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In this short note, we provide a simplified one-dimensional analysis and two-dimensional
numerical experiments to predict that the overall accuracy for the pressure or indicator
function in immersed boundary calculations is first-order accurate in L1 norm, half-order
accurate in L2 norm, but has O(1) error in L1 norm. Despite the pressure has O(1) error near
the interface, the velocity field still has the first-order convergence in immersed boundary
calculations.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The immersed boundary (IB) method was first proposed by Peskin in [8] as a computational tool to study the blood flow in
the heart. Over the past few decades, the IB method has become a useful computational framework for solving fluid–struc-
ture interaction problems, see a recent review [9]. Whereas the IB method has an impressive ease of the implementations, it
is well-known that the method is only first-order accurate since it is a smoothing method rather than the sharp capturing
method. Recently, a rigorous convergence proof of the velocity for Stokes flow in the immersed boundary formulation has
been provided by Mori [7]. The author has proved that the velocity is roughly first-order accurate in the L1 norm; however,
it has no conclusion about the accuracy of the pressure.

In [2], Beyer and LeVeque have analyzed the accuracy of one-dimensional model for the immersed boundary method.
They gave some insight about the accuracy of solving one-dimensional heat equation with a delta source term by choosing
appropriate discrete delta functions. Tornberg and Engquist [11] used the regularization technique to analyze the numerical
accuracy of some elliptic PDEs. They have verified numerically that, for two-dimensional Poisson equation with singular del-
ta source term, the standard centered difference approximation with smoothing discrete delta function is first-order accu-
rate in L1 norm and second-order accurate in L1 norm. They also showed that, away from the interface, the scheme has a
better accuracy which is expected in the case of smooth problems without singular source term. Another more accurate ap-
proach for solving PDEs with singular sources is to incorporate the solution or its derivative jumps across the interface into
the finite difference scheme such as the immersed interface method [6]. Readers who are interested in IIM can refer to a
recent survey book by Li and Ito [5].
. All rights reserved.
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In this paper, we shall provide a simplified one-dimensional analysis and two-dimensional numerical experiments to pre-
dict that the pressure in immersed boundary calculations is first-order accurate in L1 norm, half-order accurate in L2 norm,
but has O(1) error in L1 norm. Notice that, it has no surprise that the pressure has O(1) error near the interface, since it is
discontinuous across the interface, and a smoothing method such as the immersed boundary method will not be able to cap-
ture the right discontinuity. A rigorous convergence proof for the two-dimensional problems will need a further investiga-
tion in the future.

Since the pressure appears in its gradient form in Stokes equations, one might wonder how this O(1) point-wise error near
the interface affects the overall accuracy of the velocity field. The pressure gradient and the immersed boundary force terms
have the same singular behavior (a delta function singularity), finding the velocity field involves solving Poisson equation
with a singular delta function source. It is known that the numerical approximation of Poisson equation with a singular delta
function source only has first-order accuracy in L1 norm [11]. Even though the calculated pressure has O(1) error near the
interface, its gradient has the same discretization error as the singular delta function force near the interface. Thus, the over-
all accuracy of velocity field in IB method is first-order accurate in L1 norm.
2. Model problems

The problem which we are interested in arises from solving the stationary Stokes flow in a two-dimensional domain X
with one-dimensional boundary (or interface) C immersed in X as
�rpþ lDv þ
Z

C
FðsÞd2ðx� XðsÞÞds ¼ 0; ð1Þ

r � v ¼ 0: ð2Þ
The immersed boundary force F(s) = (Fx(s),Fy(s)) is only exerted along the interface C so that the integral is along the one-
dimensional interface C while the Dirac delta function d2(x) = d(x)d(y) is two-dimensional. Thus, the above immersed bound-
ary formulation is a typical singular problem with a delta function source. By taking the divergence operator on Eq. (1) and
using the incompressibility constraint (2), we obtain the pressure equation
DpðxÞ ¼ r �
Z

C
FðsÞd2ðx� XðsÞÞds: ð3Þ
Notice that, this equation is a Poisson equation with a source term which involves derivatives of the Dirac delta function.
Once pressure is found, we can find the velocity by solving Eq. (1) which results two Poisson equations for the velocity com-
ponents. In the immersed boundary computations, the pressure equation often uses periodic or Neumann boundary condi-
tion; however, throughout this paper, we simply use the Dirichlet boundary condition since we are more concerned with the
accuracy caused by the derivatives of Dirac delta function near the interface.

Another way of solving Stokes equations (1) and (2) is to discretize them directly and solve the resultant linear system for
the velocity and pressure simultaneously. This procedure is mostly adopted by the problem with periodic boundary condi-
tions in which FFT can be conveniently applied or fast Stokes solver is available. It seems that the above two solution pro-
cedures are different; however, they share the same accuracy behavior for the pressure. The reason is that the pressure in IB
formulation is discontinuous across the interface and both solution procedures involve the derivatives of the pressure and
singular terms. Therefore, the pressure accuracy predicted in the paper does not change despite different solution
procedures.

Another example leading to the same type of equation as Eq. (3) appears when we use the idea of Unverdi and Tryggvason
[10] to find the indicator function which is needed to track the regions of two-phase flow. If the viscosity is discontinuous
across the immersed boundary, it can be represented by the following:
lðxÞ ¼ lout þ ðlin � loutÞIðxÞ;
where lin and lout are the viscosity inside and outside the interface, respectively. Since the indicator function has the value
one (I = 1) inside the immersed boundary C and the value zero (I = 0) outside, it can be calculated as the following procedure
[10]. Let Xin represent the interior region and n be the unit outward normal vector to the interface, then the indicator func-
tion can be represented by
IðxÞ ¼
Z

Xin

d2ðx� exÞdex:

By taking the gradient and then divergence operators on both sides, we have
rIðxÞ ¼ �
Z

C
nd2ðx� XðsÞÞds;

DIðxÞ ¼ �r �
Z

C
nd2ðx� XðsÞÞds: ð4Þ
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Thus, the indicator function can be obtained by solving the same type of Poisson equation as Eq. (3) with the special singular
forcing term F(s) = �n(s). In this paper, our goal is to consider the standard finite difference scheme with smoothing discrete
delta function to solve the Eqs. (3) and (4), and to investigate its numerical accuracy.
3. One-dimensional analysis

Let us consider the one-dimensional counterpart as
d2u

dx2 ¼ c
d
dx

dðx� aÞ; 0 6 x 6 1; ð5Þ
with boundary conditions u(0) = u(1) = 0, and the immersed boundary point is located at x = a 2 (0,1). As is known, the exact
solution u(x) can be represented as
uðxÞ ¼
Z 1

0
Gðx; yÞc d

dy
dðy� aÞdy; ð6Þ
where G(x;y) is the well-known Green’s function defined as Gxx(x;y) = d(x � y), and can be explicitly written as
Gðx; yÞ ¼
xðy� 1Þ; 0 6 x 6 y;

yðx� 1Þ; y < x 6 1:

�

For convenience, we set c = 1. By formally applying the integration by parts to Eq. (6), we obtain
uðxÞ ¼ �
Z 1

0

d
dy

Gðx; yÞdðy� aÞdy: ð7Þ
Now we specify a uniform grid with grid points xj = jh, j = 0,1, . . . ,N with h = 1/N, and then discretize the Eq. (5) with c = 1
by the standard centered difference scheme
Uj�1 � 2Uj þ Ujþ1

h2 ¼ dhðxjþ1 � aÞ � dhðxj�1 � aÞ
2h

; ð8Þ
where dh is the discrete delta function [8] defined as
dhðxÞ ¼
1

4h 1þ cosðpx
2hÞ

� �
; if jxj 6 2h;

0; otherwise:

(
ð9Þ
This discrete delta function satisfies
Xm¼N

m¼0

dhðxm � aÞh ¼ 1; ð10Þ
which is the corresponding basic requirement for the delta function. Other discrete delta functions can be found in [2,12];
however, the usage of other delta functions leads to the same conclusion as will be given in this paper. For clarity, we denote
the first-order and second-order centered difference operators as Dh and D2

h , respectively. Similar to the analytic solution in
Eq. (6), the discrete solution Uj of Eq. (8) can also be written as
Uj ¼ h
XN

m¼0

Gjm Dhdhðxm � aÞ; ð11Þ
where Gjm = G(xj,xm) is the discrete version of Green’s function defined as
Gjm ¼
xjðxm � 1Þ; 0 6 j 6 m;

xmðxj � 1Þ; m < j 6 N:

�

We can immediately check that G satisfies D2

hGjm ¼ 1
h djm where djm is the Kronecker delta function.

Now, by taking summation by parts and the property of the discrete delta function, the numerical solution Uj can be
rewritten as
Uj ¼ �h
XN

m¼0

DhGjmdhðxm � aÞ: ð12Þ
Using the similar approach as in [11], for any discrete point xj, j = 0,1, . . . ,N, the point-wise error between Uj and u(xj) can be
represented by
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jUj � uðxjÞj ¼ h
XN

m¼0

DhGjmdhðxm � aÞ �
Z 1

0

d
dy

Gðxj; yÞdðy� aÞdy

�����
����� 6 h

XN

m¼0

DhGjmdhðxm � aÞ
�����

�h
XN

m¼0

d
dy

Gðxj; yÞ
����
y¼xm

dhðxm � aÞ
�����þ h

XN

m¼0

d
dy

Gðxj; yÞ
�����

�����
y¼xm

dhðxm � aÞ � d
dy

Gðxj; yÞ
����
y¼a

����� ¼ E1 þ E2:
Using the fact that the derivative of Green’s function is
d
dy

Gðxj; yÞ
����
y¼xm

¼
xj; 0 6 xj 6 xm;

xj � 1; xm < xj 6 1

�
ð13Þ
and that its discrete counterpart is
DhGjm ¼
xj; j < m;
xj � 1

2 ; j ¼ m;

xj � 1; j > m;

8><>: ð14Þ
we can conclude that the first part of the error E1 becomes
E1 ¼ h
1
2

dhðxj � aÞ
���� ���� ¼ Oð1Þ; when jxj � aj 6 2h;

0; otherwise:

�
ð15Þ
The second part of the error E2 is simply an interpolating error for the function d
dy Gðxj; yÞ

���
y¼xm

. Using the formula in Eq. (13)
and the first moment condition in (10), since the discrete delta function has finite support 4h, we can obtain
E2 ¼
h
Pj�1

m¼0
dhðxm � aÞ

���� ����; xj 6 a;

h
PN
m¼j

dhðxm � aÞ
�����

�����; xj > a;

8>>>><>>>>:

which implies that
E2 ¼
Oð1Þ; as jxj � aj 6 2h;

0; otherwise:

�
ð16Þ
From the above analysis, one can immediately see that the point-wise error appears only at some points around the sin-
gular point a, which means that the maximum error kuh � uk1 is of order O(1). For the same reason, we can conclude that
L1 (kuh � uk1) and L2 (kuh � uk2) errors are of order O(h) and O(h1/2), respectively. Our numerical results in next section will
confirm this conclusion.
4. Numerical results

4.1. One-dimensional problem

In this subsection, we consider the following one-dimensional problem:
d2u

dx2 ¼ c
d
dx

dðx� aÞ þ g; 0 < x < 1; ð17Þ
with the interface at the point a = p/6. The exact solution is given as
uðxÞ ¼ x3 þ 2ax2; if x 6 a;
7ðx3 � 1Þ=3; if x > a;

(
ð18Þ
where the jump size c of the solution u at the interface is set to be �(2a3 + 7)/3. The regular source term g can be easily com-
puted by the analytic solution.

Throughout this section, the ratio between two consecutive errors is computed as ku�uhk
ku�uh=2k

, where u is the exact solution
and uh is the numerical solution with the mesh width h = 1/N. As the mesh is refined, the asymptotic ratios of 1, 1.414, 2
represent that the corresponding orders of accuracy are zeroth-order (log21), half-order log2

ffiffiffi
2
p� �

and first-order (log22).
Table 1 shows the order of accuracy for our test which verifies exactly our one-dimensional analysis in the previous sec-

tion. Notice that, when we implemented different versions of discrete delta function given in [2,12], we observed the same
behavior of the errors.



Table 1
Order of accuracy for one-dimensional test.

N ku � uhk1 Ratio ku � uhk2 Ratio ku � uhk1 Ratio

32 8.8827E�01 – 1.7057E�01 – 4.2479E�02 –
64 6.1709E�01 1.4394 1.0736E�01 1.5887 1.9004E�02 2.2352
128 1.1847E�00 0.5208 1.0708E�01 1.0026 1.2980E�02 1.4641
256 1.1579E�00 1.0231 7.4120E�02 1.4446 6.3791E�03 2.0347
512 1.1030E�00 1.0497 5.0171E�02 1.4773 3.0741E�03 2.0750

K.-Y. Chen et al. / Journal of Computational Physics 230 (2011) 4377–4383 4381
4.2. Two-dimensional problems

For two-dimensional problem, we generally write the equation as
Table 2
Converg

M �

32 �
64 �
128
256
512
Du ¼ r �
Z

C
FðsÞd2ðx� XðsÞÞdsþ g ð19Þ
in a domain X = [a,b] � [c,d] with Dirichlet boundary conditions. We first divide the domain X into M � N uniform grids with
mesh width Dx = Dy = h, and ui,j denotes the discrete solution at (xi,yj) where xi = ih, i = 0,1, . . . ,M and yj = jh, j = 0,1, . . . ,N. We
also choose a collection of marker points X(sk) = (Xk,Yk) along the interface C with the mesh points sk = kDs. Here, the marker
mesh width Ds is about a half of h. Then we use the standard centered difference scheme to discrete Eq. (19) as
uiþ1;j � 2ui;j þ ui�1;j

h2 þ ui;jþ1 � 2ui;j þ ui;j�1

h2 ¼
f x
iþ1=2;j � f x

i�1=2;j

h
þ

f y
i;jþ1=2 � f y

i;j�1=2

h
þ gi;j;
where
f x
iþ1=2;j ¼

X
k

FxðskÞdhðxi þ h=2� XkÞdhðyj � YkÞDs;

f y
i;jþ1=2 ¼

X
k

FyðskÞdhðxi � XkÞdhðyj þ h=2� YkÞDs
and f x
i�1=2;j; f y

i;j�1=2 are defined in a similar fashion. The resultant matrix equation can be solved efficiently by the fast direct
solver in Fishpack [1].

Example 1. For the first example, we test the accuracy of the indicator function which is obtained by solving Eq. (4). For
completeness, we test three different interface C in the domain [�1,1] � [�1,1] as follows.

1. C is a circle centered at (0,0) with the radius 0.3.
2. C is an ellipse centered at (0,0) with the major radius 0.9 and minor radius 0.1.
3. C is a simple closed curve written in polar coordinates: r = 0.5 + 0.25 cos(5h).

Tables 2–4 show the errors and convergence ratios for these three different cases. One can immediately see that, whereas the
indicator function does indeed have an O(1) error in maximum norm, it is first-order convergent in L1 norm and half-order
convergent in L2 norm. The results are consistent to the one-dimensional analysis.
Example 2. In this example, we test an analytic solution which arises from the pressure Eq. (3) in Stokes flow developed in
[3]. This example is also used in [4] for a simple version of immersed interface method. The computational domain is
X = [�2,2] � [�2,2], and the interface is a unit circle centered at (0,0), i.e., X(h) = (cos h, sin h). The exact solution is written
in polar coordinates as
uðr; hÞ ¼ �r3ðcosð3hÞ þ sinð3hÞÞ; if r 6 1;
�r�3ðcosð3hÞ � sinð3hÞÞ; if r > 1

(

ent test for indicator function in case 1: a circle.

N ku � uhk1 Ratio ku � uhk2 Ratio ku � uhk1 Ratio

32 3.6463E�01 – 1.3162E�01 – 6.3848E�02 –
64 4.5555E�01 0.8004 9.5529E�02 1.3777 3.2182E�02 1.9839
� 128 4.8736E�01 0.9347 7.2764E�02 1.3128 1.6837E�02 1.9113
� 256 4.8610E�01 1.0026 4.9738E�02 1.4629 8.2361E�03 2.0443
� 512 4.9805E�01 0.9759 3.4744E�02 1.4315 4.0955E�03 2.0109



Table 3
Convergent test for indicator function in case 2: an ellipse.

M � N ku � uhk1 Ratio ku � uhk2 Ratio ku � uhk1 Ratio

32 � 32 6.7302E�01 – 1.9248E�01 – 1.2276E�01 –
64 � 64 5.0021E�01 1.3454 1.4391E�01 1.3374 6.5139E�02 1.8845
128 � 128 4.9922E�01 1.0019 9.7919E�02 1.4697 3.1954E�02 2.0385
256 � 256 4.9834E�01 1.0017 6.8903E�02 1.4211 1.5951E�02 2.0033
512 � 512 4.9617E�01 1.0043 4.8685E�02 1.4152 7.9510E�03 2.0061

Table 4
Convergent test for indicator function in case 3: a simple closed curve.

M � N ku � uhk1 Ratio ku � uhk2 Ratio ku � uhk1 Ratio

32 � 32 5.9986E�01 – 2.5162E�01 – 2.0860E�01 –
64 � 64 5.5492E�01 1.0810 1.8259E�01 1.3780 1.0827E�01 1.9266
128 � 128 5.3029E�01 1.0464 1.2910E�01 1.4143 5.4431E�02 1.9891
256 � 256 5.1669E�01 1.0263 9.0547E�02 1.4257 2.7064E�02 2.0111
512 � 512 5.1194E�01 1.0092 6.4251E�02 1.4092 1.3547E�02 1.9977

Table 5
Convergent test for Example 2.

M � N ku � uhk1 Ratio ku � uhk2 Ratio ku � uhk1 Ratio

32 � 32 1.5643E�00 – 9.5960E�01 – 2.0421E�00 –
64 � 64 1.7182E�00 0.9104 6.9177E�01 1.3871 1.1867E�00 1.7209
128 � 128 1.8342E�00 0.9367 4.9447E�01 1.3990 6.4868E�01 1.8292
256 � 256 1.9086E�00 0.9610 3.4999E�01 1.4128 3.4044E�01 1.9054
512 � 512 1.9284E�00 0.9897 2.4775E�01 1.4126 1.7495E�01 1.9459

Table 6
Convergent test for Example 3.

M � N ku � uhk1 Ratio ku � uhk2 Ratio ku � uhk1 Ratio

32 � 32 5.9986E�01 – 2.5162E�01 – 2.0860E�01 –
64 � 64 5.5492E�01 1.0809 1.8259E�01 1.3780 1.0827E�01 1.9266
128 � 128 5.3029E�01 1.0464 1.2910E�01 1.4143 5.4431E�01 1.9891
256 � 256 5.1669E�01 1.0263 9.0547E�02 1.4257 2.7064E�02 2.0111
512 � 512 5.1194E�01 1.0092 6.4251E�02 1.4092 1.3547E�02 1.9977
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and the boundary force F(h) = 2sin(3h)(X0(h) + X(h)). Table 5 shows the convergence ratios which again verifies our one-
dimensional analysis.
Example 3. Finally we consider Eq. (19) for which the domain is X = [�1,1] � [�1,1] and the interface C is described as a
simple closed curve r = 0.5 + 0.25 cos(5h) in polar coordinates. The analytic solution u is given by
u ¼ ðx2 � 1Þðy2 � 1Þ þ 1; if ðx; yÞ 2 Xout;

ðx2 � 1Þðy2 � 1Þ; if ðx; yÞ 2 Xin;

(

where Xout and Xin represent the exterior and interior regions, respectively. Note that the boundary force F is simply the
normal vector n along the interface C. The external source g can be easily computed from the exact solution u.

Table 6 shows the convergence tests of the numerical solutions for Example 3. The results are consistent to what we
expect, i.e. they are first-order accurate in L1 norm, half-order accurate in L2 norm, but have O(1) errors in L1 norm.
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