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a b s t r a c t

A graph G is spanning r-cyclable of order t if for any r nonempty mutually disjoint vertex
subsets A1, A2, . . . , Ar of G with |A1 ∪ A2 ∪ · · · ∪ Ar | ≤ t , there exist r disjoint cycles
C1, C2, . . . , Cr of G such that C1 ∪ C2 ∪ · · · ∪ Cr spans G, and Ci contains Ai for every i. In
this paper, we prove that the n-dimensional hypercube Qn is spanning 2-cyclable of order
n − 1 for n ≥ 3. Moreover, Qn is spanning k-cyclable of order k if k ≤ n − 1 for n ≥ 2.
The spanning r-cyclability of a graph G is the maximum integer t such that G is spanning
r-cyclable of order k for k = r, r + 1, . . . , t but is not spanning r-cyclable of order t + 1.
We also show that the spanning 2-cyclability of Qn is n − 1 for n ≥ 3.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For those graph definitions and notations not defined here, we follow the standard terminology given in [12]. A pair of
two sets G = (V , E) is a graph if V is a finite set and E is a subset of {(a, b) | (a, b) is an unordered pair of elements of V }.
We say that V = V (G) is the vertex set, and E = E(G) is the edge set. Two vertices u and v are adjacent if (u, v) ∈ E. The
neighborhood of vertex u in G, denoted by NbdG(u), is the set {v ∈ V |(u, v) ∈ E}. The degree of u in G, denoted by degG(u), is
|NbdG(u)|. A path is a sequence of adjacent vertices, written as ⟨v0, v1, . . . , vm⟩, in which all the vertices v0, v1, . . . , vm are
distinct except that possibly v0 = vm.

A cycle of a graph G is a pathwith at least three vertices such that the first vertex is the same as the last one. A hamiltonian
cycle is a spanning cycle in a graph. Until the 1970s, the interest in hamiltonian cycles had long been centered on their
relationship to the 4-color problem. Recently, some refined conditions for a graph to be hamiltonian were proposed by
researchers [8,17,18], and the study of hamiltonian cycles in general graphs has been fueled by the issue of computational
complexity and practical applications. Furthermore, a number of variations were developed and research efforts have been
dedicated to pancyclicity [4,9], super spanning connectivity [1,6,19,20], k-ordered hamiltonicity [17], and hamiltonian
decomposition [2,21,22] among many other areas. In particular, hamiltonian cycles are a major requirement to design
effective interconnection networks [12,14,25,26].

There are several directions of research based on the hamiltonian property. One direction involves the spanning property
of cycles. For example, a 2-factor of a graph G is a spanning 2-regular subgraph of G; that is, G has a 2-factor if it can be
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Fig. 1. Illustration for Examples 1 and 2.

decomposed into several disjoint cycles. This notion can be applied to identify faulty units in a multiprocessor system. In
particular, Fujita and Araki [7] proposed a three-round adaptive diagnosis algorithm by decomposing the hypercube into a
fixed number of disjoint cycles such that the length of each cycle is not too small. The other direction addresses the cyclability
of a graph G. Let S be a subset of V (G). Then, S is cyclable in G if there exists a cycle C of G such that S ⊆ V (C). Many results
of cyclability are known [3,5,11,13,23]. In this paper, we study a new property which is a mixture of these two directions.

Now, we extend the concept behind hamiltonian graphs and consider two or more cycles spanning a whole graph. Let
A1, A2, . . . , Ar be mutually disjoint nonempty vertex subsets of a graph G. Then G is cyclable with respect to A1, A2, . . . , Ar
if there exist mutually disjoint cycles C1, C2, . . . , Cr of G such that Ci contains Ai for every i. Obviously, a graph is unlikely
to be cyclable with respect to any r mutually disjoint vertex subsets if r ≥ 2. For example, G cannot be cyclable with
respect to A1 = {u, v} and A2 = V (G) − {u, v} for any two vertices u, v of G. To make this notion more reasonable, we
impose one restriction on the order of A1 ∪ A2 · · · ∪ Ar . To be precise, G is r-cyclable of order t if it is cyclable with respect
to A1, A2, . . . , Ar for any r nonempty mutually disjoint subsets A1, A2, . . . , Ar of V (G) such that |A1 ∪ A2 ∪ · · · Ar | ≤ t . In
addition, if C1 ∪ C2 ∪ · · · ∪ Cr spans G, then G is spanning r-cyclable of order t . Here we have two parameters r and t . We can
fix one of them and find the optimal value for the other. The (spanning) r-cyclability of G is t if G is (spanning) r-cyclable of
order k for k = r, r + 1, . . . , t but is not (spanning) r-cyclable of order t + 1. On the other hand, the (spanning) cyclability
of G of order t is r if G is (spanning) k-cyclable of order t for k = 1, 2, . . . , r but is not (spanning) (r + 1)-cyclable of order
t . According to the presented notion, the problem of finding hamiltonian cycles focuses on r = 1. It is also noticed that not
only is the set of disjoint spanning cycles of G a 2-factor, but also each cycle contains a designated vertex subset. Rather than
2-factors, the number of disjoint cycles is controlled. We give two examples to clarify the proposed notion.

Example 1. Fig. 1(a) depicts the Petersen graph. Since the Petersen graph is not hamiltonian, it is not spanning 1-cyclable of
any order. However, it is 1-cyclable of order 9. To see that the Petersen graph is spanning 2-cyclable of order 2, we assume
that A1 = {1} and A2 = {i} for i ≠ 1. We set C1 = ⟨1, 2, 3, 4, 5, 1⟩ and C2 = ⟨6, 8, 10, 7, 9, 6⟩ if i ∈ {6, 7, 8, 9, 10}; we set
C1 = ⟨1, 5, 4, 9, 6, 1⟩ and C2 = ⟨2, 3, 8, 10, 7, 2⟩ if i ∈ {2, 3}; we set C1 = ⟨1, 2, 3, 8, 6, 1⟩ and C2 = ⟨4, 5, 10, 7, 9, 4⟩ if
i ∈ {4, 5}. Then C1 and C2 are two disjoint spanning cycles with A1 ⊂ V (C1) and A2 ⊂ V (C2), respectively.

Example 2. Let G be the graph shown in Fig. 1(b). Obviously, G is hamiltonian. Thus, it is spanning 1-cyclable of order 10.
However, as an example, it is not 2-cyclable with respect to A1 = {i} and A2 = {i + 5} for i = 0, 1, 2, 3, 4. As a result, G is
not spanning 2-cyclable of order 2.

In this paper, we limit ourself by considering the n-dimensional hypercube Qn as the underlying graph and study its
spanning 2-cyclability. We have the following results: (1) for n ≥ 3, Qn is spanning 2-cyclable of order n − 1; (2) Qn is
spanning k-cyclable of order k if k ≤ n − 1 for n ≥ 2.

2. Properties of hypercubes

Let u = unun−1 . . . u2u1 be an n-bit binary string. The Hamming weight of u, denoted by w(u), is the number of indices
i, 1 ≤ i ≤ n, such that ui = 1. Let u = unun−1 . . . u2u1 and v = vnvn−1 . . . v2v1 be two n-bit binary strings. The Hamming
distance h(u, v) between u and v is the number of different bits in the corresponding strings. The n-dimensional hypercube,
denoted by Qn for n ≥ 1, consists of all n-bit binary strings as its vertices, and two vertices u and v are adjacent if and only if
h(u, v) = 1. Obviously, Qn is a bipartite graphwith bipartitionW = {u ∈ V (Qn) | w(u) is even} and B = {u ∈ V (Qn) | w(u)
is odd}. For i = 0, 1, let Q i

n denote the subgraph of Qn induced by {u = unun−1 . . . u2u1 | un = i}. Obviously, Q i
n is isomorphic

to Qn−1 with n ≥ 2. For any vertex u = unun−1 . . . u2u1 of Qn, we use (u)j to denote the bit uj, where 1 ≤ j ≤ n. Moreover,
we use (u)k to denote the vertex v = vnvn−1 . . . v2v1 with ui = vi for 1 ≤ i ≠ k ≤ n and vk = 1 − uk.

The hypercube Qn is one of the most popular interconnection networks for parallel computer/communication
systems [16]. In the following, we discuss some properties of the hypercube that will be used in this paper.

First, Theorem 1 states that Qn is hamiltonian laceable and hyper-hamiltonian laceable.
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Theorem 1 ([10,25]). Assume that n is any positive integer with n ≥ 2. Then there exists a hamiltonian path of Qn joining any
two vertices from different partite sets. Moreover, there exists a hamiltonian path of Qn − {x} joining y to z if x is in one partite
set whereas y and z are in the other partite set.

In particular, Lemmas 1 and 2 indicate that Qn − {w, b} remains hamiltonian laceable whenever w and b are vertices in
different partite sets.

Lemma 1 ([24]). Let n be any positive integer with n ≥ 4. Let W and B form the bipartition of Qn. Assume that x andw are any
two different vertices inW,whereas y and b are any two different vertices in B. Then there exists a hamiltonian path of Qn−{w, b}

joining x and y.

Lemma 2 ([14]). Let n be any positive integer with n ≥ 4. Assume that w and b are any two adjacent vertices of Qn, and F is
any edge subset of Qn − {w, b} with |F | ≤ n − 3. Then there exists a hamiltonian path of (Qn − {w, b}) − F joining any two
vertices from different partite sets.

Theorem 2 generalizes the fault-tolerance of hamiltonian laceability for Qn, and Theorem 3 gives two types of 2-disjoint-
path cover in Qn.

Theorem 2 ([24]). Assume that n ≥ 3. Let Fv be a union of fv disjoint pairs of adjacent vertices in Qn, and let Fe be a set consisting
of fe edges in Qn with fv + fe ≤ n − 3. Then there exists a hamiltonian path of Qn − (Fv ∪ Fe) joining any two vertices from
different partite sets. Moreover, there exists a hamiltonian path of Qn − (Fv ∪ Fe ∪ {x}) joining y and z if x is in one partite set,
and y, z are in the other partite set.

Theorem 3 ([15]). Let n be any positive integer with n ≥ 4. Let W and B form the bipartition of Qn. Assume that x and w are
any two different vertices in W, y and b are any two different vertices in B. There are two disjoint paths P1 and P2 in Qn such
that (1) P1 is a path of length 2n−1

− 1 joining x and y, (2) P2 is a path of length 2n−1
− 1 joining w and b, and (3) P1 ∪ P2 spans

Qn. Moreover, there are two disjoint paths P3 and P4 in Qn such that (1) P3 is a path joining x and w, (2) P4 is a path joining y
and b, and (3) P3 ∪ P4 spans Qn.

In the rest of this section, we apply the results introduced above to prove Lemmas 3 and 4, which specify 2-disjoint-path
covers in Qn that are able to contain the prescribed vertices. The two lemmas will be used in the proof of Lemma 5, which is
a key result presented in the next section for deriving the spanning 2-cyclability of Qn.

Lemma 3. Let W and B form the bipartition of Qn with n ≥ 4. Suppose that x and u are two different vertices in W, whereas y
and v are two different vertices in B. Let S be any nonempty subset of V (Qn) − {x, y,u, v} with |S| ≤ n − 3. Then there are two
disjoint paths P1 and P2 such that (1) P1 joins x to y, (2) P2 joins u to v, (3) S ⊆ P1, and (4) P1 ∪ P2 spans Qn.

Proof. We prove this lemma by induction on n. We describe in Appendix A that this lemma holds for n = 4. Since Qn is
vertex-transitive and edge-transitive, we assume, without loss of generality, that x is in Q 0

n , and y is in Q 1
n . For i ∈ {0, 1}, we

set Wi = W ∩ V (Q i
n), Bi = B ∩ V (Q i

n), and Si = S ∩ V (Q i
n). We have the following cases.

Case 1: |S0| ≥ 1 and |S1| ≥ 1. Thus, |S0| ≤ n − 4 and |S1| ≤ n − 4.
Subcase 1.1: Both u and v are in Q i

n for some i ∈ {0, 1}. Without loss of generality, we assume that both u and v are in Q 0
n .

Since |B0| = 2n−2 > (n− 3) ≥ |S0 ∪ {v}| for n ≥ 5, we can choose any vertex b from B0 − (S0 ∪ {v}). By induction, there are
two disjoint paths R1 and R2 in Q 0

n such that (1) R1 joins x to b, (2) R2 joins u to v, (3) S0 ⊆ R1, and (4) R1 ∪ R2 spans Q 0
n . By

Theorem 1, there is a hamiltonian path H of Q 1
n joining (b)n to y. We set P1 = ⟨x, R1, b, (b)n,H, y⟩ and P2 = R2. Obviously,

P1 and P2 form the desired paths. See Fig. 2(a).
Subcase 1.2: u is in Q 0

n , and v is in Q 1
n . We set T = {p ∈ V (Q 0

n ) | (p)n ∈ S1}. Obviously, |S0 ∪T | ≤ |S0|+|T | = |S0|+|S1| =

|S| ≤ n − 3. Since |B0 − (S0 ∪ T )| ≥ |B0| − |S0 ∪ T | ≥ 2n−2
− (n − 3) ≥ 2 for n ≥ 5, we can choose two distinct vertices

b1 and b2 in B0 − (S0 ∪ T ). By induction, there are two disjoint paths R1 and R2 in Q 0
n such that (1) R1 joins x to b1, (2) R2

joins u to b2, (3) S0 ⊆ R1, and (4) R1 ∪ R2 spans Q 0
n . Moreover, there are two disjoint paths H1 and H2 in Q 1

n such that (1)
H1 joins (b1)

n to y, (2) H2 joins (b2)
n to v, (3) S1 ⊆ H1, and (4) H1 ∪ H2 spans Q 1

n . We set P1 = ⟨x, R1, b1, (b1)
n,H1, y⟩ and

P2 = ⟨u, R2, b2, (b2)
n,H2, v⟩. Obviously, P1 and P2 form the desired paths. See Fig. 2(b).

Subcase 1.3: u is in Q 1
n , and v is in Q 0

n . We set T = {p ∈ V (Q 0
n ) | (p)n ∈ S1}. Similar to that shown in Subcase 1.2, we have

|B0−(S0∪T ∪{(u)n})| ≥ 1 and |W0−(S0∪T ∪{x, (y)n})| ge1. Thus, there exists at least one vertex b in B0−(S0∪T ∪{(u)n}),
and there exists at least one vertex w in W0 − (S0 ∪ T ∪ {x, (y)n}). By induction, there are two disjoint paths R1 and R2 in
Q 0
n such that (1) R1 joins x to b, (2) R2 joins w to v, (3) S0 ⊆ R1, and (4) R1 ∪ R2 spans Q 0

n . Moreover, there are two disjoint
paths H1 and H2 in Q 1

n such that (1) H1 joins (b)n to y, (2) H2 joins u to (w)n, (3) S1 ⊆ H1, and (4) H1 ∪ H2 spans Q 1
n . We set

P1 = ⟨x, R1, b, (b)n,H1, y⟩ and P2 = ⟨u,H2, (w)n,w, R2, v⟩. Obviously, P1 and P2 form the desired paths. See Fig. 2(c).
Case 2: Either |S0| = 0 or |S1| = 0. Without loss of generality, we assume that |S0| = 0.
Subcase 2.1: Both u and v are in Q 0

n . Let b be any vertex in B0 − {v}. By Theorem 3, there are two disjoint paths R1 and R2

in Q 0
n such that (1) R1 joins x to b, (2) R2 joins u to v, and (3) R1 ∪ R2 spans Q 0

n . By Theorem 1, there is a hamiltonian path
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Fig. 2. Illustration for Case 1 of Lemma 3.
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Fig. 3. Illustration for Case 2 of Lemma 3.

H of Q 1
n joining (b)n to y. We set P1 = ⟨x, R1, b, (b)n,H, y⟩ and P2 = R2. Obviously, P1 and P2 form the desired paths. See

Fig. 3(a).
Subcase 2.2: Both u and v are in Q 1

n . Since |W1| > degQ 1
n
(v) = n − 1 > n − 2 ≥ |S ∪ {u}|, there exists a vertex w in

W1 − (S ∪ {u}) such that (v,w) ∈ E(Qn). Since |B1| = 2n−2 > n − 3 ≥ |S1 ∪ {(x)n}| for n ≥ 5, there exists a vertex b in
B1 − (S1 ∪ {(x)n}). By Theorem 2, there exists a hamiltonian path H of Q 1

n − {u, v,w} joining b to y. By Theorem 3, there are
two disjoint paths R1 and R2 in Q 0

n such that (1) R1 joins x to (b)n, (2) R2 joins (u)n to (w)n, and (3) R1 ∪ R2 spans Q 0
n . We set

P1 = ⟨x, R1, (b)n, b,H, y⟩ and P2 = ⟨u, (u)n, R2, (w)n,w, v⟩. Obviously, P1 and P2 form the desired paths. See Fig. 3(b).
Subcase 2.3: u is in Q 0

n , and v is in Q 1
n . Obviously, there exists a vertexw1 inW1 − S1 such that (v,w1) ∈ E(Q 1

n ). Letw2 be
a vertex inW1 −{w1}. By Theorem 2, there exists a hamiltonian path H of Q 1

n −{v,w1} joiningw2 to y. By Theorem 3, there
are two disjoint paths R1 and R2 in Q 0

n such that (1) R1 joins x to (w2)
n, (2) R2 joins u to (w1)

n, and (3) R1 ∪ R2 spans Q 0
n . We

set P1 = ⟨x, R1, (w2)
n,w2,H, y⟩ and P2 = ⟨u, R2, (w1)

n,w1, v⟩. Obviously, P1 and P2 form the desired paths. See Fig. 3(c).
Subcase 2.4: u is in Q 1

n , and v is in Q 0
n .

Suppose that (u, v) ∈ E(Qn). Let w be any vertex in W0. By Theorem 1, there exists a hamiltonian path R1 of Q 0
n − {v}

joining x tow, and there exists a hamiltonian path R2 of Q 1
n − {u} joining (w)n to y. We set P1 = ⟨x, R1,w, (w)n, R2, y⟩ and

P2 = ⟨u, v⟩. Obviously, P1 and P2 form the desired paths. See Fig. 3(d).
Suppose that (u, v) ∉ E(Qn). Letw be any vertex inW0 −{x, (y)n}. By Theorem 3, there exist two disjoint paths R1 and R2

in Q 0
n such that (1) R1 joins x tow, (2) R2 joins (u)n to v, and (3) R1 ∪ R2 spans Q 0

n . By Theorem 1, there exists a hamiltonian
path H of Q 1

n − {u} joining (w)n to y. We set P1 = ⟨x, R1,w, (w)n,H, y⟩ and P2 = ⟨u, (u)n, R2, v⟩. Obviously, P1 and P2 form
the desired paths. See Fig. 3(e). �

Lemma 4. Let W and B form the bipartition of Qn with n ≥ 5. Let p, x, and y be three different vertices in W, and let q, u,
and v be three different vertices in B such that {(p, q), (x,u), (x, v)} ⊂ E(Qn). Then there exist two disjoint paths P1 and P2 in
Qn − {p, q} such that (1) P1 joins x to y, (2) P2 joins u to v, and (3) P1 ∪ P2 spans Qn − {p, q}.

Proof. Since n ≥ 5, there exists an integer 1 ≤ k ≤ n such that q ≠ (p)k, u ≠ (x)k, and v ≠ (x)k. By the symmetric
property of Qn, we can assume k = n. Without loss of generality, we consider that both p and q are in Q 0

n . For i ∈ {0, 1}, we
setWi = W ∩ V (Q i

n) and Bi = B ∩ V (Q i
n). Note that {x,u, v} ⊂ V (Q i

n) for some i ∈ {0, 1}. We have the following cases.
Case 1: {x,u, v} ⊂ V (Q 0

n ) and y ∈ V (Q 1
n ). By Theorem 2, there exists a hamiltonian path R of Q 0

n − {p, q, x} joining u
and v. By Theorem 1, there exists a hamiltonian path H of Q 1

n joining (x)n and y. We set P1 = ⟨x, (x)n,H, y⟩ and P2 = R.
Obviously, P1 and P2 form the required paths. See Fig. 4(a).

Case 2: y ∈ V (Q 0
n ) and {x,u, v} ⊂ V (Q 1

n ). Since |B0| = 2n−2 > 2, there exists a vertex b in B0 − {q, (x)n}. By Theorem 2,
there exists a hamiltonian path R of Q 0

n − {p, q} joining b and y. By Theorem 3, there exist two disjoint paths H1 and H2 in
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Fig. 4. Illustration for Lemma 4.

Q 1
n such that (1) H1 joins x and (b)n, (2) H2 joins u to v, and (3) H1 ∪ H2 spans Q 1

n . We set P1 = ⟨x,H1, (b)n, b, R, y⟩ and
P2 = H2. Obviously, P1 and P2 form the required paths. See Fig. 4(b).

Case 3: {x, y,u, v} ⊂ V (Q 0
n ). By Theorem 2, there exists a hamiltonian path R of Q 0

n − {p, q,u} joining x and y. Without
loss of generality, wewrite R = ⟨x, R1,w, v, z, R2, y⟩. By Theorem 1, there exist two disjoint pathsH1 andH2 in Q 1

n such that
(1) H1 joins (w)n and (z)n, (2) H2 joins (u)n to (v)n, and (3) H1 ∪H2 spans Q 1

n . We set P1 = ⟨x, R1,w, (w)n,H1, (z)n, z, R2, y⟩
and P2 = ⟨u, (u)n,H2, (v)n, v⟩. Obviously, P1 and P2 form the required paths. See Fig. 4(c).

Case 4: {x, y,u, v} ⊂ V (Q 1
n ). Obviously, eitheru ≠ (p)n or v ≠ (p)n. Without loss of generality, we assume thatu ≠ (p)n.

Since degQ 1
n
(v) > 3, there exists a vertex z in W1 − {x, y, (q)n} such that (z, v) ∈ E(Qn). By Theorem 2, there exists a

hamiltonian path H of Q 1
n − {u, v, z} joining x and y, and there exists a hamiltonian R of Q 0

n − {p, q} joining (u)n and (z)n.
We set P1 = H and P2 = ⟨u, (u)n, R, (z)n, z, v⟩. Obviously, P1 and P2 form the required paths. See Fig. 4(d). �

3. Two disjoint cycles span hypercubes

A bipartite graph G, with bipartition W and B, is called 2-disjoint-path-coverable of order t if for any {x, u} ⊂ W ,
{y, v} ⊂ B, and any two disjoint subsets A1, A2 of V (G) − {x, y, u, v} with |A1 ∪ A2| ≤ t , there exists two disjoint paths
P1 and P2 of G such that (1) P1 joins x and y, (2) P2 joins u and v, (3) A1 ⊆ P1, (4) A2 ⊆ P2, and (5) P1 ∪ P2 spans G. The
following lemma is the key result to derive a tight lower bound of spanning 2-cyclability of Qn. Our proof idea is based
on constructing two disjoint paths that can span Qn and cover any two disjoint vertex subsets with the sum of orders not
exceeding n − 3. The proof will be divided into various cases, each of which may consist of a number of subcases. To stress
the main contribution of this paper, we thus defer those tedious details to Appendix B for the sake of clarity.

Lemma 5. Suppose that n ≥ 3. Then, Qn is 2-disjoint-path-coverable of order n − 3.

The following theorem holds directly from Lemma 5.

Theorem 4. Assume that n ≥ 4. Let A1 and A2 be any two disjoint vertex subsets of Qn with |A1 ∪ A2| ≤ n − 1. Then there exist
two disjoint cycles C1 and C2 of Qn such that (1) A1 ⊆ C1 (2) A2 ⊆ C2, and (3) C1 ∪ C2 spans Qn.

Proof. Without loss of generality, we consider |A1 ∪ A2| = n − 1. There are two cases as follows.
Case 1: Both A1 and A2 are nonempty. Thus, |A1| ≤ n − 2 and |A2| ≤ n − 2. Since |A1| + |A2| = n − 1 ≥ 3, we

may assume, without loss of generality, that |A1| ≥ 2. Let u be a vertex in A2. Since degQn(u) = n > n − 2 ≥ |A1|,
there exists a vertex v in NbdQn(u) − A1. (Note that it is possible that v is in A2.) Let x and x′ be any two distinct vertices
in A1. Since |(NbdQn(x) ∪ NbdQn(x′)) − {x, x′

}| ≥ 2n − 2 > n ≥ |A1 ∪ A2 ∪ {v}| for n ≥ 4, there exists a vertex y in
(NbdQn(x) ∪ NbdQn(x′)) − (A1 ∪ A2 ∪ {v}). Without loss of generality, we assume that y ∈ NbdQn(x). Let A′

1 = A1 − {x} and
A′

2 = A2 − {u, v}. Obviously, |A′

1 ∪ A′

2| ≤ n − 3. By Lemma 5, there exist two disjoint paths P1 and P2 in Qn such that (1) P1
joins x and y, (2) P2 joins u and v, (3) A1 ⊆ V (P1), (4) A2 ⊆ V (P2), and (5) P1 ∪ P2 spans Qn. We set C1 = ⟨x, P1, y, x⟩ and
C2 = ⟨u, P2, v,u⟩. Obviously, C1 and C2 form the required cycles in Qn.

Case 2: A1 or A2 is empty. We can assume that A1 is empty. First, we consider n ≥ 5. Obviously, there exists a cycle C1 of
length 4 in Qn such that V (C1) ∩ A2 = ∅. By Theorem 2, there exists a hamiltonian cycle C2 of Qn − V (C1). Then, we have
A2 ⊆ C2.

On the other hand, we consider n = 4. Since Q4 is both vertex-symmetric and edge-symmetric, we assume that
|A2 ∩ V (Q i

4)| = 1 and |A2 ∩ V (Q 1−i
4 )| = 2 with i ∈ {0, 1}. For convenience, let A2 ∩ V (Q i

4) = {s}. Obviously, there exists a
cycle C1 of length 4 in Q i

4 not containing s. Moreover, Q i
4 −V (C1) is a cycle of length 4, denoted by ⟨s, t,u, v, s⟩. Then, we can

find a hamiltonian path P of Q 1−i
4 joining (s)4 and (t)4. As a result, C2 = ⟨s, (s)4, P, (t)4, t,u, v, s⟩ and C1 form the requested

cycles. �
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According to Theorem 4, Qn is spanning 2-cyclable of order n − 1 for n ≥ 4. For Q3, let A1 = {x} and A2 = {u}, where x
and u are different vertices of Q3. Since Q3 is vertex-symmetric and edge-symmetric, we assume that x is in Q 0

3 , and u is in
Q 1
3 . Clearly, both Q 0

3 and Q 1
3 are isomorphic to Q2, which is a cycle of length 4. Thus, Q3 is spanning 2-cyclable of order 2. We

summarize the first main result of this paper as follows.

Corollary 1. The n-cube Qn is spanning 2-cyclable of order n − 1 for n ≥ 3.

To study the generalized spanning k-cyclability of Qn for k ≥ 3, we argue by induction that Qn is spanning k-cyclable
of order k if k ≤ n − 1. Trivially, Q2 is spanning 1-cyclable of order 1. As the inductive hypothesis, we assume that Qn−1
is spanning r-cyclable of order r for r ≤ n − 2 with n ≥ 3. Let A = {u1,u2, . . . ,uk} consist of any k vertices of Qn with
k ≤ n − 1. By the symmetric property of Qn, we may assume that u1 is in Q 0

n , and uk is in Q 1
n . We set Ai = A ∩ V (Q i

n) for
i ∈ {0, 1}. Then, A is partitioned into two nonempty subsets A0 and A1. Let t = |A0|. Without loss of generality, we may
assume that ui ∈ A0 if 1 ≤ i ≤ t , and ui ∈ A1 if t < i ≤ k. Note that Q i

n is isomorphic to Qn−1 for i = 0, 1. By induction,
there exist t disjoint cycles C1, C2, . . . , Ct of Q 0

n such that ui is in Ci for 1 ≤ i ≤ t and C1 ∪ C2 ∪ · · · ∪ Ct spans Q 0
n , and there

exist k − t disjoint cycles Ct+1, Ct+2, . . . , Ck of Q 1
n such that ui is in Ci for t + 1 ≤ i ≤ k and Ct+1 ∪ Ct+2 ∪ · · · ∪ Ck spans Q 1

n .
As a result, C1, C2, . . . , Ck form k disjoint cycles of Qn such that ui is in Ci for 1 ≤ i ≤ k and C1 ∪ C2 ∪ · · · ∪ Ck spans Qn. For
clarity, this result is summarized below.

Theorem 5. The n-cube Qn is spanning k-cyclable of order k if k ≤ n − 1 for n ≥ 2.

We give an example to indicate that Qn is not spanning n-cyclable of order n. Let u be any vertex of Qn, and let
{u1,u2, . . . ,un} be the set of vertices adjacent to u. We set A = {u1,u2, . . . ,un−1} ∪ {u}. Obviously, |A| = n. Since
degQn−{u1,u2,...,un−1}(u) = 1, there is no cycle of G − {u1,u2, . . . ,un−1} containing u. Thus, we cannot find n cycles
C1, C2, . . . , Cn of Qn such that ui is in Ci for 1 ≤ i ≤ n − 1, and u is in Cn.

4. Concluding remarks

In this paper we proved that Qn is spanning 2-cyclable of order n − 1 for n ≥ 3. Now we show an example to indicate
that Qn is not 2-cyclable of order n. Let u and v be any two adjacent vertices of Qn. We set A1 = NbdQn(u)−{v} and A2 = {u}.
Obviously, |A1| + |A2| = n. Since degQn−A1(u) = 1, there is no cycle of G− A1 containing A2. Thus, the spanning 2-cyclability
of Qn is n − 1 for n ≥ 3, and this result is optimal. Furthermore, we proved that Qn is spanning k-cyclable of order k if
k ≤ n − 1 for n ≥ 2.

For possible future directions with our result, we first conjecture that Qn is spanning k-cyclable of order n − 1 for every
k ≤ n − 1 and n ≥ 3. As we allowed A1 or A2 to be empty set in the statement of Theorem 4, we indeed have a stronger
conjecture: assume that n ≥ 4. Let A1, A2, . . . , Ak be k disjoint vertex subsets of Qn with |A1 ∪ A2 ∪ · · · ∪ Ak| ≤ n − 1 and
k ≤ n − 1, there exist k disjoint cycles C1, C2, . . . , Ck of Qn such that (1) Ai is in Ci for 1 ≤ i ≤ k, and (2) C1 ∪ C2 ∪ · · · ∪ Ck
spans Qn. Notice that the statement is not always true for n = 3. For counterexample, let A1 = {000, 111} and A2 = ∅. Then
the length of any cycle containing A1 is at least 6. Thus, we cannot find two disjoint cycles C1 and C2 of Q3 such that (1) Ai is
in Ci for 1 ≤ i ≤ 2, and (2) C1 ∪ C2 spans Q3.

Acknowledgments

We would like to express the most immense gratitude to the anonymous reviewers and the editor for their comments
and suggestions. We thank also the Editor-in-Chief for his kindly effort in handling this submission.

Appendix A. Q4 is 2-disjoint-path-coverable of order one

We prepare the following lemma in advance.

Lemma 6. Let p and q be any two adjacent vertices of Q3. Let u and v be any two nonadjacent vertices of Q3 − {p, q} such that
they are in different partite sets. Then there exists a hamiltonian path of Q3 − {p, q} joining u and v.

Proof. Since Q3 is vertex-symmetric and edge-symmetric, we assume that p = 000 and q = 001. We have {u, v} ∈
{011, 100}, {101, 010}


. Clearly, both ⟨011, 010, 110, 111, 101, 100⟩ and ⟨101, 100, 110, 111, 011, 010⟩ are hamiltonian

paths of Q3 − {p, q}. �

Recall that W and B form the bipartition of Q4. Let A1 = {z} and A2 = ∅, where z is any vertex of Q4 − {x, y,u, v}. Since
Q4 is vertex-symmetric and edge-symmetric, we assume that u = 0000 and v ∈ {0001, 0111}.

Case 1: {x, y, z} ⊂ V (Q 1
4 ). By Theorem 1, there exists a hamiltonian path P1 of Q 1

4 joining x and y, and there exists a
hamiltonian path P2 of Q 0

4 joining u and v.



2998 C.-K. Lin et al. / Discrete Applied Mathematics 161 (2013) 2992–3004

Table 1
The vertex b and paths R1 and R2 .

R1 R2

x = 0011, z = 0101 ⟨0011, 0001, 0101, 0100 = b⟩ ⟨0000, 0010, 0110, 0111⟩
x = 0011, z = 0110 ⟨0011, 0010, 0110, 0100 = b⟩ ⟨0000, 0001, 0101, 0111⟩
x = 0101, z = 0011 ⟨0101, 0001, 0011, 0010 = b⟩ ⟨0000, 0100, 0110, 0111⟩
x = 0101, z = 0110 ⟨0101, 0100, 0110, 0010 = b⟩ ⟨0000, 0001, 0011, 0111⟩
x = 0110, z = 0011 ⟨0110, 0010, 0011, 0001 = b⟩ ⟨0000, 0100, 0101, 0111⟩
x = 0110, z = 0101 ⟨0110, 0100, 0101, 0001 = b⟩ ⟨0000, 0010, 0011, 0111⟩

Table 2
The path P1 .

x y P1

0011 0001 ⟨0011, 0010, 0110, 0100, 0101, 0001⟩
0011 0010 ⟨0011, 0001, 0101, 0100, 0110, 0010⟩
0101 0001 ⟨0101, 0100, 0110, 0010, 0011, 0001⟩
0101 0100 ⟨0101, 0001, 0011, 0010, 0110, 0100⟩
0110 0010 ⟨0110, 0100, 0101, 0001, 0011, 0010⟩
0110 0100 ⟨0110, 0010, 0011, 0001, 0101, 0100⟩

Case 2: Either {x} ⊂ V (Q 0
4 ), {y, z} ⊂ V (Q 1

4 ) or {y} ⊂ V (Q 0
4 ), {x, z} ⊂ V (Q 1

4 ). Without loss of generality, we only consider
that {x} ⊂ V (Q 0

4 ) and {y, z} ⊂ V (Q 1
4 ). Let b ∈ B∩ V (Q 0

4 )−{v}. By Theorem 3, there exist two disjoint paths R1 and R2 of Q 0
4

such that (1) R1 joins x and b, (2) R2 joins u and v, and (3) R1 ∪ R2 spans Q 0
4 . By Theorem 1, there exists a hamiltonian path

H of Q 1
4 joining (b)4 and y. Then, we set P1 = ⟨x, R1, b, (b)4,H, y⟩ and P2 = R2.

Case 3: {z} ⊂ V (Q 0
4 ), {x, y} ⊂ V (Q 1

4 ). Since degQ 0
4
(z) = 3 > 2, we can choose a vertex s of Q 0

4 − {(x)4, (y)4,u, v} such
that (s, z) ∈ E(Q4). Note that both (x)4 and v are in B, and both (y)4 and u are in W . Let {w, b} = {s, z} such that w ∈ W
and b ∈ B. By Theorem 3, there exist two disjoint paths R1 and R2 of Q 1

4 such that (1) R1 joins x and (w)4, (2) R2 joins (b)4

and y, and (3) R1 ∪ R2 spans Q 1
4 . Then, P1 is set to be ⟨x, R1, (w)4,w, b, (b)4, R2, y⟩. By Lemma 6, there exists a hamiltonian

path P2 of Q 0
4 − {w, b} joining u and v.

Case 4: {x, y} ⊂ V (Q 0
4 ), {z} ⊂ V (Q 1

4 ). By Theorem 3, there exist two disjoint paths R1 and R2 of Q 0
4 such that (1) R1 joins

x and y, (2) R2 joins u and v, and (3) R1 ∪ R2 spans Q 0
4 . We write R1 as ⟨x,H1,w, y⟩. By Theorem 1, there exists a hamiltonian

path H2 of Q 1
4 joins (w)4 and (y)4. We set P1 = ⟨x,H1,w, (w)4,H2, (y)4, y⟩ and P2 = R2.

Case 5: {x, z} ⊂ V (Q 0
4 ), {y} ⊂ V (Q 1

4 ).
Subcase 5.1: Suppose that z ∈ B. By Theorem 3, there exist two disjoint paths R1 and R2 of Q 0

4 such that (1) R1 joins x and
z, (2) R2 joins u and v, and (3) R1 ∪ R2 spans Q 0

4 . By Theorem 1, there exists a hamiltonian path H of Q 1
4 joining (z)4 and y.

We set P1 = ⟨x, R1, z, (z)4,H, y⟩ and P2 = R2.
Subcase 5.2: Suppose that z ∈ W and v = 0001. By Theorem 1, there exists a hamiltonian path R of Q 0

4 − {v} joining
x and u. We write R as ⟨x, R′, b,u⟩. Similarly, there exists a hamiltonian path H of Q 1

4 joining (b)4 and y. Then we set
P1 = ⟨x, R′, b, (b)4,H, y⟩ and P2 = ⟨u, v⟩.

Subcase 5.3: Suppose that z ∈ W and v = 0111. We have {x, z} ⊂ {0011, 0101, 0110}. We set a vertex b and
paths R1 and R2 according to Table 1. By Theorem 1, there exists a hamiltonian path H of Q 1

4 joining (b)4 and y. Then,
P1 = ⟨x, R1, b, (b)4,H, y⟩ and P2 = R2 are the requested paths.

Case 6: {x, y, z} ⊂ V (Q 0
4 ).

Subcase 6.1: v = 0001. By Theorem 1, there exists a hamiltonian path R of Q 0
4 − {v}. We write R as ⟨x, R1,w, y, R2, b,u⟩.

Similarly, there exists a hamiltonian path H of Q 1
4 joining (w)4 and (b)4. We set P1 = ⟨x, R1,w, (w)4,H, (b)4, b, rev(R2), y⟩

and P2 = ⟨u, v⟩, where rev(R2) is the reverse path of R2.
Subcase 6.2: v = 0111.
(i) (x, y) ∉ {(0011, 0100), (0101, 0010), (0110, 0101)}. We set P1 according to Table 2. Obviously, P1 is a hamiltonian

path of Q 0
4 − {u, v}. By Theorem 1, there exists a hamiltonian path H of Q 1

4 joining (u)4 and (v)4. Then, we set P2 as
⟨u, (u)4,H, (v)4, v⟩.

(ii) (x, y) ∈ {(0011, 0100), (0101, 0010), (0110, 0101)}. We set R1 and R2 according to Table 3. Clearly, R1 ∪ R2 spans
Q 0
4 , and we can write R2 as ⟨u, R′

2,w, v⟩. By Theorem 1, there exists a hamiltonian path H of Q 1
4 joins (w)4 and (v)4. Then

we set P1 = R1 and P2 = ⟨u, R′

2,w, (w)4,H, (v)4, v⟩.

Appendix B. Proof of Lemma 5

To prove that Qn is 2-disjoint-path-coverable of order n − 3, we prepare four propositions as follows. In the rest of this
paper, we continue usingW and B to denote the bipartition of Qn. For convenience, we also callW and B partite sets ofwhite
and black vertices, respectively.
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Table 3
The paths R1 and R2 .

R1 R2

x = 0011, y = 0100, z ∈ {0001, 0101} ⟨0011, 0001, 0101, 0100⟩ ⟨0000, 0010, 0110, 0111⟩
x = 0011, y = 0100, z ∈ {0010, 0110} ⟨0011, 0010, 0110, 0100⟩ ⟨0000, 0001, 0101, 0111⟩
x = 0101, y = 0010, z ∈ {0001, 0011} ⟨0101, 0001, 0011, 0010⟩ ⟨0000, 0100, 0110, 0111⟩
x = 0101, y = 0010, z ∈ {0100, 0110} ⟨0101, 0100, 0110, 0010⟩ ⟨0000, 0001, 0011, 0111⟩
x = 0110, y = 0101, z ∈ {0100, 0101} ⟨0110, 0100, 0101, 0001⟩ ⟨0000, 0010, 0011, 0111⟩
x = 0110, y = 0101, z ∈ {0010, 0011} ⟨0110, 0010, 0011, 0001⟩ ⟨0000, 0100, 0101, 0111⟩

a b c

Fig. 5. Illustration for Proposition 1.

Proposition 1. Let W and B form the bipartition of Qn with n ≥ 7. Suppose that x and u are any two different vertices in W,
whereas y and v are any two different vertices in B. Furthermore, suppose that x ∈ V (Q 0

n ), y ∈ V (Q 1
n ), and y ≠ (u)n. Let A0

1
and A0

2 be any two disjoint nonempty subsets of V (Q 0
n ) − {x, y,u, v}, and let A1

1 and A1
2 be any two disjoint nonempty subsets of

V (Q 1
n ) − {x, y,u, v} such that |A0

1| + |A1
1| + |A0

2| + |A1
2| = n− 3. Assume that Qn−1 is 2-disjoint-path-coverable of order n− 4.

Then, there exist two disjoint paths P1 and P2 such that (1) P1 joins x to y, (2) P2 joins u to v, (3) A0
1 ∪ A1

1 ⊆ P1, (4) A0
2 ∪ A1

2 ⊆ P2,
and (5) P1 ∪ P2 spans Qn.

Proof. Obviously, |Aj
i| ≤ n−6 for i ∈ {1, 2} and j ∈ {0, 1}, and |A1

1|+ |A1
2|+ |{y}| ≤ n−4. We have the following two cases.

Case 1: Both u and v are in Q j
n for some j ∈ {0, 1}. Without loss of generality, we assume that j = 0. Since |V (Q 0

n )| =

2n−1 > n(n − 4) + (n − 3) = n2
− 3n − 3 ≥ n|A1

1 ∪ A1
2 ∪ {y}| + |A0

1 ∪ {x,u, v}| and 2n−2 > n − 3 for n ≥ 7, there exists
a vertex p in V (Q 0

n ) − (A0
1 ∪ {x,u, v}) such that (t)n ∉ A1

1 ∪ A1
2 ∪ {y} for every t ∈ NbdQ 0

n
(p) ∪ {p}, and there exists a black

vertex b in V (Q 0
n ) − (A0

2 ∪ {v, p}) such that (b)n ∉ A1
2. Since Qn−1 is 2-disjoint-path-coverable of order n − 4, there are two

disjoint paths R1 and R2 in Q 0
n such that (1) R1 joins x to b, (2) R2 joins u to v, (3) A0

1 ⊆ R1, (4) A0
2 ∪ {p} ⊆ R2, and (5) R1 ∪ R2

spans Q 0
n . Without loss of generality, we write R2 as ⟨u, R2,1, p, q, R2,2, v⟩. Again, there are two disjoint paths H1 and H2 in

Q 1
n such that (1) H1 joins (b)n to y, (2) H2 joins (p)n to (q)n, (3) A1

1 ⊆ H1, (4) A1
2 ⊆ H2, and (5) H1 ∪ H2 spans Q 1

n . We set
P1 = ⟨x, R1, b, (b)n,H1, y⟩ and P2 = ⟨u, R2,1, p, (p)n,H2, (q)n, q, R2,2, v⟩. Obviously, P1 and P2 form the desired paths. See
Fig. 5(a).

Case 2: u is in Q j
n, and v is in Q 1−j

n for j ∈ {0, 1}. On the one hand, we assume that j = 0; that is, u is in Q 0
n , and v is in Q 1

n .
Since 2n−2 > n − 4 for n ≥ 7, there exists a black vertex b1 in V (Q 0

n ) − A0
2 such that (b1)

n
∉ A1

2, and there exists a black
vertex b2 in V (Q 0

n ) − (A0
1 ∪ {b1}) such that (b2)

n
∉ A1

1. Since Qn−1 is 2-disjoint-path-coverable of order n − 4, there are two
disjoint paths R1 and R2 in Q 0

n such that (1) R1 joins x to b1, (2) R2 joins u to b2, (3) A0
1 ⊆ R1, (4) A0

2 ⊆ R2, and (5) R1 ∪R2 spans
Q 0
n ; and there are two disjoint paths H1 and H2 in Q 1

n such that (1) H1 joins (b1)
n to y, (2) H2 joins (b2)

n to v, (3) A1
1 ⊆ H1,

(4) A1
2 ⊆ H2, and (5) H1 ∪ H2 spans Q 1

n . We set P1 = ⟨x, R1, b1, (b1)
n,H1, y⟩ and P2 = ⟨u, R2, b2, (b2)

n,H2, v⟩. Obviously, P1
and P2 form the desired paths. See Fig. 5(b).

On the other hand, if j = 1, then u is in Q 1
n , and v is in Q 0

n . Since 2n−2 > n − 3 for n ≥ 7, there exists a black vertex b
in V (Q 0

n ) − (A0
2 ∪ {(u)n, v}) such that (b)n ∉ A1

2, and there exists a white vertex w in V (Q 0
n ) − (A0

1 ∪ {x, (y)n}) such that
(w)n ∉ A1

1. Similarly, there exist disjoint paths R1, R2,H1,H2 joining x to b,w to v, (b)n to y, and u to (w)n, respectively, such
that (1) A0

1 ⊆ R1, A0
2 ⊆ R2, A1

1 ⊆ H1, A1
2 ⊆ H2, (2) R1∪R2 spansQ 0

n , and (3)H1∪H2 spansQ 1
n .We set P1 = ⟨x, R1, b, (b)n,H1, y⟩

and P2 = ⟨u,H2, (w)n,w, R2, v⟩. See Fig. 5(c). �

Proposition 2. Let W and B form the bipartition of Qn with n ≥ 6. Suppose that x and u are any two different vertices in W,
whereas y and v are any two different vertices in B. Furthermore, suppose that x ∈ V (Q 0

n ), y ∈ V (Q 1
n ), and y ≠ (u)n. Let A0

1 and
A0
2 be any two disjoint nonempty subsets of V (Q 0

n ) − {x, y,u, v}, and let A1
1 be any nonempty subset of V (Q 1

n ) − {x, y,u, v}
such that |A0

1| + |A1
1| + |A0

2| = n− 3. Assume that Qn−1 is 2-disjoint-path-coverable of order n− 4. Then, there exist two disjoint
paths P1 and P2 such that (1) P1 joins x to y, (2) P2 joins u to v, (3) A0

1 ∪ A1
1 ⊆ P1, (4) A0

2 ⊆ P2, and (5) P1 ∪ P2 spans Qn.

Proof. We consider the following three cases.
Case 1: Both u and v are in Q 0

n . Since 2
n−2 > n−4 ≥ |A0

2|+|{v}| for n ≥ 6, there exists a black vertex b in Q 0
n − (A0

2 ∪{v}).
Since Qn−1 is 2-disjoint-path-coverable of order n − 4, there are two disjoint paths R1 and R2 in Q 0

n such that (1) R1 joins x
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a b

c d

Fig. 6. Illustration for Proposition 2.

to b, (2) R2 joins u to v, (3) A0
1 ⊆ R1, (4) A0

2 ⊆ R2, and (5) R1 ∪ R2 spans Q 1
n . By Theorem 1, there is a hamiltonian path H of

Q 1
n joining (b)n to y. We set P1 = ⟨x, R1, b, (b)n,H, y⟩ and P2 = ⟨u, R2, v⟩. Obviously, P1 and P2 form the desired paths. See

Fig. 6(a).
Case 2: Both u and v are in Q 1

n . Since |V (Q 1
n )| = 2n−1 > n(n − 4) + n ≥ n|A0

1 ∪ {x}| + |A1
1 ∪ {y,u, v}| for n ≥ 6,

there exists a vertex p ∈ V (Q 1
n ) − (A1

1 ∪ {y,u, v}) such that (t)n ∉ A0
1 ∪ {x} for every t ∈ NbdQ 1

n
(p) ∪ {p}. Since

2n−2 > (n − 4) + n ≥ |A2 ∪ {(u)n}| + |NbdQ 1
n
(p) ∪ {p}|, there exists a black vertex b in V (Q 0

n ) − (A2 ∪ {(u)n}) such
that (b)n ∉ NbdQ 1

n
(p) ∪ {p}. Since Qn−1 is 2-disjoint-path-coverable of order n − 4, there are two disjoint paths H1 and

H2 in Q 1
n such that (1) H1 joins (b)n to y, (2) H2 joins u to v, (3) A1

1 ⊆ H1, (4) {p} ⊆ H2, and (5) H1 ∪ H2 spans Q 1
n . We

can write H2 as ⟨u,H2,1, p, q,H2,2, v⟩. Again, there are two disjoint paths R1 and R2 in Q 0
n such that (1) R1 joins x to b,

(2) R2 joins (p)n to (q)n, (3) A0
1 ⊆ R1, (4) A2 ⊆ R2, and (5) R1 ∪ R2 spans Q 0

n . We set P1 = ⟨x, R1, (b)n, b,H1, y⟩ and
P2 = ⟨u,H2,1, p, (p)n, R2, (q)n, q,H2,2, v⟩. Obviously, P1 and P2 form the desired paths. See Fig. 6(b).

Case 3: u is in V (Q j
n), and v is in V (Q 1−j

n ) for j ∈ {0, 1}. On the one hand, we assume that j = 0. Hence, u is in V (Q 0
n ),

and v is in V (Q 1
n ). Since 2n−2 > n − 4, there exists a black vertex b1 in V (Q 0

n ) − A0
2, and there exists a black vertex b2 in

V (Q 0
n ) − (A0

1 ∪ {b1}) such that (b2)
n

∉ A1
1. Since Qn−1 is 2-disjoint-path-coverable of order n − 4, there are two disjoint

paths R1 and R2 in Q 0
n such that (1) R1 joins x to b1, (2) R2 joins u to z, (3) A0

1 ⊆ R1, (4) A2 ⊆ R2, and (5) R1 ∪ R2 spans Q 0
n ,

and there are two disjoint paths H1 and H2 in Q 1
n such that (1) H1 joins (b1)

n to y, (2) H2 joins (b2)
n to v, (3) A1

1 ⊆ H1, and
(4) H1 ∪ H2 spans Q 1

n . We set P1 = ⟨x, R1, b1, (b1)
n,H1, y⟩ and P2 = ⟨u, R2, b2, (b2)

n,H2, v⟩. Obviously, P1 and P2 form the
desired paths. See Fig. 6(c).

On the other hand, if j = 1, then u is in V (Q 1
n ), and v is in V (Q 0

n ). Since 2n−2 > n − 2, there exists a black vertex b in
V (Q 0

n )−(A2∪{v, (u)n}), and there exists awhite vertexw in V (Q 0
n )−(A0

1∪{x}) such that (w)n ∉ A1
1∪{(y)n}. Similarly, there

exist disjoint paths R1, R2,H1,H2 joining x to b,w to v, (b)n to y, and u to (w)n, respectively, such that (1) A0
1 ⊆ R1, A2 ⊆ R2,

A1
1 ⊆ H1, (2) R1 ∪ R2 spans Q 0

n , and (3) H1 ∪H2 spans Q 1
n . We set P1 = ⟨x, R1, b,(b)n,H1, y⟩ and P2 = ⟨u,H2, (w)n,w, R2, v⟩.

See Fig. 6(d). �

Proposition 3. Let W and B form the bipartition of Qn with n ≥ 5. Suppose that x and u are any two different vertices in W,
whereas y and v are any two different vertices in B. Furthermore, suppose that x ∈ V (Q 0

n ), y ∈ V (Q 1
n ), and y ≠ (u)n. Let A1 be any

nonempty subset of V (Q 0
n )−{x, y,u, v}, and let A2 be any nonempty subset of V (Q 1

n )−{x, y,u, v} such that |A1|+|A2| = n−3.
Then there exist two disjoint paths P1 and P2 such that (1) P1 joins x to y, (2) P2 joins u to v, (3) A1 ⊆ P1, (4) A2 ⊆ P2,
and (5) P1 ∪ P2 spans Qn.

Proof. We consider the following three cases.
Case 1: Both u and v are in V (Q 0

n ). Since (u)n ≠ y and |NbdQ 1
n
(y)| = n − 1 > |A2 ∪ {(v)n}|, there exists a vertex

w ∈ NbdQ 1
n
(y) − (A2 ∪ {(v)n}). By Lemma 1, there exists a hamiltonian path R1 of Q 0

n − {u, v} joining x and (w)n. By
Theorem 2, there exists a hamiltonian path R2 of Q 1

n − {y,w} joining (u)n and (v)n. Obviously, A1 ⊆ V (R1) and A2 ⊆ V (R2).
We set P1 = ⟨x, R1, (w)n,w, y⟩ and P2 = ⟨u, (u)n, R2, (v)n, v⟩. It is apparent that P1 and P2 form the desired paths. See
Fig. 7(a).

Case 2: Both u and v are in V (Q 1
n ). Since |NbdQ 1

n
(y)| = n−1 > |A2 ∪{u}|, there exists a vertexw ∈ NbdQ 1

n
(y)− (A2 ∪{u}).

By Theorem 1, there exists a hamiltonian path R1 of Q 0
n joining x and (w)n. By Theorem 2, there exists a hamiltonian path

R2 of Q 1
n − {y,w} joining u and v. Obviously, A1 ⊆ V (R1) and A2 ⊆ V (R2). We set P1 = ⟨x, R1, (w)n,w, y⟩ and P2 = R2.

Obviously, P1 and P2 form the desired paths. See Fig. 7(b).
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Fig. 7. Illustration for Proposition 3.

a b c

Fig. 8. Illustration for Case 1 of Proposition 4.

Case 3: u is in V (Q j
n), and v is in V (Q 1−j

n ) for j ∈ {0, 1}. On the one hand, we assume that j = 0; i.e., u is in V (Q 0
n ), and v is in

V (Q 1
n ). Since |NbdQ 1

n
(y)| = n−1 > |A2|, there exists a vertexw ∈ NbdQ 1

n
(y)−A2. Since |NbdQ 0

n
(u)| = n−1 > |A1 ∪{(w)n}|,

there exists a vertex b ∈ NbdQ 0
n
(u)− (A1 ∪{(w)n}). By Theorem 2, there exists a hamiltonian path R1 of Q 0

n −{u, b} joining x
and (w)n. Similarly, there exists a hamiltonian path R2 ofQ 1

n −{y,w} joining (b)n and v. Clearly, A1 ⊆ V (R1) and A2 ⊆ V (R2).
Now, we set P1 = ⟨x, R1, (w)n,w, y⟩ and P2 = ⟨u, b, (b)n, R2v⟩. Again, P1 and P2 form the desired paths. See Fig. 7(c).

On the other hand,we consider j = 1; i.e.,u is in V (Q 1
n ), and v is in V (Q 0

n ). Since |NbdQ 1
n
(y)| = n−1 > n−2 ≥ |A2∪{u}|+

|{v}|, there exists a vertexw ∈ NbdQ 1
n
(y)− (A2 ∪{u})with (w)n ≠ v. Since |NbdQ 0

n
(u)| = n−1 > n−2 ≥ |A1 ∪{x}|+ |{y}|,

there exists a vertex s ∈ NbdQ 0
n
(v)− (A1 ∪{x})with (s)n ≠ y. Again, there exists a hamiltonian path R1 of Q 0

n −{s, v} joining
x and (w)n, and there exists a hamiltonian path R2 of Q 1

n − {y,w} joining u and (s)n. We set P1 = ⟨x, R1, (w)n,w, y⟩ and
P2 = ⟨u, R2, (s)n, s, v⟩. See Fig. 7(d). �

Proposition 4. Let W and B form the bipartition of Qn with n ≥ 5. Suppose that x and u are any two different vertices in W,
whereas y and v are any two different vertices in B. Furthermore, suppose that x ∈ V (Q 0

n ), y ∈ V (Q 1
n ), and y ≠ (u)n. Let A1

and A2 be any two disjoint nonempty subsets of V (Q 0
n ) − {x, y,u, v} such that |A1| + |A2| = n − 3. Assume that Qn−1 is 2-

disjoint-path-coverable of order n − 4. Then, there exist two disjoint paths P1 and P2 such that (1) P1 joins x to y, (2) P2 joins u
to v, (3) A1 ⊆ P1, (4) A2 ⊆ P2, and (5) P1 ∪ P2 spans Qn.

Proof. We consider the following cases.
Case 1: Both u and v are in V (Q 0

n ). We have the following two subcases, (a) and (b).
(a) There is a black vertex, say b, in A1. Since Qn−1 is 2-disjoint-path-coverable of order n − 4, there exist two disjoint

paths R1 and R2 in Q 0
n such that (1) R1 joins x to b, (2) R2 joins u to v, (3) A1 −{b} ⊆ R1, (4) A2 ⊆ R2, and (5) R1 ∪R2 spans Q 0

n .
By Theorem 1, there is a hamiltonian path H of Q 1

n joining (b)n to y. We set P1 = ⟨x, R1, b, (b)n,H, y⟩ and P2 = ⟨u, R2, v⟩.
Obviously, P1 and P2 form the desired paths. See Fig. 8(a).

(b) Every vertex in A1 is white. Let w be any vertex in A1. Since degQ 0
n
(w) = n − 1 > n − 2 ≥ |A2| + |{v, (y)n}|, there

exists a vertex b in NbdQ 0
n
(w) − (A2 ∪ {v, (y)n}). By the premise, there exist two disjoint paths R1 and R2 in Q 0

n such that
(1) R1 joins x to b, (2) R2 joins u to v, (3) A1 − {w} ⊆ R1, (4) A2 ⊆ R2, and (5) R1 ∪ R2 spans Q 0

n .
(b.1)w is in R1. By Theorem 1, there exists a hamiltonian path H of Q 1

n joining (b)n to y. We set P1 = ⟨x, R1, b, (b)n,H, y⟩
and P2 = R2. Obviously, P1 and P2 form the desired paths. See Fig. 8(b).
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a b

Fig. 9. Illustration for Case 2 of Proposition 4.

(b.2) w is in R2. Without loss of generality, we can write R2 as ⟨u, R2,1, p, w, q, R2,2, v⟩. Suppose that (w)n ≠ y. By
Theorem 3, there are two disjoint paths H1 and H2 in Q 1

n such that (1) H1 joins (w)n to y, (2) H2 joins (p)n to (q)n, and
(3) H1 ∪ H2 spans Q 1

n . We set P1 = ⟨x, R1, b,w, (w)n,H1, y⟩ and P2 = ⟨u, R2,1, p, (p)n,H2, (q)n, q, R2,2, v⟩ to form the
desired paths. See Fig. 8(c). On the other hand, we consider the case that (w)n = y. By Theorem 1, there exists a hamiltonian
path H of Q 1

n − {y} joining (p)n to (q)n. We set P1 = ⟨x, R1, b,w, y⟩ and P2 = ⟨u, R2,1, p, (p)n,H, (q)n, q, R2,2, v⟩ to form
the desired paths.

Case 2: u is in V (Q 1
n ), and v is in V (Q 0

n ). We have the following three subcases, (c), (d), and (e).
(c) Every vertex in A1 is white, and every vertex in A2 is black. Letw be a vertex in A1. Since degQ 0

n
(x) = n−1 > |A2 ∪{v}|,

we can choose a black vertex b in NbdQ 0
n
(x) − (A2 ∪ {v}). With this premise, there exist two disjoint paths R1 and R2 in Q 0

n

such that (1) R1 joins b to w, (2) R2 joins x to v, (3) (A1 − {w}) ⊆ R1, (4) A2 ⊆ R2, and (5) R1 ∪ R2 spans Q 0
n . Without loss of

generality, we write R2 = ⟨x, p, R, v⟩.
(c.1) y ≠ (w)n and p ≠ (u)n. By Theorem 3, there are two disjoint paths H1 and H2 of Q 1

n such that (1) H1 joins (w)n to
y, (2) H2 joins u to (p)n, and (3) H1 ∪ H2 spans Q 1

n . We set P1 = ⟨x, b, R1,w, (w)n,H1, y⟩ and P2 = ⟨u,H2, (p)n, p, R, v⟩ to
form the desired paths. See Fig. 9(a).

(c.2) y ≠ (w)n and p = (u)n. By Theorem 2, there is a hamiltonian path H of Q 1
n − {u} joining (w)n to y. We set

P1 = ⟨x, b, R1,w, (w)n,H, y⟩ and P2 = ⟨u, p, R, v⟩ to form the desired paths.
(c.3) y = (w)n and p ≠ (u)n. By Theorem 2, there is a hamiltonian path H of Q 1

n − {y} joining u to (p)n. We set
P1 = ⟨x, b, R1,w, y⟩ and P2 = ⟨u,H, (p)n, p, R, v⟩ to form the desired paths.

(c.4) y = (w)n and p = (u)n. Obviously, the length of R1 or the length of R2 is greater than 3. On the one hand, assume that
the length of R1 is greater than 3. We write R1 = ⟨b, z, R′,w⟩. By Lemma 1, there exists a hamiltonian path H ′ of Q 1

n −{u, y}
joining (b)n to (z)n.We set P1 = ⟨x, b, (b)n,H ′, (z)n, z, R′,w, y⟩ and P2 = ⟨u, p, R, v⟩ to form the desired paths. On the other
hand, we consider the length of R2 is greater than 3. We write R2 = ⟨x, p, R′′, q, v⟩. By Lemma 1, there exists a hamiltonian
path H ′′ of Q 1

n − {u, y} joining (q)n to (v)n. We set P1 = ⟨x, b, R1,w, y⟩ and P2 = ⟨u, p, R′′, q, (q)n,H ′′, (v)n, v⟩ to form the
desired paths.

(d) There is a black vertex in A1 − {(u)n}, or there is a white vertex in A2 − {(y)n}. Without loss of generality, we assume
that there is a black vertex b in A1−{(u)n}. Since 2n−2 > n−3, we can choose awhite vertexw in V (Q 0

n )−(A1∪{(y)n}). With
this premise, there exist two disjoint paths R1 and R2 inQ 0

n such that (1) R1 joins x to b, (2) R2 joinsw to v, (3) (A1−{b}) ⊆ R1,
(4) A2 ⊆ R2, and (5) R1 ∪ R2 spans Q 0

n . By Theorem 3, there are two disjoint paths H1 and H2 in Q 1
n such that (1) H1 joins (b)n

to y, (2) H2 joins u to (w)n, and (3) R1 ∪ R2 spans Q 0
n . We set P1 = ⟨x, R1, b, (b)n,H1, y⟩ and P2 = ⟨u,H2, (w)n,w, R2, v⟩ to

form the desired paths. See Fig. 9(b).
(e) A1 = {(u)n} and A2 = {(y)n}. Since h(x, y) ≥ 3, there exists an integer i with 1 ≤ i ≤ n − 1 to divide Qn into two

subcubes so that the following properties are satisfied: (1) x and y are in different subcubes, and (2) y ≠ (u)i. To construct
the required paths, we can use the same approach described in part (c) and Case 1 of this proposition, or in Cases 1 and 3 of
Proposition 3.

Case 3: Both u and v are in V (Q 1
n ). Since degQ 1

n
(y) = n−1 > n−3 ≥ |A2|+|{u}|, there exists a vertexw inNbdQ 1

n
(y)−{u}

such that (w)n ∉ A2. We have the following subcases, (f) and (g).
(f) A2 ≠ {(y)n}. Obviously, there exists a vertex p in A2 − {(y)n}.
(f.1) p ≠ (u)n. Let F = {((p)n, (t)n) | t ∈ A1, (p, t) ∈ E(Q 0

n )}. Obviously, |F | ≤ |A1| ≤ n − 4. By Lemma 2, there exists a
hamiltonian path H of (Q 1

n − {w, y}) − F joining u and v. Apparently, (p)n is in V (H). Without loss of generality, we write
H as ⟨u,H1, (p)n, (q)n,H2, v⟩ such that q ∈ V (Q 0

n ) − (A1 ∪ {x}). With this premise, there exist two disjoint paths R1 and R2

in Q 0
n such that (1) R1 joins x to (w)n, (2) R2 joins p to q, (3) A1 ⊆ R1, (4) A2 − {p} ⊆ R2, and (5) R1 ∪ R2 spans Q 0

n . We set
P1 = ⟨x, R1, (w)n,w, y⟩ and P2 = ⟨u,H1, (p)n, p, R2, q, (q)n,H2, v⟩ to form the desired paths. See Fig. 10(a).

(f.2) p = (u)n. Since 2n−2 > n − 1 ≥ |{v, y}| + |A1 ∪ {x}|, there exists a black vertex b in V (Q 1
n ) − {v, y} such that

(b)n ∉ A1 ∪ {x}. By Theorem 2, there exists a hamiltonian path H of (Q 1
n − {w, y}) − {u} joining b and v. With this premise,

there exist two disjoint paths R1 and R2 in Q 0
n such that (1) R1 joins x to (w)n, (2) R2 joins (u)n to (b)n, (3) A1 ⊆ R1, (4)

A2 − {(u)n} ⊆ R2, and (5) R1 ∪ R2 spans Q 0
n . Thus, we can set P1 = ⟨x, R1, (w)n,w, y⟩ and P2 = ⟨u, (u)n, R2, (b)n, b,H, v⟩ to

form the desired paths. See Fig. 10(b).
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Fig. 10. Illustration for Case 3 of Proposition 4.

a b

c d

Fig. 11. Illustration for Case 4 of Proposition 4.

(g) A2 = {(y)n}. We have the following three possibilities.
(g.1) There exists a black vertexb inA1−{(u)n}. By Theorem3, there are twodisjoint pathsH1 andH2 inQ 1

n such that (1)H1

joins (b)n to ywith length 2n−2
−1, and (2) H2 joins u to vwith length 2n−2

−1. Since ⌈
2n−2

−1
2 ⌉ > n−3 ≥ |A1 −{b}|+ |{x}|,

there exists an edge (p, q) in H2 such that {(p)n, (q)n} ∩ (A1 ∪ {x}) = ∅. Without loss of generality, we write H2 as
⟨u,H ′, p, q,H ′′, v⟩. With this premise, there exist two disjoint paths R1 and R2 in Q 0

n such that (1) R1 joins x to b, (2) R2

joins (p)n to (q)n, (3) A1 − {b} ⊆ R1, (4) A2 ⊆ R2, and (5) R1 ∪ R2 spans Q 0
n . Hence, we set P1 = ⟨x, R1, b, (b)n,H1, y⟩ and

P2 = ⟨u,H ′, p, (p)n, R2, (q)n, q,H ′′, v⟩ to form the required paths. See Fig. 10(c).
(g.2) A1 = {(u)n}. Since h(x, y) ≥ 3, there exists an integer i, 1 ≤ i ≤ n − 1, to re-partition Qn so that (1) x and y are in

different subcubes, and (2) y ≠ (u)i. To construct the required paths, we can use the same approach described in part (c)
and Case 1 of this proposition, or in Cases 1 and 3 of Proposition 3.

(g.3) Every vertex of A1 is white vertex. Since h(x, y) ≥ 3, there exists an integer i, 1 ≤ i ≤ n− 1, to re-partition Qn such
that (1) x and y are in different subcubes, and (2) y ≠ (u)i. To construct the required paths, we can use the same approach
described in part (f), or in Propositions 2 and 3.

Case 4: u is in V (Q 0
n ), and v is in V (Q 1

n ). We have the following subcases, (h) and (i).
(h) There is a black vertex b1 in A1∪A2.Without loss of generality, we assume that b1 ∈ A1. Since 2n−2 > n−3 = |A1∪A2|,

we can choose a black vertex b2 in V (Q 0
n )− (A1 ∪ A2). With this premise, there exist two disjoint paths R1 and R2 in Q 0

n such
that (1) R1 joins x to b1, (2) R2 joins u to b2, (3) (A1 − {b1}) ⊆ R1, (4) A2 ⊆ R2, and (5) R1 ∪ R2 spans Q 0

n . By Theorem 3,
there are two disjoint paths H1 and H2 in Q 1

n such that (1) H1 joins (b1)
n to y, (2) H2 joins (b2)

n to v, and (3) H1 ∪ H2 spans
Q 1
n . We set P1 = ⟨x, R1, b1, (b1)

n,H1, y⟩ and P2 = ⟨u, R2, b2, (b2)
n,H2, v⟩. Obviously, P1 and P2 form the desired paths. See

Fig. 11(a).
(i) Every node in A1 ∪ A2 is white.
(i.1) |A1 − {(v)n}| ≥ 1 or |A2 − {(y)n}| ≥ 1. Without loss of generality, there exists a white vertex w in A1 such that

(w)n ≠ v. Let b be a black vertex in NbdQ 0
n
(w), and let z be a white vertex in NbdQ 1

n
(v)−{(b)n} such that (z)n ∉ A1. With this

premise, there exist two disjoint paths R1 and R2 in Q 0
n such that (1) R1 joins x to b, (2) R2 joins u to (z)n, (3) (A1 −{w}) ⊆ R1,

(4) A2 ⊆ R2, and (5) R1 ∪ R2 spans Q 0
n .

(i.1.1) w is in R1. By Lemma 1, there exists a hamiltonian path H of Q 1
n − {z, v} joining (b)n to y. Then we set P1 =

⟨x, R1, b, (b)n,H, y⟩ and P2 = ⟨u, R2, (z)n, z, v⟩ to form the desired paths. See Fig. 11(b).
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(i.1.2) w is in R2. Without loss of generality, we write R2 = ⟨u, R2,1, b1,w, b2, R2,2, (z)n⟩. We have the following two
possibilities.

Suppose thatw = (y)n. By Theorem 2, there exists a hamiltonian path H of Q 1
n − {y, v, z} joining (b1)

n to (b2)
n. Then we

set P1 = ⟨x, R1, b,w, y⟩ and P2 = ⟨u, R2,1, b1, (b1)
n, H, (b2)

n, b2, R2,2, (z)n, z, v⟩ to form the desired paths. See Fig. 11(c).
Suppose that w ≠ (y)n. By Lemma 4, there exist two disjoint paths H1 and H2 of Q 1

n − {v, z} such that (1) H1 joins
(w)n to y, (2) H2 joins (b1)

n to (b2)
n, and (3) H1 ∪ H2 spans Q 1

n − {v, z}. Then we set P1 = ⟨x, R1, b,w, (w)n,H1, y⟩ and
P2 = ⟨u, R2,1, b1, (b1)

n,H2, (b2)
n, b2, R2,2, (z)n, z, v⟩ to form the desired paths. See Fig. 11(d).

(i.2) |A1 − {(v)n}| = 0 and |A2 − {(y)n}| = 0. That is, A1 = {(v)n} and A2 = {(y)n}. Since h(x, y) ≥ 3, there exists an
integer i, 1 ≤ i ≤ n − 1, to re-partition Qn so that (1) x and y are in different subcubes, and (2) y ≠ (u)i. To construct the
required paths, we can use the same approach described in part (h) and Case 1 of this proposition, or in Cases 1 and 4 of
Proposition 3. �

Below is the proof of Lemma 5: let W and B form the bipartition of Qn with n ≥ 3. Suppose that x and u are any two
different vertices inW , whereas y and v are any two different vertices in B. Let A1 and A2 be any two disjoint vertex subsets
of Qn − {x, y,u, v} such that |A1| + |A2| = n − 3. The proof proceeds by induction. Obviously, the lemma holds for n = 3.
By Lemma 3, this lemma holds for n = 4. As the inductive hypothesis, we assume that the lemma holds for Qn−1 for n ≥ 5.
Lemma 3 also implies that this lemma holds if A1 or A2 is empty. Thus, we consider that n ≥ 5, |A1| ≥ 1, and |A2| ≥ 1.

Since x and y are in different partite sets of Qn, there exists an integer k, 1 ≤ k ≤ n, to partition Qn so that x and y belong
to different subcubes and y ≠ (u)k. By the symmetry of Qn, we assume that k = n; that is, x ∈ V (Q 0

n ), y ∈ V (Q 1
n ), and

y ≠ (u)n. For i ∈ {1, 2} and j ∈ {0, 1}, we set Aj
i = Ai ∩ V (Q j

n). Then, we have the following four cases.
Case 1: |{(i, j) | Aj

i = ∅}| = 0. Obviously, n − 3 = |A1| + |A2| = |A0
1| + |A1

1| + |A0
2| + |A1

2| ≥ 4. Thus, n ≥ 7. Moreover,
|Aj

i| ≤ n − 6 for i ∈ {1, 2} and j ∈ {0, 1}, and |A1
1| + |A1

2| + |{y}| ≤ n − 4. By Proposition 1, this case follows.
Case 2: |{(i, j) | Aj

i = ∅}| = 1. Without loss of generality, we assume that |A1
2| = 0. Obviously, n − 3 = |A1| + |A2| =

|A0
1| + |A1

1| + |A0
2| ≥ 3. Thus, n ≥ 6. By Proposition 2, this case follows.

Case 3: Either |A0
1| = |A1

2| = 0 or |A1
1| = |A0

2| = 0. Without loss of generality, we assume that |A1
1| = |A0

2| = 0. That is,
A1 ⊂ V (Q 0

n ) and A2 ⊂ V (Q 1
n ). By Proposition 3, this case follows.

Case 4: Either |A0
1| = |A0

2| = 0 or |A1
1| = |A1

2| = 0. Without loss of generality, we assume that |A1
1| = |A1

2| = 0. Obviously,
n − 3 = |A1| + |A2| = |A0

1| + |A0
2| ≥ 2. Thus, n ≥ 5. By Proposition 4, this case follows.

These enumerated cases have addressed all possibilities and complete the proof.
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