right)$. Obviously, either $\mathbf{u} \neq(\mathbf{p})^{n}$ or $\mathbf{v} \neq(\mathbf{p})^{n}$. Without loss of generality, we assume that $\mathbf{u} \neq(\mathbf{p})^{n}$. Since $\operatorname{deg}_{Q_{n}^{1}}(\mathbf{v})>3$, there exists a vertex \mathbf{z} in $W_{1}-\left\{\mathbf{x}, \mathbf{y},(\mathbf{q})^{n}\right\}$ such that $(\mathbf{z}, \mathbf{v}) \in E\left(Q_{n}\right)$. By Theorem 2, there exists a hamiltonian path H of $Q_{n}^{1}-\{\mathbf{u}, \mathbf{v}, \mathbf{z}\}$ joining \mathbf{x} and \mathbf{y}, and there exists a hamiltonian R of $Q_{n}^{0}-\{\mathbf{p}, \mathbf{q}\}$ joining $(\mathbf{u})^{n}$ and $(\mathbf{z})^{n}$. We set $P_{1}=H$ and $P_{2}=\left\langle\mathbf{u},(\mathbf{u})^{n}, R,(\mathbf{z})^{n}, \mathbf{z}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the required paths. See Fig. 4(d).

3. Two disjoint cycles span hypercubes

A bipartite graph G, with bipartition W and B, is called 2-disjoint-path-coverable of order t if for any $\{x, u\} \subset W$, $\{y, v\} \subset B$, and any two disjoint subsets A_{1}, A_{2} of $V(G)-\{x, y, u, v\}$ with $\left|A_{1} \cup A_{2}\right| \leq t$, there exists two disjoint paths P_{1} and P_{2} of G such that (1) P_{1} joins x and y, (2) P_{2} joins u and v, (3) $A_{1} \subseteq P_{1}$, (4) $A_{2} \subseteq P_{2}$, and (5) $P_{1} \cup P_{2}$ spans G. The following lemma is the key result to derive a tight lower bound of spanning 2-cyclability of Q_{n}. Our proof idea is based on constructing two disjoint paths that can span Q_{n} and cover any two disjoint vertex subsets with the sum of orders not exceeding $n-3$. The proof will be divided into various cases, each of which may consist of a number of subcases. To stress the main contribution of this paper, we thus defer those tedious details to Appendix B for the sake of clarity.

Lemma 5. Suppose that $n \geq 3$. Then, Q_{n} is 2-disjoint-path-coverable of order $n-3$.
The following theorem holds directly from Lemma 5.
Theorem 4. Assume that $n \geq 4$. Let A_{1} and A_{2} be any two disjoint vertex subsets of Q_{n} with $\left|A_{1} \cup A_{2}\right| \leq n-1$. Then there exist two disjoint cycles C_{1} and C_{2} of Q_{n} such that (1) $A_{1} \subseteq C_{1}$ (2) $A_{2} \subseteq C_{2}$, and (3) $C_{1} \cup C_{2}$ spans Q_{n}.
Proof. Without loss of generality, we consider $\left|A_{1} \cup A_{2}\right|=n-1$. There are two cases as follows.
Case 1: Both A_{1} and A_{2} are nonempty. Thus, $\left|A_{1}\right| \leq n-2$ and $\left|A_{2}\right| \leq n-2$. Since $\left|A_{1}\right|+\left|A_{2}\right|=n-1 \geq 3$, we may assume, without loss of generality, that $\left|A_{1}\right| \geq 2$. Let \mathbf{u} be a vertex in A_{2}. Since $\operatorname{deg}_{Q_{n}}(\mathbf{u})=n>n-2 \geq\left|A_{1}\right|$, there exists a vertex \mathbf{v} in $N b d_{Q_{n}}(\mathbf{u})-A_{1}$. (Note that it is possible that \mathbf{v} is in A_{2}.) Let \mathbf{x} and \mathbf{x}^{\prime} be any two distinct vertices in A_{1}. Since $\left|\left(N b d_{Q_{n}}(\mathbf{x}) \cup N b d_{Q_{n}}\left(\mathbf{x}^{\prime}\right)\right)-\left\{\mathbf{x}, \mathbf{x}^{\prime}\right\}\right| \geq 2 n-2>n \geq\left|A_{1} \cup A_{2} \cup\{\mathbf{v}\}\right|$ for $n \geq 4$, there exists a vertex \mathbf{y} in $\left(N b d_{Q_{n}}(\mathbf{x}) \cup N b d_{Q_{n}}\left(\mathbf{x}^{\prime}\right)\right)-\left(A_{1} \cup A_{2} \cup\{\mathbf{v}\}\right)$. Without loss of generality, we assume that $\mathbf{y} \in N b d_{Q_{n}}(\mathbf{x})$. Let $A_{1}^{\prime}=A_{1}-\{\mathbf{x}\}$ and $A_{2}^{\prime}=A_{2}-\{\mathbf{u}, \mathbf{v}\}$. Obviously, $\left|A_{1}^{\prime} \cup A_{2}^{\prime}\right| \leq n-3$. By Lemma 5, there exist two disjoint paths P_{1} and P_{2} in Q_{n} such that (1) P_{1} joins \mathbf{x} and \mathbf{y}, (2) P_{2} joins \mathbf{u} and \mathbf{v}, (3) $A_{1} \subseteq V\left(P_{1}\right)$, (4) $A_{2} \subseteq V\left(P_{2}\right)$, and (5) $P_{1} \cup P_{2}$ spans Q_{n}. We set $C_{1}=\left\langle\mathbf{x}, P_{1}, \mathbf{y}, \mathbf{x}\right\rangle$ and $C_{2}=\left\langle\mathbf{u}, P_{2}, \mathbf{v}, \mathbf{u}\right\rangle$. Obviously, C_{1} and C_{2} form the required cycles in Q_{n}.

Case 2: A_{1} or A_{2} is empty. We can assume that A_{1} is empty. First, we consider $n \geq 5$. Obviously, there exists a cycle C_{1} of length 4 in Q_{n} such that $V\left(C_{1}\right) \cap A_{2}=\emptyset$. By Theorem 2, there exists a hamiltonian cycle C_{2} of $Q_{n}-V\left(C_{1}\right)$. Then, we have $A_{2} \subseteq C_{2}$.

On the other hand, we consider $n=4$. Since Q_{4} is both vertex-symmetric and edge-symmetric, we assume that $\left|A_{2} \cap V\left(Q_{4}^{i}\right)\right|=1$ and $\left|A_{2} \cap V\left(Q_{4}^{1-i}\right)\right|=2$ with $i \in\{0,1\}$. For convenience, let $A_{2} \cap V\left(Q_{4}^{i}\right)=\{\mathbf{s}\}$. Obviously, there exists a cycle C_{1} of length 4 in Q_{4}^{i} not containing \mathbf{s}. Moreover, $Q_{4}^{i}-V\left(C_{1}\right)$ is a cycle of length 4 , denoted by $\langle\mathbf{s}, \mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{s}\rangle$. Then, we can find a hamiltonian path P of Q_{4}^{1-i} joining $(\mathbf{s})^{4}$ and $(\mathbf{t})^{4}$. As a result, $C_{2}=\left\langle\mathbf{s},(\mathbf{s})^{4}, P,(\mathbf{t})^{4}, \mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{s}\right\rangle$ and C_{1} form the requested cycles.

According to Theorem $4, Q_{n}$ is spanning 2-cyclable of order $n-1$ for $n \geq 4$. For Q_{3}, let $A_{1}=\{\mathbf{x}\}$ and $A_{2}=\{\mathbf{u}\}$, where \mathbf{x} and \mathbf{u} are different vertices of Q_{3}. Since Q_{3} is vertex-symmetric and edge-symmetric, we assume that \mathbf{x} is in Q_{3}^{0}, and \mathbf{u} is in $Q_{3}{ }^{1}$. Clearly, both Q_{3}^{0} and Q_{3}^{1} are isomorphic to Q_{2}, which is a cycle of length 4. Thus, Q_{3} is spanning 2-cyclable of order 2. We summarize the first main result of this paper as follows.

Corollary 1. The n-cube Q_{n} is spanning 2-cyclable of order $n-1$ for $n \geq 3$.
To study the generalized spanning k-cyclability of Q_{n} for $k \geq 3$, we argue by induction that Q_{n} is spanning k-cyclable of order k if $k \leq n-1$. Trivially, Q_{2} is spanning 1-cyclable of order 1 . As the inductive hypothesis, we assume that Q_{n-1} is spanning r-cyclable of order r for $r \leq n-2$ with $n \geq 3$. Let $A=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathbf{k}}\right\}$ consist of any k vertices of Q_{n} with $k \leq n-1$. By the symmetric property of Q_{n}, we may assume that \mathbf{u}_{1} is in Q_{n}^{0}, and $\mathbf{u}_{\mathbf{k}}$ is in Q_{n}^{1}. We set $A_{i}=A \cap V\left(Q_{n}^{i}\right)$ for $i \in\{0,1\}$. Then, A is partitioned into two nonempty subsets A_{0} and A_{1}. Let $t=\left|A_{0}\right|$. Without loss of generality, we may assume that $\mathbf{u}_{\mathbf{i}} \in A_{0}$ if $1 \leq i \leq t$, and $\mathbf{u}_{\mathbf{i}} \in A_{1}$ if $t<i \leq k$. Note that Q_{n}^{i} is isomorphic to Q_{n-1} for $i=0,1$. By induction, there exist t disjoint cycles $C_{1}, C_{2}, \ldots, C_{t}$ of Q_{n}^{0} such that $\mathbf{u}_{\mathbf{i}}$ is in C_{i} for $1 \leq i \leq t$ and $C_{1} \cup C_{2} \cup \cdots \cup C_{t}$ spans Q_{n}^{0}, and there exist $k-t$ disjoint cycles $C_{t+1}, C_{t+2}, \ldots, C_{k}$ of Q_{n}^{1} such that $\mathbf{u}_{\mathbf{i}}$ is in C_{i} for $t+1 \leq i \leq k$ and $C_{t+1} \cup C_{t+2} \cup \ldots \cup C_{k}$ spans Q_{n}^{1}. As a result, $C_{1}, C_{2}, \ldots, C_{k}$ form k disjoint cycles of Q_{n} such that $\mathbf{u}_{\mathbf{i}}$ is in C_{i} for $1 \leq i \leq k$ and $C_{1} \cup C_{2} \cup \ldots \cup C_{k}$ spans Q_{n}. For clarity, this result is summarized below.

Theorem 5. The n-cube Q_{n} is spanning k-cyclable of order k if $k \leq n-1$ for $n \geq 2$.
We give an example to indicate that Q_{n} is not spanning n-cyclable of order n. Let \mathbf{u} be any vertex of Q_{n}, and let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ be the set of vertices adjacent to \mathbf{u}. We set $A=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n-1}\right\} \cup\{\mathbf{u}\}$. Obviously, $|A|=n$. Since $\operatorname{deg}_{Q_{n}-\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n-1}\right\}}(\mathbf{u})=1$, there is no cycle of $G-\left\{\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{n-\mathbf{1}}\right\}$ containing \mathbf{u}. Thus, we cannot find n cycles $C_{1}, C_{2}, \ldots, C_{n}$ of Q_{n} such that $\mathbf{u}_{\mathbf{i}}$ is in C_{i} for $1 \leq i \leq n-1$, and \mathbf{u} is in C_{n}.

4. Concluding remarks

In this paper we proved that Q_{n} is spanning 2-cyclable of order $n-1$ for $n \geq 3$. Now we show an example to indicate that Q_{n} is not 2-cyclable of order n. Let \mathbf{u} and \mathbf{v} be any two adjacent vertices of Q_{n}. We set $A_{1}=N b d_{Q_{n}}(\mathbf{u})-\{\mathbf{v}\}$ and $A_{2}=\{\mathbf{u}\}$. Obviously, $\left|A_{1}\right|+\left|A_{2}\right|=n$. Since $\operatorname{deg}_{Q_{n}-A_{1}}(\mathbf{u})=1$, there is no cycle of $G-A_{1}$ containing A_{2}. Thus, the spanning 2-cyclability of Q_{n} is $n-1$ for $n \geq 3$, and this result is optimal. Furthermore, we proved that Q_{n} is spanning k-cyclable of order k if $k \leq n-1$ for $n \geq 2$.

For possible future directions with our result, we first conjecture that Q_{n} is spanning k-cyclable of order $n-1$ for every $k \leq n-1$ and $n \geq 3$. As we allowed A_{1} or A_{2} to be empty set in the statement of Theorem 4 , we indeed have a stronger conjecture: assume that $n \geq 4$. Let $A_{1}, A_{2}, \ldots, A_{k}$ be k disjoint vertex subsets of Q_{n} with $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right| \leq n-1$ and $k \leq n-1$, there exist k disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$ of Q_{n} such that (1) A_{i} is in C_{i} for $1 \leq i \leq k$, and (2) $C_{1} \cup C_{2} \cup \ldots \cup C_{k}$ spans Q_{n}. Notice that the statement is not always true for $n=3$. For counterexample, let $A_{1}=\{000,111\}$ and $A_{2}=\emptyset$. Then the length of any cycle containing A_{1} is at least 6 . Thus, we cannot find two disjoint cycles C_{1} and C_{2} of Q_{3} such that (1) A_{i} is in C_{i} for $1 \leq i \leq 2$, and (2) $C_{1} \cup C_{2}$ spans Q_{3}.

Acknowledgments

We would like to express the most immense gratitude to the anonymous reviewers and the editor for their comments and suggestions. We thank also the Editor-in-Chief for his kindly effort in handling this submission.

Appendix A. Q_{4} is 2-disjoint-path-coverable of order one

We prepare the following lemma in advance.
Lemma 6. Let \mathbf{p} and \mathbf{q} be any two adjacent vertices of Q_{3}. Let \mathbf{u} and \mathbf{v} be any two nonadjacent vertices of $Q_{3}-\{\mathbf{p}, \mathbf{q}\}$ such that they are in different partite sets. Then there exists a hamiltonian path of $Q_{3}-\{\mathbf{p}, \mathbf{q}\}$ joining \mathbf{u} and \mathbf{v}.

Proof. Since Q_{3} is vertex-symmetric and edge-symmetric, we assume that $\mathbf{p}=000$ and $\mathbf{q}=001$. We have $\{\mathbf{u}, \mathbf{v}\} \in$ $\{\{011,100\},\{101,010\}\}$. Clearly, both $\langle 011,010,110,111,101,100\rangle$ and $\langle 101,100,110,111,011,010\rangle$ are hamiltonian paths of $Q_{3}-\{\mathbf{p}, \mathbf{q}\}$.

Recall that W and B form the bipartition of Q_{4}. Let $A_{1}=\{\mathbf{z}\}$ and $A_{2}=\emptyset$, where \mathbf{z} is any vertex of $Q_{4}-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$. Since Q_{4} is vertex-symmetric and edge-symmetric, we assume that $\mathbf{u}=0000$ and $\mathbf{v} \in\{0001,0111\}$.

Case 1: $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \subset V\left(Q_{4}^{1}\right)$. By Theorem 1, there exists a hamiltonian path P_{1} of Q_{4}^{1} joining \mathbf{x} and \mathbf{y}, and there exists a hamiltonian path P_{2} of Q_{4}^{0} joining \mathbf{u} and \mathbf{v}.

Table 1
The vertex \mathbf{b} and paths R_{1} and R_{2}.

	R_{1}	R_{2}
$\mathbf{x}=0011, \mathbf{z}=0101$	$\langle 0011,0001,0101,0100=\mathbf{b}\rangle$	$\langle 0000,0010,0110,0111\rangle$
$\mathbf{x}=0011, \mathbf{z}=0110$	$\langle 0011,0010,0110,0100=\mathbf{b}\rangle$	$\langle 0000,0001,0101,0111\rangle$
$\mathbf{x}=0101, \mathbf{z}=0011$	$\langle 0101,0001,0011,0010=\mathbf{b}\rangle$	$\langle 0000,0100,0110,0111\rangle$
$\mathbf{x}=0101, \mathbf{z}=0110$	$\langle 0101,0100,0110,0010=\mathbf{b}\rangle$	$\langle 0000,0001,0011,0111\rangle$
$\mathbf{x}=0110, \mathbf{z}=0011$	$\langle 0110,0010,0011,0001=\mathbf{b}\rangle$	$\langle 0000,0100,0101,0111\rangle$
$\mathbf{x}=0110, \mathbf{z}=0101$	$\langle 0110,0100,0101,0001=\mathbf{b}\rangle$	$\langle 0000,0010,0011,0111\rangle$

Table 2
The path P_{1}.

\mathbf{x}	\mathbf{y}	P_{1}
0011	0001	$\langle 0011,0010,0110,0100,0101,0001\rangle$
0011	0010	$\langle 0011,0001,0101,0100,0110,0010\rangle$
0101	0001	$\langle 0101,0100,0110,0010,0011,0001\rangle$
0101	0100	$\langle 0101,0001,0011,0010,0110,0100\rangle$
0110	0010	$\langle 0110,0100,0101,0001,0011,0010\rangle$
0110	0100	$\langle 0110,0010,0011,0001,0101,0100\rangle$

Case 2: Either $\{\mathbf{x}\} \subset V\left(Q_{4}^{0}\right),\{\mathbf{y}, \mathbf{z}\} \subset V\left(Q_{4}^{1}\right)$ or $\{\mathbf{y}\} \subset V\left(Q_{4}^{0}\right),\{\mathbf{x}, \mathbf{z}\} \subset V\left(Q_{4}^{1}\right)$. Without loss of generality, we only consider that $\{\mathbf{x}\} \subset V\left(Q_{4}^{0}\right)$ and $\{\mathbf{y}, \mathbf{z}\} \subset V\left(Q_{4}^{1}\right)$. Let $\mathbf{b} \in B \cap V\left(Q_{4}^{0}\right)-\{\mathbf{v}\}$. By Theorem 3, there exist two disjoint paths R_{1} and R_{2} of Q_{4}^{0} such that (1) R_{1} joins \mathbf{x} and \mathbf{b}, (2) R_{2} joins \mathbf{u} and \mathbf{v}, and (3) $R_{1} \cup R_{2}$ spans Q_{4}^{0}. By Theorem 1, there exists a hamiltonian path H of Q_{4}^{1} joining $(\mathbf{b})^{4}$ and \mathbf{y}. Then, we set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{4}, H, \mathbf{y}\right\rangle$ and $P_{2}=R_{2}$.

Case 3: $\{\mathbf{z}\} \subset V\left(Q_{4}^{0}\right),\{\mathbf{x}, \mathbf{y}\} \subset V\left(Q_{4}^{1}\right)$. Since $\operatorname{deg}_{Q_{4}^{0}}(\mathbf{z})=3>2$, we can choose a vertex \mathbf{s} of $Q_{4}^{0}-\left\{(\mathbf{x})^{4},(\mathbf{y})^{4}, \mathbf{u}, \mathbf{v}\right\}$ such that $(\mathbf{s}, \mathbf{z}) \in E\left(Q_{4}\right)$. Note that both $(\mathbf{x})^{4}$ and \mathbf{v} are in B, and both $(\mathbf{y})^{4}$ and \mathbf{u} are in W. Let $\{\mathbf{w}, \mathbf{b}\}=\{\mathbf{s}, \mathbf{z}\}$ such that $\mathbf{w} \in W$ and $\mathbf{b} \in B$. By Theorem 3, there exist two disjoint paths R_{1} and R_{2} of Q_{4}^{1} such that (1) R_{1} joins \mathbf{x} and $(\mathbf{w})^{4}$, (2) R_{2} joins (b) ${ }^{4}$ and \mathbf{y}, and (3) $R_{1} \cup R_{2}$ spans $Q_{4}{ }^{1}$. Then, P_{1} is set to be $\left\langle\mathbf{x}, R_{1},(\mathbf{w})^{4}, \mathbf{w}, \mathbf{b},(\mathbf{b})^{4}, R_{2}, \mathbf{y}\right\rangle$. By Lemma 6 , there exists a hamiltonian path P_{2} of $Q_{4}^{0}-\{\mathbf{w}, \mathbf{b}\}$ joining \mathbf{u} and \mathbf{v}.

Case 4: $\{\mathbf{x}, \mathbf{y}\} \subset V\left(Q_{4}^{0}\right),\{\mathbf{z}\} \subset V\left(Q_{4}^{1}\right)$. By Theorem 3, there exist two disjoint paths R_{1} and R_{2} of Q_{4}^{0} such that (1) R_{1} joins \mathbf{x} and \mathbf{y}, (2) R_{2} joins \mathbf{u} and \mathbf{v}, and (3) $R_{1} \cup R_{2}$ spans Q_{4}^{0}. We write R_{1} as $\left\langle\mathbf{x}, H_{1}, \mathbf{w}, \mathbf{y}\right\rangle$. By Theorem 1, there exists a hamiltonian path H_{2} of Q_{4}^{1} joins $(\mathbf{w})^{4}$ and $(\mathbf{y})^{4}$. We set $P_{1}=\left\langle\mathbf{x}, H_{1}, \mathbf{w},(\mathbf{w})^{4}, H_{2},(\mathbf{y})^{4}, \mathbf{y}\right\rangle$ and $P_{2}=R_{2}$.

Case 5: $\{\mathbf{x}, \mathbf{z}\} \subset V\left(Q_{4}^{0}\right),\{\mathbf{y}\} \subset V\left(Q_{4}^{1}\right)$.
Subcase 5.1: Suppose that $\mathbf{z} \in B$. By Theorem 3, there exist two disjoint paths R_{1} and R_{2} of Q_{4}^{0} such that (1) R_{1} joins \mathbf{x} and \mathbf{z}, (2) R_{2} joins \mathbf{u} and \mathbf{v}, and (3) $R_{1} \cup R_{2}$ spans Q_{4}^{0}. By Theorem 1, there exists a hamiltonian path H of Q_{4}^{1} joining $(\mathbf{z})^{4}$ and \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{z},(\mathbf{z})^{4}, H, \mathbf{y}\right\rangle$ and $P_{2}=R_{2}$.

Subcase 5.2: Suppose that $\mathbf{z} \in W$ and $\mathbf{v}=0001$. By Theorem 1, there exists a hamiltonian path R of $Q_{4}^{0}-\{\mathbf{v}\}$ joining \mathbf{x} and \mathbf{u}. We write R as $\left\langle\mathbf{x}, R^{\prime}, \mathbf{b}, \mathbf{u}\right\rangle$. Similarly, there exists a hamiltonian path H of Q_{4}^{1} joining (b) ${ }^{4}$ and \mathbf{y}. Then we set $P_{1}=\left\langle\mathbf{x}, R^{\prime}, \mathbf{b},(\mathbf{b})^{4}, H, \mathbf{y}\right\rangle$ and $P_{2}=\langle\mathbf{u}, \mathbf{v}\rangle$.

Subcase 5.3: Suppose that $\mathbf{z} \in W$ and $\mathbf{v}=0111$. We have $\{\mathbf{x}, \mathbf{z}\} \subset\{0011,0101,0110\}$. We set a vertex \mathbf{b} and paths R_{1} and R_{2} according to Table 1. By Theorem 1, there exists a hamiltonian path H of Q_{4}^{1} joining (b) and \mathbf{y}. Then, $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{4}, H, \mathbf{y}\right\rangle$ and $P_{2}=R_{2}$ are the requested paths.

Case 6: $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\} \subset V\left(Q_{4}^{0}\right)$.
Subcase 6.1: $\mathbf{v}=0001$. By Theorem 1, there exists a hamiltonian path R of $Q_{4}^{0}-\{\mathbf{v}\}$. We write R as $\left\langle\mathbf{x}, R_{1}, \mathbf{w}, \mathbf{y}, R_{2}, \mathbf{b}, \mathbf{u}\right\rangle$. Similarly, there exists a hamiltonian path H of Q_{4}^{1} joining $(\mathbf{w})^{4}$ and $(\mathbf{b})^{4}$. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{w},(\mathbf{w})^{4}, H,(\mathbf{b})^{4}, \mathbf{b}, \operatorname{rev}\left(R_{2}\right), \mathbf{y}\right\rangle$ and $P_{2}=\langle\mathbf{u}, \mathbf{v}\rangle$, where $\operatorname{rev}\left(R_{2}\right)$ is the reverse path of R_{2}.

Subcase 6.2: $\mathbf{v}=0111$.
(i) $(\mathbf{x}, \mathbf{y}) \notin\{(0011,0100),(0101,0010),(0110,0101)\}$. We set P_{1} according to Table 2 . Obviously, P_{1} is a hamiltonian path of $Q_{4}^{0}-\{\mathbf{u}, \mathbf{v}\}$. By Theorem 1, there exists a hamiltonian path H of Q_{4}^{1} joining $(\mathbf{u})^{4}$ and $(\mathbf{v})^{4}$. Then, we set P_{2} as $\left\langle\mathbf{u},(\mathbf{u})^{4}, H,(\mathbf{v})^{4}, \mathbf{v}\right\rangle$.
(ii) $(\mathbf{x}, \mathbf{y}) \in\{(0011,0100),(0101,0010),(0110,0101)\}$. We set R_{1} and R_{2} according to Table 3. Clearly, $R_{1} \cup R_{2}$ spans Q_{4}^{0}, and we can write R_{2} as $\left\langle\mathbf{u}, R_{2}^{\prime}, \mathbf{w}, \mathbf{v}\right\rangle$. By Theorem 1, there exists a hamiltonian path H of Q_{4}^{1} joins $(\mathbf{w})^{4}$ and (v) ${ }^{4}$. Then we set $P_{1}=R_{1}$ and $P_{2}=\left\langle\mathbf{u}, R_{2}^{\prime}, \mathbf{w},(\mathbf{w})^{4}, H,(\mathbf{v})^{4}, \mathbf{v}\right\rangle$.

Appendix B. Proof of Lemma 5

To prove that Q_{n} is 2-disjoint-path-coverable of order $n-3$, we prepare four propositions as follows. In the rest of this paper, we continue using W and B to denote the bipartition of Q_{n}. For convenience, we also call W and B partite sets of white and black vertices, respectively.

Table 3
The paths R_{1} and R_{2}.

	R_{1}	R_{2}
$\mathbf{x}=0011, \mathbf{y}=0100, \mathbf{z} \in\{0001,0101\}$	$\langle 0011,0001,0101,0100\rangle$	$\langle 0000,0010,0110,0111\rangle$
$\mathbf{x}=0011, \mathbf{y}=0100, \mathbf{z} \in\{0010,0110\}$	$\langle 0011,0010,0110,0100\rangle$	$\langle 0000,0001,0101,0111\rangle$
$\mathbf{x}=0101, \mathbf{y}=0010, \mathbf{z} \in\{0001,0011\}$	$\langle 0101,0001,0011,0010\rangle$	$\langle 0000,0100,0110,0111\rangle$
$\mathbf{x}=0101, \mathbf{y}=0010, \mathbf{z} \in\{0100,0110\}$	$\langle 0101,0100,0110,0010\rangle$	$\langle 0000,0001,0011,0111\rangle$
$\mathbf{x}=0110, \mathbf{y}=0101, \mathbf{z} \in\{0100,0101\}$	$\langle 0110,0100,0101,0001\rangle$	$\langle 0000,0010,0011,0111\rangle$
$\mathbf{x}=0110, \mathbf{y}=0101, \mathbf{z} \in\{0010,0011\}$	$\langle 0110,0010,0011,0001\rangle$	$\langle 0000,0100,0101,0111\rangle$

Fig. 5. Illustration for Proposition 1.
Proposition 1. Let W and B form the bipartition of Q_{n} with $n \geq 7$. Suppose that \mathbf{x} and \mathbf{u} are any two different vertices in W, whereas \mathbf{y} and \mathbf{v} are any two different vertices in B. Furthermore, suppose that $\mathbf{x} \in V\left(Q_{n}^{0}\right), \mathbf{y} \in V\left(Q_{n}^{1}\right)$, and $\mathbf{y} \neq(\mathbf{u})^{n}$. Let A_{1}^{0} and A_{2}^{0} be any two disjoint nonempty subsets of $V\left(Q_{n}^{0}\right)-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$, and let A_{1}^{1} and A_{2}^{1} be any two disjoint nonempty subsets of $V\left(Q_{n}^{1}\right)-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$ such that $\left|A_{1}^{0}\right|+\left|A_{1}^{1}\right|+\left|A_{2}^{0}\right|+\left|A_{2}^{1}\right|=n-3$. Assume that Q_{n-1} is 2-disjoint-path-coverable of order $n-4$. Then, there exist two disjoint paths P_{1} and P_{2} such that (1) P_{1} joins \mathbf{x} to \mathbf{y}, (2) P_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1}^{0} \cup A_{1}^{1} \subseteq P_{1}$, (4) $A_{2}^{0} \cup A_{2}^{1} \subseteq P_{2}$, and (5) $P_{1} \cup P_{2}$ spans Q_{n}.

Proof. Obviously, $\left|A_{i}^{j}\right| \leq n-6$ for $i \in\{1,2\}$ and $j \in\{0,1\}$, and $\left|A_{1}^{1}\right|+\left|A_{2}^{1}\right|+|\{\mathbf{y}\}| \leq n-4$. We have the following two cases.
Case 1: Both \mathbf{u} and \mathbf{v} are in Q_{n}^{j} for some $j \in\{0,1\}$. Without loss of generality, we assume that $j=0$. Since $\left|V\left(Q_{n}^{0}\right)\right|=$ $2^{n-1}>n(n-4)+(n-3)=n^{2}-3 n-3 \geq n\left|A_{1}^{1} \cup A_{2}^{1} \cup\{\mathbf{y}\}\right|+\left|A_{1}^{0} \cup\{\mathbf{x}, \mathbf{u}, \mathbf{v}\}\right|$ and $2^{n-2}>n-3$ for $n \geq 7$, there exists a vertex \mathbf{p} in $V\left(Q_{n}^{0}\right)-\left(A_{1}^{0} \cup\{\mathbf{x}, \mathbf{u}, \mathbf{v}\}\right)$ such that $(\mathbf{t})^{n} \notin A_{1}^{1} \cup A_{2}^{1} \cup\{\mathbf{y}\}$ for every $\mathbf{t} \in N b d_{Q_{n}^{0}}(\mathbf{p}) \cup\{\mathbf{p}\}$, and there exists a black vertex \mathbf{b} in $V\left(Q_{n}^{0}\right)-\left(A_{2}^{0} \cup\{\mathbf{v}, \mathbf{p}\}\right)$ such that $(\mathbf{b})^{n} \notin A_{2}^{1}$. Since Q_{n-1} is 2-disjoint-path-coverable of order $n-4$, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1}^{0} \subseteq R_{1}$, (4) $A_{2}^{0} \cup\{\mathbf{p}\} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. Without loss of generality, we write R_{2} as $\left\langle\mathbf{u}, R_{2,1}, \mathbf{p}, \mathbf{q}, R_{2,2}, \mathbf{v}\right\rangle$. Again, there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins (b) ${ }^{n}$ to \mathbf{y}, (2) H_{2} joins $(\mathbf{p})^{n}$ to $(\mathbf{q})^{n}$, (3) $A_{1}^{1} \subseteq H_{1}$, (4) $A_{2}^{1} \subseteq H_{2}$, and (5) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2,1}, \mathbf{p},(\mathbf{p})^{n}, H_{2},(\mathbf{q})^{n}, \mathbf{q}, R_{2,2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 5(a).

Case 2: \mathbf{u} is in Q_{n}^{j}, and \mathbf{v} is in Q_{n}^{1-j} for $j \in\{0,1\}$. On the one hand, we assume that $j=0$; that is, \mathbf{u} is in Q_{n}^{0}, and \mathbf{v} is in Q_{n}^{1}. Since $2^{n-2}>n-4$ for $n \geq 7$, there exists a black vertex \mathbf{b}_{1} in $V\left(Q_{n}^{0}\right)-A_{2}^{0}$ such that $\left(\mathbf{b}_{1}\right)^{n} \notin A_{2}^{1}$, and there exists a black vertex $\mathbf{b}_{\mathbf{2}}$ in $V\left(Q_{n}^{0}\right)-\left(A_{1}^{0} \cup\left\{\mathbf{b}_{1}\right\}\right)$ such that $\left(\mathbf{b}_{2}\right)^{n} \notin A_{1}^{1}$. Since Q_{n-1} is 2-disjoint-path-coverable of order n - 4, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}_{1}, (2) R_{2} joins \mathbf{u} to \mathbf{b}_{2}, (3) $A_{1}^{0} \subseteq R_{1}$, (4) $A_{2}^{0} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}; and there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins ($\left.\mathbf{b}_{1}\right)^{n}$ to \mathbf{y}, (2) H_{2} joins ($\left.\mathbf{b}_{2}\right)^{n}$ to \mathbf{v}, (3) $A_{1}^{1} \subseteq H_{1}$, (4) $A_{2}^{1} \subseteq H_{2}$, and (5) $H_{1} \cup H_{2}$ spans $Q_{n}{ }^{1}$. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b}_{\mathbf{1}},\left(\mathbf{b}_{1}\right)^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2}, \mathbf{b}_{\mathbf{2}},\left(\mathbf{b}_{2}\right)^{n}, H_{2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 5(b).

On the other hand, if $j=1$, then \mathbf{u} is in Q_{n}^{1}, and \mathbf{v} is in Q_{n}^{0}. Since $2^{n-2}>n-3$ for $n \geq 7$, there exists a black vertex \mathbf{b} in $V\left(Q_{n}^{0}\right)-\left(A_{2}^{0} \cup\left\{(\mathbf{u})^{n}, \mathbf{v}\right\}\right)$ such that $(\mathbf{b})^{n} \notin A_{2}^{1}$, and there exists a white vertex \mathbf{w} in $V\left(Q_{n}^{0}\right)-\left(A_{1}^{0} \cup\left\{\mathbf{x},(\mathbf{y})^{n}\right\}\right)$ such that $(\mathbf{w})^{n} \notin A_{1}^{1}$. Similarly, there exist disjoint paths $R_{1}, R_{2}, H_{1}, H_{2}$ joining \mathbf{x} to \mathbf{b}, \mathbf{w} to $\mathbf{v},(\mathbf{b})^{n}$ to \mathbf{y}, and \mathbf{u} to $(\mathbf{w})^{n}$, respectively, such that (1) $A_{1}^{0} \subseteq R_{1}, A_{2}^{0} \subseteq R_{2}, A_{1}^{1} \subseteq H_{1}, A_{2}^{1} \subseteq H_{2}$, (2) $R_{1} \cup R_{2}$ spans Q_{n}^{0}, and (3) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H_{2},(\mathbf{w})^{n}, \mathbf{w}, R_{2}, \mathbf{v}\right\rangle$. See Fig. 5(c).

Proposition 2. Let W and B form the bipartition of Q_{n} with $n \geq 6$. Suppose that \mathbf{x} and \mathbf{u} are any two different vertices in W, whereas \mathbf{y} and \mathbf{v} are any two different vertices in B. Furthermore, suppose that $\mathbf{x} \in V\left(Q_{n}^{0}\right), \mathbf{y} \in V\left(Q_{n}^{1}\right)$, and $\mathbf{y} \neq(\mathbf{u})^{n}$. Let A_{1}^{0} and A_{2}^{0} be any two disjoint nonempty subsets of $V\left(Q_{n}^{0}\right)-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$, and let A_{1}^{1} be any nonempty subset of $V\left(Q_{n}^{1}\right)-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$ such that $\left|A_{1}^{0}\right|+\left|A_{1}^{1}\right|+\left|A_{2}^{0}\right|=n-3$. Assume that Q_{n-1} is 2-disjoint-path-coverable of order $n-4$. Then, there exist two disjoint paths P_{1} and P_{2} such that (1) P_{1} joins \mathbf{x} to \mathbf{y}, (2) P_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1}^{0} \cup A_{1}^{1} \subseteq P_{1}$, (4) $A_{2}^{0} \subseteq P_{2}$, and (5) $P_{1} \cup P_{2}$ spans Q_{n}.

Proof. We consider the following three cases.
Case 1: Both \mathbf{u} and \mathbf{v} are in Q_{n}^{0}. Since $2^{n-2}>n-4 \geq\left|A_{2}^{0}\right|+|\{\mathbf{v}\}|$ for $n \geq 6$, there exists a black vertex \mathbf{b} in $Q_{n}^{0}-\left(A_{2}^{0} \cup\{\mathbf{v}\}\right)$. Since Q_{n-1} is 2-disjoint-path-coverable of order $n-4$, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x}

Fig. 6. Illustration for Proposition 2.
to \mathbf{b}, (2) R_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1}^{0} \subseteq R_{1}$, (4) $A_{2}^{0} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{1}. By Theorem 1, there is a hamiltonian path H of Q_{n}^{1} joining $(\mathbf{b})^{n}$ to \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 6(a).

Case 2: Both \mathbf{u} and \mathbf{v} are in Q_{n}^{1}. Since $\left|V\left(Q_{n}^{1}\right)\right|=2^{n-1}>n(n-4)+n \geq n\left|A_{1}^{0} \cup\{\mathbf{x}\}\right|+\left|A_{1}^{1} \cup\{\mathbf{y}, \mathbf{u}, \mathbf{v}\}\right|$ for $n \geq 6$, there exists a vertex $\mathbf{p} \in V\left(Q_{n}^{1}\right)-\left(A_{1}^{1} \cup\{\mathbf{y}, \mathbf{u}, \mathbf{v}\}\right)$ such that $(\mathbf{t})^{n} \notin A_{1}^{0} \cup\{\mathbf{x}\}$ for every $\mathbf{t} \in N b d_{Q_{n}^{1}}(\mathbf{p}) \cup\{\mathbf{p}\}$. Since $2^{n-2}>(n-4)+n \geq\left|A_{2} \cup\left\{(\mathbf{u})^{n}\right\}\right|+\left|N b d_{Q_{n}^{1}}(\mathbf{p}) \cup\{\mathbf{p}\}\right|$, there exists a black vertex \mathbf{b} in $V\left(Q_{n}^{0}\right)-\left(A_{2} \cup\left\{(\mathbf{u})^{n}\right\}\right)$ such that $(\mathbf{b})^{n} \notin N b d_{Q_{n}^{1}}(\mathbf{p}) \cup\{\mathbf{p}\}$. Since Q_{n-1} is 2-disjoint-path-coverable of order $n-4$, there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins (b) ${ }^{n}$ to \mathbf{y}, (2) H_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1}^{1} \subseteq H_{1}$, (4) $\{\mathbf{p}\} \subseteq H_{2}$, and (5) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We can write H_{2} as $\left\langle\mathbf{u}, H_{2,1}, \mathbf{p}, \mathbf{q}, H_{2,2}, \mathbf{v}\right\rangle$. Again, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins $(\mathbf{p})^{n}$ to $(\mathbf{q})^{n}$, (3) $A_{1}^{0} \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}\right.$, (b) ${ }^{n}, \mathbf{b}, H_{1}$, $\left.\mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H_{2,1}, \mathbf{p},(\mathbf{p})^{n}, R_{2},(\mathbf{q})^{n}, \mathbf{q}, H_{2,2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 6(b).

Case 3: \mathbf{u} is in $V\left(Q_{n}^{j}\right)$, and \mathbf{v} is in $V\left(Q_{n}^{1-j}\right)$ for $j \in\{0,1\}$. On the one hand, we assume that $j=0$. Hence, \mathbf{u} is in $V\left(Q_{n}^{0}\right)$, and \mathbf{v} is in $V\left(Q_{n}^{1}\right)$. Since $2^{n-2}>n-4$, there exists a black vertex \mathbf{b}_{1} in $V\left(Q_{n}^{0}\right)-A_{2}^{0}$, and there exists a black vertex \mathbf{b}_{2} in $V\left(Q_{n}^{0}\right)-\left(A_{1}^{0} \cup\left\{\mathbf{b}_{1}\right\}\right)$ such that $\left(\mathbf{b}_{2}\right)^{n} \notin A_{1}^{1}$. Since Q_{n-1} is 2-disjoint-path-coverable of order $n-4$, there are two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}_{1}, (2) R_{2} joins \mathbf{u} to \mathbf{z}, (3) $A_{1}^{0} \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}, and there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins ($\left.\mathbf{b}_{1}\right)^{n}$ to \mathbf{y}, (2) H_{2} joins ($\left.\mathbf{b}_{2}\right)^{n}$ to \mathbf{v}, (3) $A_{1}^{1} \subseteq H_{1}$, and (4) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b}_{1},\left(\mathbf{b}_{1}\right)^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2}, \mathbf{b}_{2},\left(\mathbf{b}_{2}\right)^{n}, H_{2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 6(c).

On the other hand, if $j=1$, then \mathbf{u} is in $V\left(Q_{n}^{1}\right)$, and \mathbf{v} is in $V\left(Q_{n}^{0}\right)$. Since $2^{n-2}>n-2$, there exists a black vertex \mathbf{b} in $V\left(Q_{n}^{0}\right)-\left(A_{2} \cup\left\{\mathbf{v},(\mathbf{u})^{n}\right\}\right)$, and there exists a white vertex \mathbf{w} in $V\left(Q_{n}^{0}\right)-\left(A_{1}^{0} \cup\{\mathbf{x}\}\right)$ such that $(\mathbf{w})^{n} \notin A_{1}^{1} \cup\left\{(\mathbf{y})^{n}\right\}$. Similarly, there exist disjoint paths $R_{1}, R_{2}, H_{1}, H_{2}$ joining \mathbf{x} to \mathbf{b}, \mathbf{w} to \mathbf{v}, (b) ${ }^{n}$ to \mathbf{y}, and \mathbf{u} to (w) ${ }^{n}$, respectively, such that (1) $A_{1}^{0} \subseteq R_{1}, A_{2} \subseteq R_{2}$, $A_{1}^{1} \subseteq H_{1}$, (2) $R_{1} \cup R_{2}$ spans Q_{n}^{0}, and (3) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H_{2},(\mathbf{w})^{n}, \mathbf{w}, R_{2}, \mathbf{v}\right\rangle$. See Fig. 6(d).

Proposition 3. Let W and B form the bipartition of Q_{n} with $n \geq 5$. Suppose that \mathbf{x} and \mathbf{u} are any two different vertices in W, whereas \mathbf{y} and \mathbf{v} are any two different vertices in B. Furthermore, suppose that $\mathbf{x} \in V\left(Q_{n}^{0}\right), \mathbf{y} \in V\left(Q_{n}^{1}\right)$, and $\mathbf{y} \neq(\mathbf{u})^{n}$. Let A_{1} be any nonempty subset of $V\left(Q_{n}^{0}\right)-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$, and let A_{2} be any nonempty subset of $V\left(Q_{n}^{1}\right)-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$ such that $\left|A_{1}\right|+\left|A_{2}\right|=n-3$. Then there exist two disjoint paths P_{1} and P_{2} such that (1) P_{1} joins \mathbf{x} to \mathbf{y}, (2) P_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1} \subseteq P_{1}$, (4) $A_{2} \subseteq P_{2}$, and (5) $P_{1} \cup P_{2}$ spans Q_{n}.

Proof. We consider the following three cases.
Case 1: Both \mathbf{u} and \mathbf{v} are in $V\left(Q_{n}^{0}\right)$. Since $(\mathbf{u})^{n} \neq \mathbf{y}$ and $\left|N b d_{Q_{n}^{1}}(\mathbf{y})\right|=n-1>\left|A_{2} \cup\left\{(\mathbf{v})^{n}\right\}\right|$, there exists a vertex $\mathbf{w} \in N b d_{Q_{n}^{1}}(\mathbf{y})-\left(A_{2} \cup\left\{(\mathbf{v})^{n}\right\}\right)$. By Lemma 1, there exists a hamiltonian path R_{1} of $Q_{n}^{0}-\{\mathbf{u}, \mathbf{v}\}$ joining \mathbf{x} and (w) ${ }^{n}$. By Theorem 2, there exists a hamiltonian path R_{2} of $Q_{n}^{1}-\{\mathbf{y}, \mathbf{w}\}$ joining $(\mathbf{u})^{n}$ and $(\mathbf{v})^{n}$. Obviously, $A_{1} \subseteq V\left(R_{1}\right)$ and $A_{2} \subseteq V\left(R_{2}\right)$. We set $P_{1}=\left\langle\mathbf{x}, R_{1},(\mathbf{w})^{n}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u},(\mathbf{u})^{n}, R_{2},(\mathbf{v})^{n}, \mathbf{v}\right\rangle$. It is apparent that P_{1} and P_{2} form the desired paths. See Fig. 7(a).

Case 2: Both \mathbf{u} and \mathbf{v} are in $V\left(Q_{n}^{1}\right)$. Since $\left|N b d_{Q_{n}^{1}}(\mathbf{y})\right|=n-1>\left|A_{2} \cup\{\mathbf{u}\}\right|$, there exists a vertex $\mathbf{w} \in N b d_{Q_{n}^{1}}(\mathbf{y})-\left(A_{2} \cup\{\mathbf{u}\}\right)$. By Theorem 1, there exists a hamiltonian path R_{1} of Q_{n}^{0} joining \mathbf{x} and $(\mathbf{w})^{n}$. By Theorem 2, there exists a hamiltonian path R_{2} of $Q_{n}^{1}-\{\mathbf{y}, \mathbf{w}\}$ joining \mathbf{u} and \mathbf{v}. Obviously, $A_{1} \subseteq V\left(R_{1}\right)$ and $A_{2} \subseteq V\left(R_{2}\right)$. We set $P_{1}=\left\langle\mathbf{x}, R_{1},(\mathbf{w})^{n}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=R_{2}$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 7(b).

Fig. 7. Illustration for Proposition 3.

Fig. 8. Illustration for Case 1 of Proposition 4.
Case 3: \mathbf{u} is in $V\left(Q_{n}^{j}\right)$, and \mathbf{v} is in $V\left(Q_{n}^{1-j}\right)$ for $j \in\{0,1\}$. On the one hand, we assume that $j=0$; i.e., \mathbf{u} is in $V\left(Q_{n}^{0}\right)$, and \mathbf{v} is in $V\left(Q_{n}^{1}\right)$. Since $\left|N b d_{Q_{n}^{1}}(\mathbf{y})\right|=n-1>\left|A_{2}\right|$, there exists a vertex $\mathbf{w} \in N b d_{Q_{n}^{1}}(\mathbf{y})-A_{2}$. Since $\left|N b d_{Q_{n}^{0}}(\mathbf{u})\right|=n-1>\left|A_{1} \cup\left\{(\mathbf{w})^{n}\right\}\right|$, there exists a vertex $\mathbf{b} \in N b d_{Q_{n}^{0}}(\mathbf{u})-\left(A_{1} \cup\left\{(\mathbf{w})^{n}\right\}\right)$. By Theorem 2, there exists a hamiltonian path R_{1} of $Q_{n}^{0}-\{\mathbf{u}, \mathbf{b}\}$ joining \mathbf{x} and $(\mathbf{w})^{n}$. Similarly, there exists a hamiltonian path R_{2} of $Q_{n}^{1}-\{\mathbf{y}, \mathbf{w}\}$ joining $(\mathbf{b})^{n}$ and \mathbf{v}. Clearly, $A_{1} \subseteq V\left(R_{1}\right)$ and $A_{2} \subseteq V\left(R_{2}\right)$. Now, we set $P_{1}=\left\langle\mathbf{x}, R_{1},(\mathbf{w})^{n}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, \mathbf{b},(\mathbf{b})^{n}, R_{2} \mathbf{v}\right\rangle$. Again, P_{1} and P_{2} form the desired paths. See Fig. 7(c).

On the other hand, we consider $j=1$; i.e., \mathbf{u} is in $V\left(Q_{n}^{1}\right)$, and \mathbf{v} is in $V\left(Q_{n}^{0}\right)$. Since $\left|N b d_{Q_{n}^{1}}(\mathbf{y})\right|=n-1>n-2 \geq\left|A_{2} \cup\{\mathbf{u}\}\right|+$ $|\{\mathbf{v}\}|$, there exists a vertex $\mathbf{w} \in \operatorname{Nbd}_{Q_{n}^{1}}(\mathbf{y})-\left(A_{2} \cup\{\mathbf{u}\}\right)$ with $(\mathbf{w})^{n} \neq \mathbf{v}$. Since $\left|N b d_{Q_{n}^{0}}(\mathbf{u})\right|=n-1>n-2 \geq\left|A_{1} \cup\{\mathbf{x}\}\right|+|\{\mathbf{y}\}|$, there exists a vertex $\mathbf{s} \in N b d_{Q_{n}^{0}}(\mathbf{v})-\left(A_{1} \cup\{\mathbf{x}\}\right)$ with $(\mathbf{s})^{n} \neq \mathbf{y}$. Again, there exists a hamiltonian path R_{1} of $Q_{n}^{0}-\{\mathbf{s}, \mathbf{v}\}$ joining \mathbf{x} and $(\mathbf{w})^{n}$, and there exists a hamiltonian path R_{2} of $Q_{n}^{1}-\{\mathbf{y}, \mathbf{w}\}$ joining \mathbf{u} and $(\mathbf{s})^{n}$. We set $P_{1}=\left\langle\mathbf{x}, R_{1},(\mathbf{w})^{n}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2},(\mathbf{s})^{n}, \mathbf{s}, \mathbf{v}\right\rangle$. See Fig. 7(d).

Proposition 4. Let W and B form the bipartition of Q_{n} with $n \geq 5$. Suppose that \mathbf{x} and \mathbf{u} are any two different vertices in W, whereas \mathbf{y} and \mathbf{v} are any two different vertices in B. Furthermore, suppose that $\mathbf{x} \in V\left(Q_{n}^{0}\right), \mathbf{y} \in V\left(Q_{n}^{1}\right)$, and $\mathbf{y} \neq(\mathbf{u})^{n}$. Let A_{1} and A_{2} be any two disjoint nonempty subsets of $V\left(Q_{n}^{0}\right)-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$ such that $\left|A_{1}\right|+\left|A_{2}\right|=n-3$. Assume that Q_{n-1} is 2-disjoint-path-coverable of order $n-4$. Then, there exist two disjoint paths P_{1} and P_{2} such that (1) P_{1} joins \mathbf{x} to \mathbf{y}, (2) P_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1} \subseteq P_{1}$, (4) $A_{2} \subseteq P_{2}$, and (5) $P_{1} \cup P_{2}$ spans Q_{n}.
Proof. We consider the following cases.
Case 1: Both \mathbf{u} and \mathbf{v} are in $V\left(Q_{n}^{0}\right)$. We have the following two subcases, (a) and (b).
(a) There is a black vertex, say \mathbf{b}, in A_{1}. Since Q_{n-1} is 2-disjoint-path-coverable of order $n-4$, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1}-\{\mathbf{b}\} \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. By Theorem 1, there is a hamiltonian path H of Q_{n}^{1} joining $(\mathbf{b})^{n}$ to \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 8(a).
(b) Every vertex in A_{1} is white. Let \mathbf{w} be any vertex in A_{1}. Since $\operatorname{deg}_{Q_{n}^{0}}(\mathbf{w})=n-1>n-2 \geq\left|A_{2}\right|+\left|\left\{\mathbf{v},(\mathbf{y})^{n}\right\}\right|$, there exists a vertex \mathbf{b} in $N b d_{Q_{n}^{0}}(\mathbf{w})-\left(A_{2} \cup\left\{\mathbf{v},(\mathbf{y})^{n}\right\}\right)$. By the premise, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins \mathbf{u} to \mathbf{v}, (3) $A_{1}-\{\mathbf{w}\} \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}.
(b.1) \mathbf{w} is in R_{1}. By Theorem 1, there exists a hamiltonian path H of Q_{n}^{1} joining (b) ${ }^{n}$ to \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=R_{2}$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 8(b).

Fig. 9. Illustration for Case 2 of Proposition 4.
(b.2) \mathbf{w} is in R_{2}. Without loss of generality, we can write R_{2} as $\left\langle\mathbf{u}, R_{2,1}, \mathbf{p}, \mathbf{w}, \mathbf{q}, R_{2,2}, \mathbf{v}\right\rangle$. Suppose that $(\mathbf{w})^{n} \neq \mathbf{y}$. By Theorem 3, there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins (w) to y, (2) H_{2} joins (p) ${ }^{n}$ to (q) ${ }^{n}$, and (3) $H_{1} \cup H_{2}$ spans $Q_{n}{ }^{1}$. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b}, \mathbf{w},(\mathbf{w})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2,1}, \mathbf{p},(\mathbf{p})^{n}, H_{2},(\mathbf{q})^{n}, \mathbf{q}, R_{2,2}, \mathbf{v}\right\rangle$ to form the desired paths. See Fig. 8(c). On the other hand, we consider the case that $(\mathbf{w})^{n}=\mathbf{y}$. By Theorem 1, there exists a hamiltonian path H of $Q_{n}^{1}-\{\mathbf{y}\}$ joining $(\mathbf{p})^{n}$ to $(\mathbf{q})^{n}$. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2,1}, \mathbf{p},(\mathbf{p})^{n}, H,(\mathbf{q})^{n}, \mathbf{q}, R_{2,2}\right.$, v$\rangle$ to form the desired paths.

Case 2: \mathbf{u} is in $V\left(Q_{n}^{1}\right)$, and \mathbf{v} is in $V\left(Q_{n}^{0}\right)$. We have the following three subcases, (c), (d), and (e).
(c) Every vertex in A_{1} is white, and every vertex in A_{2} is black. Let \mathbf{w} be a vertex in A_{1}. Since $\operatorname{deg}_{Q_{n}^{0}}(\mathbf{x})=n-1>\left|A_{2} \cup\{\mathbf{v}\}\right|$, we can choose a black vertex \mathbf{b} in $N b d_{Q_{n}^{0}}(\mathbf{x})-\left(A_{2} \cup\{\mathbf{v}\}\right)$. With this premise, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{b} to \mathbf{w}, (2) R_{2} joins \mathbf{x} to \mathbf{v}, (3) $\left(A_{1}-\{\mathbf{w}\}\right) \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. Without loss of generality, we write $R_{2}=\langle\mathbf{x}, \mathbf{p}, R, \mathbf{v}\rangle$.
(c.1) $\mathbf{y} \neq(\mathbf{w})^{n}$ and $\mathbf{p} \neq(\mathbf{u})^{n}$. By Theorem 3, there are two disjoint paths H_{1} and H_{2} of Q_{n}^{1} such that (1) H_{1} joins ($\left.\mathbf{w}\right)^{n}$ to \mathbf{y}, (2) H_{2} joins \mathbf{u} to $(\mathbf{p})^{n}$, and (3) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We set $P_{1}=\left\langle\mathbf{x}, \mathbf{b}, R_{1}, \mathbf{w},(\mathbf{w})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H_{2},(\mathbf{p})^{n}, \mathbf{p}, R, \mathbf{v}\right\rangle$ to form the desired paths. See Fig. 9(a).
(c.2) $\mathbf{y} \neq(\mathbf{w})^{n}$ and $\mathbf{p}=(\mathbf{u})^{n}$. By Theorem 2, there is a hamiltonian path H of $Q_{n}^{1}-\{\mathbf{u}\}$ joining $(\mathbf{w})^{n}$ to \mathbf{y}. We set $P_{1}=\left\langle\mathbf{x}, \mathbf{b}, R_{1}, \mathbf{w},(\mathbf{w})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=\langle\mathbf{u}, \mathbf{p}, R, \mathbf{v}\rangle$ to form the desired paths.
(c.3) $\mathbf{y}=(\mathbf{w})^{n}$ and $\mathbf{p} \neq(\mathbf{u})^{n}$. By Theorem 2, there is a hamiltonian path H of $Q_{n}^{1}-\{\mathbf{y}\}$ joining \mathbf{u} to (p) $)^{n}$. We set $P_{1}=\left\langle\mathbf{x}, \mathbf{b}, R_{1}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H,(\mathbf{p})^{n}, \mathbf{p}, R, \mathbf{v}\right\rangle$ to form the desired paths.
(c.4) $\mathbf{y}=(\mathbf{w})^{n}$ and $\mathbf{p}=(\mathbf{u})^{n}$. Obviously, the length of R_{1} or the length of R_{2} is greater than 3 . On the one hand, assume that the length of R_{1} is greater than 3 . We write $R_{1}=\left\langle\mathbf{b}, \mathbf{z}, R^{\prime}, \mathbf{w}\right\rangle$. By Lemma 1, there exists a hamiltonian path H^{\prime} of $Q_{n}^{1}-\{\mathbf{u}, \mathbf{y}\}$ joining $(\mathbf{b})^{n}$ to $(\mathbf{z})^{n}$. We set $P_{1}=\left\langle\mathbf{x}, \mathbf{b},(\mathbf{b})^{n}, H^{\prime},(\mathbf{z})^{n}, \mathbf{z}, R^{\prime}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\langle\mathbf{u}, \mathbf{p}, R, \mathbf{v}\rangle$ to form the desired paths. On the other hand, we consider the length of R_{2} is greater than 3 . We write $R_{2}=\left\langle\mathbf{x}, \mathbf{p}, R^{\prime \prime}, \mathbf{q}, \mathbf{v}\right\rangle$. By Lemma 1, there exists a hamiltonian path $H^{\prime \prime}$ of $Q_{n}^{1}-\{\mathbf{u}, \mathbf{y}\}$ joining $(\mathbf{q})^{n}$ to $(\mathbf{v})^{n}$. We set $P_{1}=\left\langle\mathbf{x}, \mathbf{b}, R_{1}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, \mathbf{p}, R^{\prime \prime}, \mathbf{q},(\mathbf{q})^{n}, H^{\prime \prime},(\mathbf{v})^{n}, \mathbf{v}\right\rangle$ to form the desired paths.
(d) There is a black vertex in $A_{1}-\left\{(\mathbf{u})^{n}\right\}$, or there is a white vertex in $A_{2}-\left\{(\mathbf{y})^{n}\right\}$. Without loss of generality, we assume that there is a black vertex \mathbf{b} in $A_{1}-\left\{(\mathbf{u})^{n}\right\}$. Since $2^{n-2}>n-3$, we can choose a white vertex \mathbf{w} in $V\left(Q_{n}^{0}\right)-\left(A_{1} \cup\left\{(\mathbf{y})^{n}\right\}\right)$. With this premise, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins \mathbf{w} to $\mathbf{v},(3)\left(A_{1}-\{\mathbf{b}\}\right) \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. By Theorem 3, there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins (b) ${ }^{n}$ to \mathbf{y}, (2) H_{2} joins \mathbf{u} to $(\mathbf{w})^{n}$, and (3) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H_{2},(\mathbf{w})^{n}, \mathbf{w}, R_{2}, \mathbf{v}\right\rangle$ to form the desired paths. See Fig. 9(b).
(e) $A_{1}=\left\{(\mathbf{u})^{n}\right\}$ and $A_{2}=\left\{(\mathbf{y})^{n}\right\}$. Since $h(\mathbf{x}, \mathbf{y}) \geq 3$, there exists an integer i with $1 \leq i \leq n-1$ to divide Q_{n} into two subcubes so that the following properties are satisfied: (1) \mathbf{x} and \mathbf{y} are in different subcubes, and (2) $\mathbf{y} \neq(\mathbf{u})^{i}$. To construct the required paths, we can use the same approach described in part (c) and Case 1 of this proposition, or in Cases 1 and 3 of Proposition 3.

Case 3: Both \mathbf{u} and \mathbf{v} are in $V\left(Q_{n}^{1}\right)$. Since $\operatorname{deg}_{Q_{n}^{1}}(\mathbf{y})=n-1>n-3 \geq\left|A_{2}\right|+|\{\mathbf{u}\}|$, there exists a vertex \mathbf{w} in $N b d_{Q_{n}^{1}}(\mathbf{y})-\{\mathbf{u}\}$ such that ($\mathbf{w})^{n} \notin A_{2}$. We have the following subcases, (f) and (g).
(f) $A_{2} \neq\left\{(\mathbf{y})^{n}\right\}$. Obviously, there exists a vertex \mathbf{p} in $A_{2}-\left\{(\mathbf{y})^{n}\right\}$.
(f.1) $\mathbf{p} \neq(\mathbf{u})^{n}$. Let $F=\left\{\left((\mathbf{p})^{n},(\mathbf{t})^{n}\right) \mid \mathbf{t} \in A_{1},(\mathbf{p}, \mathbf{t}) \in E\left(Q_{n}^{0}\right)\right\}$. Obviously, $|F| \leq\left|A_{1}\right| \leq n-4$. By Lemma 2 , there exists a hamiltonian path H of $\left(Q_{n}^{1}-\{\mathbf{w}, \mathbf{y}\}\right)-F$ joining \mathbf{u} and \mathbf{v}. Apparently, $(\mathbf{p})^{n}$ is in $V(H)$. Without loss of generality, we write H as $\left\langle\mathbf{u}, H_{1},(\mathbf{p})^{n},(\mathbf{q})^{n}, H_{2}, \mathbf{v}\right\rangle$ such that $\mathbf{q} \in V\left(Q_{n}^{0}\right)-\left(A_{1} \cup\{\mathbf{x}\}\right)$. With this premise, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to (w) ${ }^{n}$, (2) R_{2} joins \mathbf{p} to \mathbf{q}, (3) $A_{1} \subseteq R_{1}$, (4) $A_{2}-\{\mathbf{p}\} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. We set $P_{1}=\left\langle\mathbf{x}, R_{1},(\mathbf{w})^{n}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H_{1},(\mathbf{p})^{n}, \mathbf{p}, R_{2}, \mathbf{q},(\mathbf{q})^{n}, H_{2}, \mathbf{v}\right\rangle$ to form the desired paths. See Fig. 10(a).
(f.2) $\mathbf{p}=(\mathbf{u})^{n}$. Since $2^{n-2}>n-1 \geq|\{\mathbf{v}, \mathbf{y}\}|+\left|A_{1} \cup\{\mathbf{x}\}\right|$, there exists a black vertex \mathbf{b} in $V\left(Q_{n}^{1}\right)-\{\mathbf{v}, \mathbf{y}\}$ such that $(\mathbf{b})^{n} \notin A_{1} \cup\{\mathbf{x}\}$. By Theorem 2, there exists a hamiltonian path H of $\left(Q_{n}^{1}-\{\mathbf{w}, \mathbf{y}\}\right)-\{\mathbf{u}\}$ joining \mathbf{b} and \mathbf{v}. With this premise, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to (w) ${ }^{n}$, (2) R_{2} joins (u) to (b) ${ }^{n}$, (3) $A_{1} \subseteq R_{1}$, (4) $A_{2}-\left\{(\mathbf{u})^{n}\right\} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. Thus, we can set $P_{1}=\left\langle\mathbf{x}, R_{1},(\mathbf{w})^{n}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u},(\mathbf{u})^{n}, R_{2},(\mathbf{b})^{n}, \mathbf{b}, H, \mathbf{v}\right\rangle$ to form the desired paths. See Fig. 10(b).

Fig. 10. Illustration for Case 3 of Proposition 4.

Fig. 11. Illustration for Case 4 of Proposition 4.
(g) $A_{2}=\left\{(\mathbf{y})^{n}\right\}$. We have the following three possibilities.
(g.1) There exists a black vertex \mathbf{b} in $A_{1}-\left\{(\mathbf{u})^{n}\right\}$. By Theorem 3, there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins (b) ${ }^{n}$ to \mathbf{y} with length $2^{n-2}-1$, and (2) H_{2} joins \mathbf{u} to \mathbf{v} with length $2^{n-2}-1$. Since $\left\lceil\frac{2^{n-2}-1}{2}\right\rceil>n-3 \geq\left|A_{1}-\{\mathbf{b}\}\right|+|\{\mathbf{x}\}|$, there exists an edge (\mathbf{p}, \mathbf{q}) in H_{2} such that $\left\{(\mathbf{p})^{n},(\mathbf{q})^{n}\right\} \cap\left(A_{1} \cup\{\mathbf{x}\}\right)=\emptyset$. Without loss of generality, we write H_{2} as $\left\langle\mathbf{u}, H^{\prime}, \mathbf{p}, \mathbf{q}, H^{\prime \prime}, \mathbf{v}\right\rangle$. With this premise, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins $(\mathbf{p})^{n}$ to $(\mathbf{q})^{n}$, (3) $A_{1}-\{\mathbf{b}\} \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. Hence, we set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, H^{\prime}, \mathbf{p},(\mathbf{p})^{n}, R_{2},(\mathbf{q})^{n}, \mathbf{q}, H^{\prime \prime}, \mathbf{v}\right\rangle$ to form the required paths. See Fig. 10(c).
(g.2) $A_{1}=\left\{(\mathbf{u})^{n}\right\}$. Since $h(\mathbf{x}, \mathbf{y}) \geq 3$, there exists an integer $i, 1 \leq i \leq n-1$, to re-partition Q_{n} so that (1) \mathbf{x} and \mathbf{y} are in different subcubes, and (2) $\mathbf{y} \neq(\mathbf{u})^{i}$. To construct the required paths, we can use the same approach described in part (c) and Case 1 of this proposition, or in Cases 1 and 3 of Proposition 3.
(g.3) Every vertex of A_{1} is white vertex. Since $h(\mathbf{x}, \mathbf{y}) \geq 3$, there exists an integer $i, 1 \leq i \leq n-1$, to re-partition Q_{n} such that (1) \mathbf{x} and \mathbf{y} are in different subcubes, and $(2) \mathbf{y} \neq(\mathbf{u})^{i}$. To construct the required paths, we can use the same approach described in part (f), or in Propositions 2 and 3.

Case 4: \mathbf{u} is in $V\left(Q_{n}^{0}\right)$, and \mathbf{v} is in $V\left(Q_{n}^{1}\right)$. We have the following subcases, (h) and (i).
(h) There is a black vertex \mathbf{b}_{1} in $A_{1} \cup A_{2}$. Without loss of generality, we assume that $\mathbf{b}_{\mathbf{1}} \in A_{1}$. Since $2^{n-2}>n-3=\left|A_{1} \cup A_{2}\right|$, we can choose a black vertex \mathbf{b}_{2} in $V\left(Q_{n}^{0}\right)-\left(A_{1} \cup A_{2}\right)$. With this premise, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to $\mathbf{b}_{\mathbf{1}}$, (2) R_{2} joins \mathbf{u} to $\mathbf{b}_{\mathbf{2}}$, (3) $\left(A_{1}-\left\{\mathbf{b}_{\mathbf{1}}\right\}\right) \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}. By Theorem 3, there are two disjoint paths H_{1} and H_{2} in Q_{n}^{1} such that (1) H_{1} joins $\left(\mathbf{b}_{\mathbf{1}}\right)^{n}$ to \mathbf{y}, (2) H_{2} joins ($\left.\mathbf{b}_{2}\right)^{n}$ to \mathbf{v}, and (3) $H_{1} \cup H_{2}$ spans Q_{n}^{1}. We set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b}_{\mathbf{1}},\left(\mathbf{b}_{1}\right)^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2}, \mathbf{b}_{2},\left(\mathbf{b}_{2}\right)^{n}, H_{2}, \mathbf{v}\right\rangle$. Obviously, P_{1} and P_{2} form the desired paths. See Fig. 11(a).
(i) Every node in $A_{1} \cup A_{2}$ is white.
(i.1) $\left|A_{1}-\left\{(\mathbf{v})^{n}\right\}\right| \geq 1$ or $\left|A_{2}-\left\{(\mathbf{y})^{n}\right\}\right| \geq 1$. Without loss of generality, there exists a white vertex \mathbf{w} in A_{1} such that $(\mathbf{w})^{n} \neq \mathbf{v}$. Let \mathbf{b} be a black vertex in $N b d_{Q_{n}^{0}}(\mathbf{w})$, and let \mathbf{z} be a white vertex in $N b d_{Q_{n}^{1}}(\mathbf{v})-\left\{(\mathbf{b})^{n}\right\}$ such that $(\mathbf{z})^{n} \notin A_{1}$. With this premise, there exist two disjoint paths R_{1} and R_{2} in Q_{n}^{0} such that (1) R_{1} joins \mathbf{x} to \mathbf{b}, (2) R_{2} joins \mathbf{u} to $(\mathbf{z})^{n}$, (3) $\left(A_{1}-\{\mathbf{w}\}\right) \subseteq R_{1}$, (4) $A_{2} \subseteq R_{2}$, and (5) $R_{1} \cup R_{2}$ spans Q_{n}^{0}.
(i.1.1) \mathbf{w} is in R_{1}. By Lemma 1, there exists a hamiltonian path H of $Q_{n}^{1}-\{\mathbf{z}, \mathbf{v}\}$ joining $(\mathbf{b})^{n}$ to \mathbf{y}. Then we set $P_{1}=$ $\left\langle\mathbf{x}, R_{1}, \mathbf{b},(\mathbf{b})^{n}, H, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2},(\mathbf{z})^{n}, \mathbf{z}, \mathbf{v}\right\rangle$ to form the desired paths. See Fig. 11(b).
(i.1.2) \mathbf{w} is in R_{2}. Without loss of generality, we write $R_{2}=\left\langle\mathbf{u}, R_{2,1}, \mathbf{b}_{1}, \mathbf{w}, \mathbf{b}_{2}, R_{2,2},(\mathbf{z})^{n}\right\rangle$. We have the following two possibilities.

Suppose that $\mathbf{w}=(\mathbf{y})^{n}$. By Theorem 2, there exists a hamiltonian path H of $Q_{n}^{1}-\{\mathbf{y}, \mathbf{v}, \mathbf{z}\}$ joining $\left(\mathbf{b}_{1}\right)^{n}$ to $\left(\mathbf{b}_{2}\right)^{n}$. Then we set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b}, \mathbf{w}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2,1}, \mathbf{b}_{1},\left(\mathbf{b}_{1}\right)^{n}, H,\left(\mathbf{b}_{2}\right)^{n}, \mathbf{b}_{2}, R_{2,2},(\mathbf{z})^{n}, \mathbf{z}, \mathbf{v}\right\rangle$ to form the desired paths. See Fig. 11(c).

Suppose that $\mathbf{w} \neq(\mathbf{y})^{n}$. By Lemma 4, there exist two disjoint paths H_{1} and H_{2} of $Q_{n}^{1}-\{\mathbf{v}, \mathbf{z}\}$ such that (1) H_{1} joins $(\mathbf{w})^{n}$ to $\mathbf{y},(2) H_{2}$ joins $\left(\mathbf{b}_{1}\right)^{n}$ to $\left(\mathbf{b}_{2}\right)^{n}$, and (3) $H_{1} \cup H_{2}$ spans $Q_{n}^{1}-\{\mathbf{v}, \mathbf{z}\}$. Then we set $P_{1}=\left\langle\mathbf{x}, R_{1}, \mathbf{b}, \mathbf{w},(\mathbf{w})^{n}, H_{1}, \mathbf{y}\right\rangle$ and $P_{2}=\left\langle\mathbf{u}, R_{2,1}, \mathbf{b}_{1},\left(\mathbf{b}_{1}\right)^{n}, H_{2},\left(\mathbf{b}_{2}\right)^{n}, \mathbf{b}_{2}, R_{2,2},(\mathbf{z})^{n}, \mathbf{z}, \mathbf{v}\right\rangle$ to form the desired paths. See Fig. 11(d).
(i.2) $\left|A_{1}-\left\{(\mathbf{v})^{n}\right\}\right|=0$ and $\left|A_{2}-\left\{(\mathbf{y})^{n}\right\}\right|=0$. That is, $A_{1}=\left\{(\mathbf{v})^{n}\right\}$ and $A_{2}=\left\{(\mathbf{y})^{n}\right\}$. Since $h(\mathbf{x}, \mathbf{y}) \geq 3$, there exists an integer $i, 1 \leq i \leq n-1$, to re-partition Q_{n} so that (1) \mathbf{x} and \mathbf{y} are in different subcubes, and (2) $\mathbf{y} \neq(\mathbf{u})^{i}$. To construct the required paths, we can use the same approach described in part (h) and Case 1 of this proposition, or in Cases 1 and 4 of Proposition 3.

Below is the proof of Lemma 5: let W and B form the bipartition of Q_{n} with $n \geq 3$. Suppose that \mathbf{x} and \mathbf{u} are any two different vertices in W, whereas \mathbf{y} and \mathbf{v} are any two different vertices in B. Let A_{1} and A_{2} be any two disjoint vertex subsets of $Q_{n}-\{\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}\}$ such that $\left|A_{1}\right|+\left|A_{2}\right|=n-3$. The proof proceeds by induction. Obviously, the lemma holds for $n=3$. By Lemma 3, this lemma holds for $n=4$. As the inductive hypothesis, we assume that the lemma holds for Q_{n-1} for $n \geq 5$. Lemma 3 also implies that this lemma holds if A_{1} or A_{2} is empty. Thus, we consider that $n \geq 5,\left|A_{1}\right| \geq 1$, and $\left|A_{2}\right| \geq 1$.

Since \mathbf{x} and \mathbf{y} are in different partite sets of Q_{n}, there exists an integer $k, 1 \leq k \leq n$, to partition Q_{n} so that \mathbf{x} and \mathbf{y} belong to different subcubes and $\mathbf{y} \neq(\mathbf{u})^{k}$. By the symmetry of Q_{n}, we assume that $k=n$; that is, $\mathbf{x} \in V\left(Q_{n}^{0}\right), \mathbf{y} \in V\left(Q_{n}^{1}\right)$, and $\mathbf{y} \neq(\mathbf{u})^{n}$. For $i \in\{1,2\}$ and $j \in\{0,1\}$, we set $A_{i}^{j}=A_{i} \cap V\left(Q_{n}^{j}\right)$. Then, we have the following four cases.

Case 1: $\left|\left\{(i, j) \mid A_{i}^{j}=\emptyset\right\}\right|=0$. Obviously, $n-3=\left|A_{1}\right|+\left|A_{2}\right|=\left|A_{1}^{0}\right|+\left|A_{1}^{1}\right|+\left|A_{2}^{0}\right|+\left|A_{2}^{1}\right| \geq 4$. Thus, $n \geq 7$. Moreover, $\left|A_{i}^{j}\right| \leq n-6$ for $i \in\{1,2\}$ and $j \in\{0,1\}$, and $\left|A_{1}^{1}\right|+\left|A_{2}^{1}\right|+|\{\mathbf{y}\}| \leq n-4$. By Proposition 1 , this case follows.

Case 2: $\left|\left\{(i, j) \mid A_{i}^{j}=\emptyset\right\}\right|=1$. Without loss of generality, we assume that $\left|A_{2}^{1}\right|=0$. Obviously, $n-3=\left|A_{1}\right|+\left|A_{2}\right|=$ $\left|A_{1}^{0}\right|+\left|A_{1}^{1}\right|+\left|A_{2}^{0}\right| \geq 3$. Thus, $n \geq 6$. By Proposition 2, this case follows.

Case 3: Either $\left|A_{1}^{0}\right|=\left|A_{2}^{1}\right|=0$ or $\left|A_{1}^{1}\right|=\left|A_{2}^{0}\right|=0$. Without loss of generality, we assume that $\left|A_{1}^{1}\right|=\left|A_{2}^{0}\right|=0$. That is, $A_{1} \subset V\left(Q_{n}^{0}\right)$ and $A_{2} \subset V\left(Q_{n}^{1}\right)$. By Proposition 3, this case follows.

Case 4: Either $\left|A_{1}^{0}\right|=\left|A_{2}^{0}\right|=0$ or $\left|A_{1}^{1}\right|=\left|A_{2}^{1}\right|=0$. Without loss of generality, we assume that $\left|A_{1}^{1}\right|=\left|A_{2}^{1}\right|=0$. Obviously, $n-3=\left|A_{1}\right|+\left|A_{2}\right|=\left|A_{1}^{0}\right|+\left|A_{2}^{0}\right| \geq 2$. Thus, $n \geq 5$. By Proposition 4, this case follows.

These enumerated cases have addressed all possibilities and complete the proof.

References

[1] M. Albert, R.E.L. Aldred, D. Holton, On 3*-connected graphs, Australasian Journal of Combinatorics 24 (2001) 193-208.
[2] B. Alspach, D. Bryant, D. Dyer, Paley graphs have Hamilton decompositions, Discrete Mathematics 312 (2012) 113-118.
[3] B. Bollobás, G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155.
[4] J.A. Bondy, Pancyclic graphs, Journal of Combinatorial Theory Series B 11 (1971) 80-84.
[5] H.J. Broersma, H. Li, J. Li, F. Tian, H.J. Veldman, Cycles through subsets with large degree sums, Discrete Mathematics 171 (1997) 43-54.
[6] C.-H. Chang, C.-K. Lin, H.-M. Huang, L.-H. Hsu, The super laceability of the hypercubes, Information Processing Letters 92 (2004) 15-21.
[7] S. Fujita, T. Araki, Three-round adaptive diagnosis in binary n-cubes, in: Lecture Note in Computer Science, vol. 3341, 2004, pp. 442-452.
[8] V.S. Gordon, Y.L. Orlovich, C.N. Potts, V.A. Strusevich, Hamiltonian properties of locally connected graphs with bounded vertex degree, Discrete Applied Mathematics 159 (2011) 1759-1774.
[9] S.L. Hakimi, E.F. Schmeichel, On the number of cycles of length k in a maximal planar graph, Journal of Graph Theory 3 (1979) 69-86.
[10] F. Harary, M. Lewinter, The starlike trees which span a hypercube, Computers \& Mathematics with Applications 15 (1988) $299-302$.
[11] A. Harkat-Benhamdine, H. Li, F. Tian, Cyclability of 3-connected graphs, Journal of Graph Theory 34 (2000) 191-203.
[12] L.-H. Hsu, C.-K. Lin, Graph Theory and Interconnection Networks, CRC Press, 2008.
[13] K. Ishii, K. Ozeki, K. Yoshimoto, Set-orderedness as a generalization of k-orderedness and cyclability, Discrete Mathematics 310 (2010) $2310-2316$.
[14] T.-L. Kung, C.-K. Lin, L.-H. Hsu, On the maximum number of fault-free mutually independent Hamiltonian cycles in the faulty hypercube, Journal of Combinatorial Optimization (2013) http://dx.doi.org/10.1007/s10878-012-9528-1. in press.
[15] C.-M. Lee, J.J.M. Tan, L.-H. Hsu, Embedding hamiltonian paths in hypercubes with a required vertex in a fixed position, Information Processing Letters 107 (2008) 171-176.
[16] F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
[17] R. Li, S. Li, Y. Guo, Degree conditions on distance 2 vertices that imply k-ordered Hamiltonian, Discrete Applied Mathematics 158 (2010) $331-339$.
[18] S. Li, R. Li, J. Feng, An efficient condition for a graph to be Hamiltonian, Discrete Applied Mathematics 155 (2007) 1842-1845.
[19] C.-K. Lin, H.-M. Huang, L.-H. Hsu, The super connectivity of the pancake graphs and star graphs, Theoretical Computer Science 339 (2005) $257-271$.
[20] C.-K. Lin, H.-M. Huang, J.J.M. Tan, L.-H. Hsu, On spanning connected graphs, Discrete Mathematics 308 (2008) 1330-1333.
[21] J. Liu, Hamiltonian decompositions of Cayley graphs on Abelian groups, Discrete Mathematics 131 (1994) 163-171.
[22] J. Liu, Hamiltonian decompositions of Cayley graphs on abelian groups of even order, Journal of Combinatorial Theory Series B 88 (2003) $305-321$.
[23] K. Ota, Cycles through prescribed vertices with large degree sum, Discrete Mathematics 145 (1995) 201-210.
[24] C.-M. Sun, C.-N. Hung, H.-M. Huang, L.-H. Hsu, Y.-D. Jou, Hamiltonian laceability of faulty hypercubes, Journal of Interconnection Networks 8 (2007) 133-145.
[25] C.-H. Tsai, J.J.M. Tan, T. Liang, L.-H. Hsu, Fault-tolerant hamiltonian laceability of hypercubes, Information Processing Letters 83 (2002) $301-306$.
[26] S. Wang, Y. Yang, J. Li, S. Lin, Hamiltonian cycles passing through linear forests in k-ary n-cubes, Discrete Applied Mathematics 159 (2011) $1425-1435$.

[^0]: This work was supported in part by the National Science Council of the Republic of China under Contracts 97-2221-E-126-001-MY3 and 101-2221-E-468-018.

 * Corresponding author. Fax: +886 423305737.

 E-mail address: tlkung@asia.edu.tw (T.-L. Kung).

