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Local Diagnosis Algorithms for Multiprocessor
Systems Under the Comparison Diagnosis Model

Cheng-Kuan Lin, Yuan-Hsiang Teng, Jimmy J. M. Tan, and Lih-Hsing Hsu

Abstract—An efficient diagnosis is very important for a multi-
processor system. The ability to identify all the faulty devices in a
multiprocessor system is known as diagnosability. In the compar-
ison model, the diagnosis is performed by sending two identical sig-
nals from a processor to a pair of distinct neighbors, and then com-
paring their responses. Sengupta and Dahbura proposed a polyno-
mial-time algorithm with time complexity O(IN®) to diagnose a
system with a total number IV of processors under the comparison
model. Recently, some concepts, such as the conditional diagnos-
ability and the local diagnosability, are concerned with the measure
which is able to better reflect fault patterns in real systems. In this
paper, we propose a specific structure, the balanced wind-bell-tree,
and give an algorithm to determine the fault status of each pro-
cessor for conditional local diagnosis under the comparison model.
According to our results, a specific ¢-connected network with the
balanced wind-bell-tree structure is conditionally (2¢ — 1)*-diag-
nosable, and the time complexity to diagnose all the faulty proces-
sors is O( N (log N)?) with our algorithm, where N is the total
number of the processors in the network.

Index Terms—Comparison diagnosis model, conditional diag-
nosability, local diagnosis, system diagnosis.

ACRONYMS AND ABBREVIATIONS

NoC network-on-chip

PMC Preparata, Metze, Chien

MM Maeng, Malek

VLSI very large scale integration

NOTATIONS

G =(V,E)  agraph, where V is a finite set, and £ is a
subset of {{u,v}|{w, v} is an unordered pair
of V}

Ne(u) the neighborhood set {v|{u,v} € E(G)}

dege(v) the degree of v in G
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M = (V,C) amultigraph, where V represents the vertex

set, and C represents the labeled-edge set

a labeled-edge, which represents that the
vertices v and v are compared by w

(s 0 )y

T (U, v) the result of comparing vertices ¢ and v by w

(@) the diagnosability of G

T(G) the conditional diagnosability of G

T&(v) the local diagnosability of v in G

Té(v) the conditional local diagnosability of v in G

o(F) the set of syndromes which could be
generated if F' is the set of faulty vertices

FiAFy = (F1 — F2) U (Fy — Fy), the symmetric
difference between F and F5.

WDBe(xz;t)  awind-bell-tree of order ¢ rooted at z in G

BW Bg(u;t) abalanced wind-bell-tree of order ¢ rooted
atu in &G

Sn an n-dimensional star graph

u = a vertex in .S,

WLUD . .. Uy
()
(u)’
5

the ith component u; of u
the unique ¢-neighbor of u

the subgraph of S,, induced by vertices u
with (u)i = ]

I. INTRODUCTION

LOUD computing and high-speed multiprocessor sys-
C tems have gained popularity in computer technology.
Cloud computing is a computing model which shares the
resources. In the multiprocess system, which is a component
of a Cloud architecture, sets of processors can operate many
programs simultaneously. The reliability of these systems is
crucial because even a few malfunctions would disable service
for many customers. Whenever devices are found to be faulty,
they should be replaced with fault-free ones as soon as possible
to guarantee that the system can work properly. Thus the ability
of identifying all the faulty devices in a multiprocessor system
is very important. This is known as system diagnosis. The
diagnosability is the maximum number of faulty devices that
can be identified correctly. A system is {-diagnosable if at most
t faulty processors can be identified precisely. Many results
about the system diagnosis and the diagnosability have been
proposed in literature [6], [8]-[12], [15], [18]-[22], [24], [32].
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A multiprocessor system consists of processors and commu-
nication links between processors. In practice, most multipro-
cessor systems are based on an underlying bus structure, or
fabric, and are perfectly feasible for a central test controller
(a physically independent processor acting as a controller) to
check each processor in the system. In such a scheme, the cen-
tral controller itself can be tested externally. Some research is re-
lated to the issue of network-on-chip (NoC); for example, Pande
et al. [28] developed an evaluation methodology to compare the
performance and characteristics of a variety of NoC topologies;
Bartic et al. [3] presented an NoC design which is suitable for
building networks with irregular topologies.

Throughout this paper, the underlying topology of a mul-
tiprocessor system is modeled as a graph; each processor is
represented by a vertex, and the communication bus, or fabric,
is represented by a single edge between two vertices. A diag-
nosis testing signal is supposed to be delivered from one vertex
to another through the communication bus. A system performs
a so-called system-level diagnosis by making each processor
act as a tester to test each of the directly connected ones. It is
noticed that such a scheme contains no central test controller.
Several well-known approaches to system diagnosis have
been developed. Two fundamental approaches are tested-based
diagnosis and comparison-based diagnosis. Preparata, Metze,
and Chien [29] proposed a model for system diagnosis, called
the PMC model. The PMC model is the tested-based diagnosis
with a processor performing the diagnosis by testing on the
neighboring processors via the links between them. Another
classic approach using the comparison-based diagnosis, called
the comparison diagnosis model, was first proposed by Maeng
and Malek [24], [25], thus termed the Maeng, Malek (MM)
model. In the MM model, the diagnosis is performed by
sending two identical tasks from a processor to a pair of distinct
neighbors, and then comparing their responses. Sengupta and
Dahbura [30] gave an O(N?) diagnosis algorithm to diagnose a
system of N processors under the MM model. Several different
studies about the MM model also have been proposed in [5],
[71, [9], [13], [14], [33].

In some circumstances, we are only concerned about
some substructure of a multiprocessor system, which is im-
plementable in very large scale integration (VLSI). Such a
substructure, for example, can be a ring, a path, a tree, a
mesh, and so on. If all processors in these substructures can be
guaranteed to be fault free, a procedure is still workable even
though there are many faulty processors in the remaining part
of the system. Thus, the local substructure plays a more critical
role than the global status of the entire system. Motivated
by such a concept, Hsu and Tan [16] presented an elegant
measure of diagnosability, known as local diagnosability, to
identify the diagnosability of a system by computing the local
diagnosability with respect to each individual processor.

In classical measures of system-level diagnosability for
multiprocessor systems, it has generally been assumed that any
subset of processors can potentially fail at the same time. As a
consequence, the diagnosability of a system is upper bounded
by its minimum degree. In practice, processors in many systems
are connected sparsely. Thus, some research addresses the mea-
sures that can better reflect fault patterns in real systems. For

instance, Lai et al. proposed conditional diagnosability in [20],
which restrains all neighboring processors of a processor from
being faulty at the same time. Lin et al. gave a useful structure
in [23] to determine its conditional local diagnosability under
the PMC model. In this paper, we address conditional local
diagnosability under the MM model. We propose a specific
structure named the balanced wind-bell-tree, and give an
algorithm to efficiently diagnose a vertex in the system. With
our algorithm, the faulty or fault-free status of a vertex can be
identified correctly if the total number of faulty vertices does
not exceed 2¢ — 1, where ¢ is the connectivity of the system.

The rest of this paper is organized as follows. Section II
provides preliminary background for system diagnosis and
graph-theoretic terminology. In Section III, we propose a
specific structure for local diagnosis, and present a local diag-
nosis algorithm under the MM model. In Section IV, we give
the definition of the balanced wind-bell-tree, and propose an
algorithm for conditional local diagnosis under the MM model.
With our results, we give an application in Section V. In the
final section, we present our conclusions, and measure the time
complexity of our proposed algorithm.

II. PRELIMINARIES

The underlying topology of a multiprocessor system is usu-
ally modeled as a graph, whose vertex set, and edge set represent
the set of all processors, and the set of all communication links
between processors, respectively. For the graph definitions and
notation, we follow [17] and the Notation section. Two vertices
w and v in a graph G = (V, E) are adjacent if {u,v} € E; we
say w is a neighbor of v, and vice versa. The degree of a vertex
v in a graph G is the number of edges incident to v.

A. System Diagnosis

The MM model is proposed by Maeng and Malek in [24],
[25]. Under the MM model, the system diagnosis is performed
by a specific testing procedure. For each processor w, which
has two distinct links to two other processors u and v, the di-
agnosis can be performed by simultaneously sending two iden-
tical signals from w to « and from w to v, and then comparing
their returning responses in the reverse direction. The compar-
ison scheme of the system can be modeled as a multigraph M =
(V,C).For (u,v),, € C,ifthe outputs of u and v agree, we have
ruw(u, v) = 0; otherwise, ry, (1, v) = 1. If ry,(u, v) = 0, and w
is fault-free, then both » and v are fault-free. If 7, (u, v) = 1,
then at least one of u, v, and w must be faulty. If w is faulty, then
the result of the comparison is unreliable, and the exact status of
u and v are unknown. The complete result of all comparisons,
defined as a function o : C' — {0, 1}, is called the syndrome of
the diagnosis. The set ' C V' of all faulty processors in a graph
G = (V, E) is called a faulty set. Two distinct faulty sets F; and
F, of V are said to be distinguishable if o(Fy) N o(Fa) = 0;
otherwise, F and F are said to be indistinguishable. Clearly,
a system is t-diagnosable iff each pair of sets £y and Fb are
distinguishable with |Fy| < ¢ and |Fz| < t. There are sev-
eral different ways to verify a system to be #-diagnosable under
the comparison approach. The following theorem given by Sen-
gupta and Dahbura [30] is a necessary and sufficient condition
for ensuring distinguishability.
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Fig. 1. An illustration for Theorem 1.

Theorem 1: [30]Forany I, F5s C V and I} # Fs, (F1, F»)
is a distinguishable pair iff at least one of the following condi-
tions is satisfied.
1) Ju,w € V — (F; U L) and Jv € FyAF, such that
(u,v)n € C.

2) Ju,v € Fy — Fy and 3w € V — (F; U I5) such that
(u,v)n € C.

3) Ju,v € Fy — Fy and Jw € V — (Fy; U I5) such that
(u,v)n € C.

See Fig. 1 for an illustration of the theorem.

For a vertex set U C V(G), we define T'(G, U) to be the set
{v|(u,v)w € Cy{u,w} € U and v € V(G) — U}. In [30],
Sengupta and Dahbura also proposed a sufficient condition for
a system being ¢-diagnosable.

Theorem 2: [30] A system G = (V, E) with N vertices is
t-diagnosable if

1) N > 2t+1,

2) each vertex has order at least £, and
3) for each U C V(G) such that |U| = N — 2¢t + p and
0<p<i—1,|T(GU) > p,

B. Local Diagnosis

The probabilities of processor failures in a multiprocessor
system are identical and statically independent under the
random-fault model. Let v € V(G). It is intuitive to observe
that (Ng(v),{v} U Ng(v)) forms an indistinguishable pair
of faulty sets. That is, the conventional diagnosability that
has been addressed by many researchers mainly describes the
global status of a system under the random-fault model. Instead,
Hsu and Tan [16] presented the concept of local diagnosability.
The research about local diagnosability concerns with the local
connective substructure in a system. That is, for a processor v
in a system, it is only required to determine whether v is faulty
or not. Given a syndrome o (F') produced by a faulty set ' with
v € F and |F| < t, a graph G is t*-diagnosable at vertex v if
every faulty set F’ that is consistent with o(F') also contains
vertex v. The local diagnosability of a vertex v in G is defined
to be the maximum integer of ¢ such that G is £*-diagnosable at
the vertex ». The relationship between diagnosability and local
diagnosability is revealed in the following theorems.

Theorem 3: [16] A graph G is t-diagnosable iff it is £*-diag-
nosable at each vertex.

Theorem 4: [16] Let G denote the underlying topology of a
multiprocessor system. Then 7(G) = min{7%(v)|v € V(G)}.
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Fig. 3. A wind-bell-tree W B (x;t).

rzeF
ryl(x’:) ryl(xa.)’z) ryz(yl’y3) mln{\ﬂ}
0 0 0 3
0 0 1 2
0 1 0 3
0 1 1 2
1 0 0 3
1 0 1 2
1 1 0 1
1 1 1 2
z¢ F
D) R (%) vy min{F)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 2
1 1 1 1

Fig. 4. Illustrations for Proposition 1.

C. Conditional Fault Diagnosis

In [20], Lai et al. proposed the concept of conditional fault
diagnosis by restricting that, for each processor » in the network,
all the processors which are directly connected to v do not fail at
the same time. Recently, Hsieh and Chuang [13], [15] proposed
the concept of strong diagnosability on regular networks and
product networks. A system is said to be strongly t-diagnosable
ifitis #-diagnosable, and can achieve (t+1)-diagnosable, except
for the case that the neighbors of a processor fail simultaneously.

Suppose that G = (V, E). A set F C V(G) is a conditional

Saulty setif Ng(v) € F forany vertex v € V{(G)—F. A system

G is conditionally faulty if the faulty vertex set of G forms a
conditional faulty set. For any two distinct conditional faulty
sets 'y and F» of G with |Fy| < t and |F3| < 1, if (Fy, Fy)
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Fig. 5. A balanced wind-bell-tree BW B (u;t).

is a distinguishable pair, then G is conditionally t-diagnosable.
The maximum number of conditional faulty vertices that can be
correctly identified in G is called the conditional diagnosability
of G. Let v be any vertex in (. The conditional local diagnos-
ability of v in G is defined to be the maximum integer of ¢ such
that GG is conditionally ¢*-diagnosable at vertex v. It is trivial
that 7°(G) > 7(G) and 7°(F) = min{7&(v)lv € V(G)}.
Now we give an example to show that a ¢-connected network
is not conditionally 2¢-diagnosable. Let G be a ¢-connected net-
work with two adjacent vertices x and y, where deg(z) = ¢
and deg(y) = t. We set F; = Ng(z) U Ng(y) and Fr =
(Ng(x) U Ne(y)) — {x,y}. See Fig. 2 for an illustration. By
Theorem 1, F; and F5 are indistinguishable. Thus, G is not con-
ditionally 2¢-diagnosable.

In Section IV, we propose a specific structure named the bal-
anced wind-bell-tree, and give an algorithm to identify whether
a given vertex is in a state of fault-free or fault in a conditional
faulty system under the MM model. With our algorithm, a vertex
can be identified correctly if the total number of faulty vertices
does not exceed 2t — 1, where ¢ is the connectivity of the system.

III. A LoCAL DIAGNOSIS ALGORITHM

Chiang and Tan proposed a local diagnosis algorithm called
the extended star in [7]. In this section, we propose another spe-
cific structure, the wind-bell-tree, for local diagnosis, and give a
local diagnosis algorithm under the MM model. Different with
the extended star, we can construct a specific structure for condi-
tional fault diagnosis using the wind-bell-tree. We describe the
conditional local diagnosis algorithm in Section IV. Now, we
give the definition of a wind-bell-tree as follows.

Definition 1: Let G = (V,E) be a graph, and let = be a
vertex in . A wind-bell-tree of order ¢ rooted at % is defined
to be the subgraph of G, denoted by W Bg(x;t), such that
V(VVB(;(’I‘,t)) = {T} @] {yiyj,zi|1 < <1 L5 < 3},
and E(W Bg(z:t)) = {{z, yi1 b {¥ik i1 b {wi1, 21 <
i <t,1 <k < 2}.Fig. 3 illustrates the W B (; ).

Proposition 1: Let V(W Bg(z;1)) = {z,y1.92,y3,2}
and EWBg(2:1)) = {(=v1), (y1,92), (2. 93), (y1,2)}
as illustrated in Fig. 4. Suppose that F' is a faulty set, and
F C V(WBg(x;1)). Depending on the definition of the
MM model and the faulty or fault-free status of 2, the relation
between the result of (ry, (x,2),ry, (%, y2), 7y, (y1,¥3)) and
the least number of | /| is illustrated in Fig. 4.

Let G be a graph, and F' be a faulty set in G with [F| < .
We propose the algorithm LDA (Local-Diagnosis-Algorithm)
to identify the faulty or fault-free status of a vertex = in a wind-
bell-tree W B¢ (z;t) under the MM model, and prove the cor-
rectness of the algorithm LDA in Theorem 5.

Algorithm 1: LDA(WB¢(z;t))
Input: A wind-bell-tree of order ¢ rooted at x, WB(;t), in graph G.

Output: The value is 0 if 2 is fault-free; otherwise, z is faulty.

begin
no {0 | (ry,, (2, 2), 7y, (@, 0i2), 7y, (Wi1, wi3)) = (0,0,0),1 <4 <t}
ny < [ ] (ry,, (@, 20), 79,0 (@, 8i2), 7y, (01, 928)) = (1,1,0),1 < 6 <t}
if no > n, then return 0;

else return 1;
end

Theorem 5: Let W B¢ (x;t) be a wind-bell-tree of order ¢
rooted at x. If I is a faulty set in G with |F'| < ¢, then the faulty
or fault-free status of vertex « can be identified correctly with
the algorithm LDA (W Bg(x;1)).

Proof: We set 0 =
|{i|(lry'z,1(:l‘:7z7:)7/’Ayw,l("[Uyi-z)”"yi,z (yi,lvyi,i’:)) :(07030)7 1 <
i < t}, n1 =
|{i|(7‘y1,1(1‘:vzi)7/"yl,l("["vyi-?)vl"yi,z(yi,lvyi,i’:)) :(17130)7 1 <
i < t}, and ns = ¢t — ng — ny. In the algorithm

LDA(W Bg(x;t)), we claim that « ¢ F if ng > n4, and
¢ € F if ng < nj. We prove the theorem by contradiction.
Assume that € F', and ny > nq. By Proposition 1, we have
|E| > 2ng4+mna+ 12> (ng +n1)+mn2+1 =1+ 1, which
contradicts the assumption that |F'| < ¢. Now we assume
that + ¢ I, and ny < mny. By Proposition 1, we have
|E| > 2n1 +n92 > (ng +n1 + 1) + ng = ¢+ 1, which
contradicts the assumption that |F| < ¢. Thus the theorem
holds. [ ]

IV. A CONDITIONAL LOCAL DIAGNOSIS ALGORITHM

In this section, we discuss the local diagnosability for a mul-
tiprocessor system with a conditional faulty set. We propose a
specific structure, called a balanced wind-bell-tree, for condi-
tional local diagnosis. The definition of a balanced wind-bell-
tree is described as follows.

Definition 2: Let G = (V,FE) be a graph, v € V(G),
and ¢ > 2. A balanced wind-bell-tree of order ¢ rooted
at u is defined to be the subgraph of (, denoted by
BWBg(u;t), such that V(BWBg(u;t)) = {u} U
{2y 2wl wh o1 <6< 1,1 <<t —-1,1 <k <4},
and E(BWBG(u;0)) = {{wa'}, {2,y b A0 ) v
i 2 2 wi b {w; wlshl < < 61 < <
t—1,1 < k < 3}. Fig. 5 illustrates the BW Bg(u; t).

Let G be a graph, and F' be a conditional faulty set in G with
|| < 2t — 1. We propose the algorithm CFLDA (Conditional-
Fault-Local-Diagnosis-Algorithm) to identify the faulty status
of a vertex « in a balanced wind-bell-tree BW Bg(u;t) with
the conditionally faulty set ' under the MM model.
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Algorithm 2: CFLDA(BWBg(u;t))

Input: A balanced wind-bell-tree of order ¢ rooted at u, BWB¢(u;t), in graph G.
Output: The value is 0, or 1 if  is fault-free, or faulty, respectively.

begin
S« 0;

fori=1ttdo
set WBg(z';t — 1) being the subtree of BWB(u;t) induced by

{oi gl 2 [1<j<t—1,1<k<3}

if LDA(WBg(2';t — 1)) = 0 then S « S U {i};
if |S| > 3 then return CFLDA3(BWB;(u;t), S);
else if |S| = 2 then return CFLDA2(BWB¢(u;t), S);
else if |S| = 1 then return CFLDA1(BWB(u;t), S);
else return CFLDAO(BWB(u; t));

end

Algorithm 3: CFLDA3(BWB(u;t), S)
Input: A balanced wind-bell-tree BWB((u;t) and a vertex set S.

Output: The value is 0, or 1 if  is fault-free, or faulty, respectively.

begin
no < {(6,7) | o (u, yj,,) = 0 for every 2 € 5,1 < j <t —1};

if ng > ¢ then return 0;

else return 1;
end

Algorithm 4: CFLDA2(BWBg(u; 1), 5)
Input: A balanced wind-bell-tree BWB¢(u;t) and a vertex set S.

Output: The value is 0, or 1 if  is fault-free, or faulty, respectively.

begin
let 27 and z7 be the vertices in S}
0], 5% ) g, 0152 1 () = 00,0 for 125 - D
ny e {5 | (ryp, (22, 20),myp (2P, 45) (00, 05)) = (1,1,0) for 1< <t — 1}
171 g, (2%, 20,7 0 62), g (4, 02)) = (0,0,0) for 1S 5 < ¢ — 1}
nf {5 | (ry, (2%, 29),myn, (29, 050) g, (41, 5)) = (1,1,0) for 1 < j <t = 1};

i [{j | rar(t ij,> =01<j<t-1};
mg < {j | raa(u,yf;) =0,1 < j <t =1}
if nf — nl > n{ —n and mf) # 0 then return 0;

else if nf — n} < nf —n{ and m{ # 0 then return 0;

else return 1;
end

Algorithm 5: CFLDA1(BWB¢(u;t), S)
Input: A balanced wind-bell-tree BWB(u;t) and a vertex set S.

Output: The value is 0 or 1 if u is fault-free or faulty, respectively.

begin

let z” be the vertex in S;

no < {7 | rer(u,5,) =0 for 1 < j <t —1};

if ng # 0 then return 0;

else

mo = {5 | (ryp, (@, 2)ryp, (2%, 470), myp, (W1, 075)) = (0,0,0), 1 <G <t — 1}
if my > 2 then return 1;

else if my = 1 then
let j' be the index in mp;
if 7,/v,1(y7,2 Y ,) =0and (g], 1w} ) = 0 then return 1;
| else return 0;
else
@ 15| (e, (W00 028), g, (1)) = (0,0) for 1< 5 < £~ 1};
b |45 | (@l ut,) = 0 for 1< < ¢ — 1}
4 \{]'|wa_,(@;) why) =1for 1 <j<t—1};
if a = 0 and b = 0 then return 0;
else if @ = 0 and b # 0 and c # 0 then return 0;

| else return 1;

end

We need the following lemma for the later proof of our
results.

Lemma 1: Suppose that F' is a conditional faulty set in
BW Bg(u;t) with |[F| < 2¢ — 1. Let

A= (WBg(z't—1)) =0,2' € F} ,and
B = {2'[LDA (WBg(z';t— 1)) =1.2° ¢ '} .

IEEE TRANSACTIONS ON RELIABILITY, VOL. 62, NO. 4, DECEMBER 2013

Algorithm 6: CFLDAO(BWB(u;t))

Input: A balanced wind-bell-tree BWB(; (u; t).

Output: The value is 0 or 1 if u is fault-free or faulty, respectively.

begin

for i =110t do

ny = {01 (ryg, (@29 mys (@ 050)5mys (U500 Yia) s, (U 20 W) =
(0,0,0,0),1 <j <t -1}

ny < |{j | (7‘1/;_,(”1‘7 Z;)J'y;J(-’7171/;.-2%"1;;2(?/;‘,1,y}.:&)-r;/;__;(l’/;,mTJ;‘.,A)) =
(0,0,0,1),1 < j<t—1};

ny (] g, (0200 (00, 4) s (0 ) =
1<j<t-1}f

(1,1,0),

if ny = n) +ni +1 then
if nf = 0 and n} # 0 then return 1;
else if nf = 0 and n{ = 0 then
set j' being the index in nj;
if 4, fs((1/;'-,2,‘1/;,'4) =1 then return 0;
else return 1;

else
L if [{J | 72i(u,95,) = 0,1 < j <t —1}] # 0 then return 0;

else return 1;

r;turn 1;
end

Fig. 6. A star graph .S ; the same letters represent the connected edges.

Then |A| + |B| < 1. That s, for 1 < ¢ < ¢, there is at most one
mistake in diagnosis of z* with the algorithm LDA.

Proof: We prove the lemma by contradiction. Assume that
|A| + |B| > 2. By Theorem 5, we have |I| > 2¢t > 2t — 1,
which contradicts the assumption that | F'| < 2¢ — 1. |

Lemma 2: Lett > 5,and S ‘ (WBg (2%t —
1)) = 0}. Suppose that F is a conditional faulty
set in G with |[F| < 2t — 1. Then the faulty or
fault-free status of vertex u« can be identified cor-
rectly by the algorithms CFLDA3(BW Bg(u;t),S),
CFLDA2(BW Bg(w;t),S), CFLDA1(BW Bg(u;t),S),
and CFLDAO(BW Bg(u;t), S) if | 9] =2,
and |S| = 0, respectively.

The proof of Lemma 2 is presented in the Appendix. By
Lemma 2, we can prove the correctness of the algorithms
CFLDA3, CFLDA2, CFLDAI1, and CFLDAO. Hence, we
have the following theorem.

Theorem 6: Suppose thatt > 5. Let BW B (u;t) be a bal-
anced wind-bell-tree of order ¢ rooted at w. If ' is a conditional
faulty set in G with |F'| < 2¢ — 1, then the faulty or fault-free
status of vertex u can be identified correctly with the algorithm
CFLDA(BW Bg(u;t)).
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23456

Fig. 8. BW D5, (u:5). The number i in the parentheses on each edge repre-
sents the ¢-dimensional edge in S.

V. APPLICATION ON THE STAR GRAPH

In this section, we show that the proposed diagnosis algorithm
CFLDA can be applied to the star graph, the well-known inter-
connection network of multiprocessor systems. The star graph

Vi = (W’

= (W)
Wi = (((w)*P)°
wh = (WH)))?

Vi = (@

= (e
= (@YY
W = (WHF)Y

Vi = ()2
Y = (((wH)»)?
Vi = ()2

Vi = (WY

Y5 = (WHoy

Vi = (((@HP))
Vi = (Y

Yoz = (W)Y 2 = (W)

Viaa= (D) wi, ) = (P

Vina = (@Y wi,, = ()

is proposed in [1]. The n-dimensional star graph is an attrac-
tive alternative to the n-cube topology for interconnecting pro-
cessors in parallel computers and distributed systems because
of its recursive structure, and vertex and edge symmetry. The
star graphs are able to embed some well-known network topolo-
gies, such as trees [2], grids [19], hypercubes [27], and cycles
[31]. Many efficient communication algorithms on star graphs
for broadcasting, gossiping, scattering, and Fourier transform
are also proposed in [4], [10], [11], [26]. The vertex set V' of
an n-dimensional star graph S,, is {ujug ... uy|uius ... Uy, s
a permutation of 1,2,...,n}. Thus [V(S,)| = n!l. The ad-
jacency is defined as follows; wius ... u; ... u, is adjacent to
V1V2 ...y ... Uy, through an edge of dimension ¢ with 2 < i <
n if v w; for j & {1,i}, 11 = u, and v; = uq. Hence
the degree of every vertex in S, is » — 1. For example, in a S,
containing 4! vertices, two vertices 1234 and 4231 are neigh-
bors, and joined through an edge labeled 4. Fig. 6 illustrates the
Sy. Letu = uqus ... u, be any vertex of .S,,. By the definition
of S,,, there is exactly one neighbor v of u such that u and v
are adjacent through an 7-dimensional edge with 2 < ¢ < n.
Now we propose the following algorithm called B-IN-S to con-
struct a balanced wind-bell-tree in a star graph S,, for n > 6
with [V(S,)| > |V(BW Bg(u:t))|. Let ()t be the vertices
z% in a balanced wind-bell-tree BW Bs, (w;n — 1) for every
2 < i < n. Thus every subtree of BW Bg, (u;n—1) induced by
{mi,gjj-’k,z;,w;‘-,l,w;aﬂ <i<n,l<j<n-—21<k<4}
is located in mutually distinct components of S,,. See Fig. 7 for
an illustration. With this concept, we can construct a balanced
wind-bell-tree in a star graph by the algorithm B-IN-S. We de-
scribe a BW Bg, (u; 5) constructed by the algorithm B-IN-S in
Fig. 8.

VI. CONCLUDING REMARKS

The issue of identifying faulty processors is important for
the design of multiprocessor systems, which are implementable
with VLSI. The process of identifying all the faulty processors
is called system-level diagnosis. Under the MM model, each
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Fig. 9. The local diagnosability and conditional local diagnosability for a vertex in the star graph or in the pancake graph.

Algorithm 7: B-IN-S(S,,, u)
Input: A star S, with n > 6 and a vertex u € V/(S,).
Output: A balanced wind-bell-tree BWBg, (u;n — 1) in S,.

begin
(V,E) « ({u},0);
for i =2 to n do
' (u)
ke 1;
S {2,3,4,5,6};
if i € S then S« S — {i};
for j=i+1toi+n—2do
if j < n then
if j € Sthen S+ S—{j};
L set p1, p2 and p3 being any three mutually distinct elements in S;
else
jegj—n+1;
\\ if j € Sthen S+ S—{j};
set p1, p2 and ps being any three mutually distinct elements in S;
Ui < (W)
Yho (W)™
Yina  Who)™s
Yo  Whs)™s
2 = (W)™
wy — (2)7
U";&,? « (’“"i&l )’,‘;
S+ Su{jh
L kk+1;
V7<— Vu {zi.y;)k.z;.w}vl., Wiy [1<i<n-1,1<j<n-21<k<4};
E« BU{{u,2"} {2 yj,}, {yjk Yien b {0 5 h {5 wn b A{w) pwjp} [ 1< i <
n—1,1<j<n-21<k<3}h
return BWBg, (u;n — 1) « (V, E);

end

processor acts as a comparator to test each pair of adjacent
two processors. Sengupta and Dahbura [30] proposed a poly-
nomial-time algorithm with time complexity Q(N®) to diag-
nose a system with a total number N of processors under the
MM model. In the random-fault probabilistic model of multi-
processor systems, processors are assumed to fail statistically
independently. For many practical multiprocessor systems or
interconnection networks, the probability that all the neighbors
of a processor are faulty simultaneously is very small. Thus, we
address the conditional local diagnosability problem under the
MM model in this paper. We propose a specific structure called
the balanced wind-bell-tree, and give an algorithm CFLDA to
diagnose a vertex in the system with a conditional faulty set
under the MM model. According to our results, a specific £-con-
nected network with N processors is conditionally (2¢— 1)*-di-
agnosable. In Section V, we give an application by constructing
the balanced wind-bell-tree in an n-dimensional star graph S,,.
Akers and Krishnameurthy [ 1] proposed another family of inter-
esting interconnection networks, called the pancake graph. Sim-

TABLE I
THE TIME COMPLEXITY AND DIAGNOSABILITY IN A SYSTEM ¢ UNDER THE
MM MODEL ASSUMING THAT |V (G)| = N, AND6(G) =t

Algorithm Time complexity Diagnosability
Sengupta and Dahbura [30] O(N?) t
LDA (WBg(z;t)) O(Nlog N) t

CFLDA (BWBg(u;t)) O(N(log N)?) | Conditionally 2t — 1

ilar to S,,, the n-dimensional pancake graph is an (n — 1)-reg-
ular graph with n! vertices. Moreover, the pancake graph is
vertex transitive. With an algorithm similar to B-IN-S, a bal-
anced wind-bell-tree can be constructed in a pancake graph.
Fig. 9 shows that under the same dimension, the conditional
local diagnosability for a vertex is about twice larger than the
local diagnosability for a vertex in the star graph or in the pan-
cake graph.

Now, we measure the time complexity of the proposed
algorithm CFLDA. Many practical systems with N vertices
have degrees on the order of O(log V) for each vertex. For
a system G, a balanced wind-bell-tree BW B (u;log N) of
order log N rooted at u can be constructed with time complexity
O((log N)?). The time complexity of the algorithm LDA is
O(log N) for W Bg(z%;log N —1), and it runs O(log N) times.
As a result, the time complexity of the CFLDA algorithm is
O((log N)?). Consequently, the total time for diagnosing all
the faulty vertices is O(/N(log N)?). Table I shows the time
complexity and diagnosability in some algorithms under the
MM model. The n-dimensional star graph S,, has n! vertices,
and the degree of each vertex is O(n). Let N = n!. We have
O(n) = O(log N/logn) = O(log N/loglog N'). Thus the
time complexity to diagnose all the faulty vertices in a star
graph is O(N (log N/(loglog N))?).

Future works will try to find some specific structure for the
existing practical multiprocessor systems and interconnection
networks. Then we propose to design the efficient diagnosis al-
gorithm, and prove the diagnosability of the system with this
useful structure in accordance with various conditions and di-
agnosis models.

APPENDIX

Proof of Lemma 2:
Proof: We consider the following cases.
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Case 1) Suppose that |S| > 3. We prove the correctness

of the algorithm CFLDA3(BW Bg(u;t).S) as
follows. We set no = [{(i,5)|ryi(u,95,) = 0
for every 2 € S,1 < j < t -1}, n =
(G )7 (0. ) = 1 forevery a' € 8,1 < j <
t—1},andY = {y} [»' € S-F, 1 <j<t—1},
In the algorithm CFLDAS3(BW B¢ (u;t), S), we
claim thatw & F if ng > t,and u € F ifng < ¢.
By Lemma 1, |S N F'| < 1. We have the following
subcases.
Subcase 1.1: Suppose thatw & F',and |SNF| =
0.Thus |[FNY|=mn1 < (2t-1)—(t—|5]) =
t+|S| — 1. Because ng + n1 = |S|(t — 1), we
have ng > |S|(t = 1) — (¢ +|S| - 1) > ¢if
t>35,andt > |S| > 3.
Subcase 1.2: Suppose that u & F'and |[SNF| =
1.Thus [FNY|<(2t—-1)—(t—|S]) -t =
|S| — 1. Because ng +n1 = |S|(t — 1), we have
no = [SI(t—1)— (18] — 1) = (t = 1) > tif
t>35,andt > |S| > 3.
Subcase 1.3: Suppose that v € F'. Because SN
F| <1,wehaveng <t —1.
Thus, the algorithm CFLDA3(BW B¢ (u;t), S)
is correct.

Case 2) Suppose that |S| = 2. We prove the correctness of

Jl

the algorithm CFLDAZ2(BW B¢ (u;t), S) as fol-
lows. Let S = {zP,z%}. Foreach1 < j <t —1,
suppose that

(.’L’

a7’y§,1( Y3, T2) Ty z, (7131 7113))

J (T’y;’_’l p'/zf)
=(0,0,0)},

j|(ry§7l (a7, 22) ryr (57 055) e, (4, 7,13))

= (1,1.0)},

jl (u, (%, 2]) ryr (2% y]2) s myr, (W) %3)
=(0,0,0)}|,and

jl (w;l(mqwf)w (2% y52) sy, (05 %3)
=(1,1,0)}.

We claim that if nf —n% > n{—n{,thenz? ¢ F. We
prove by contradiction. Assume that z¥ € F', and
nh—nf > nd—nf. ByLemmal,|{z*, 2¢}NF| < 1,
hence ¢ ¢ F. By Proposition 1, we have |F| >
2ni+((t—1)—nf—nl)+2nf+((t—1)—nd—ni)+
(t—2)+1=(nf—n)—(nd—nH+Bt-3)+1 >
2t — 1 if ¢ > 5, which contradicts the assumption
that |F\ < 2t — 1. Similarly, we have 29 ¢ F if
ng —nf < ni —nf.

Without loss of generality, we assume that nf —n >
“0 nd, andz? ¢ F. Obviously, if there exists some
J such that 7,0 (u, y; 1) = 0, then u € F. Now we
prove that if r.»(u,y%,) = 1 forevery 1 < j <
t—1,thenu € F. LetY = {y71|1 <j <7‘—1}

We claim that Y, € F if nf — n% > ni — nf.

We prove by contradiction. Assume that Y, C F|,

and #? ¢ F. Thus we have |Y, N F| = ¢t — 1.
That is, |V(W’Bg(a;7’;t —-1))n F| =+t — 1. Hence
(rye (2, 27)ryr (@, y55) e (051, 958)) €

{(0 1 ,0), (1 1, 0)} foreveryl <J < ¢ — 1. Thus
we have nf, = n] = 0. Because |F'| < 2t — 1,
we have |[V(WBg(z%t —1))NF| < (2t — 1) —
-1 -0t—-2) = 2. By Theorem 5, z? & F.
Hence n{ < 1, and nd > ¢ — 3. Thus, nf — ni >
t—4>n§—ny =0fort > 5, which contradicts
the assumption that nf, — ny > nl — ni. Hence,
we have Y, ¢ I". Therefore, if r» (u,y% ;) = 1 for
everyl < j < t—1,thenu € F. Thus the algorithm
CFLDA2(BW Bg(u;t), S) is correct.

Case 3) Suppose that |S| = 1. We prove the correctness of

the algorithm CFLDA1(BW Bg(u;t),S) as
follows. We set S = {«P}. First, we claim
that «¥» ¢ F. We prove it by contradiction.
Assume that #? € F. Because Ng(2?) C F, we
have v € F.Forl < 57 < ¢t —1,letmg =

il (rye P, 25) e (274 o) rye (U0, 0y 8)) =

(0.0, 03}| and my =
|{J|(7 ’ (*L ’ Zf): Tyf;wl (xp’ yf,z)ﬂ’yf’z (yil', U§)3)) =
(1,1 0)}| By Proposition 1,

|£| 22m0—|—(t7lfm()fml)—l—(tfl)—l—l—l—
1 =2t + (mg — mq1) > 2t — 1, which contradicts
the assumption that || < 2¢ — 1. Therefore, we
have 7 ¢ F'. Obviously, if there exists some j
such that r,»(u, 4% ,) = 0, then u ¢ F. Suppose
that ’rmp(u,yil) =1foreveryl < j <t—1.We
have the following subcases.
Subcase 3.1: If g > 2, then u € F. Assume
thatw ¢ F by contradiction. If there exists some
j' such that (IJ: l(DLP 25 ),rJ: (:l;p,Jp, o)
Ty, (Jf, LY 3)) (0,0,0), then the two ver-
tices 1/ /1 and oy /o are faulty. By Proposition 1,
we have |F| > 2mg+2mq+(t— 1—7n0—7n1)+
(t—1) =2t—2+mg+m1 > 2t > 2t—1, which
contradicts the assumption that | F'| < 2t — 1.
Subcase 3.2: Suppose that mp = 1. Let j' be an
index such that (r,» l(:1:‘”,21”) Ty, l(. Yl o)y
ryr, (J] LY d))]i (0,0,0). We have the fol-
lowmg subcases.
Subcase 3.2.1: If 7 (JJ,Q Yy = 0,
thenu € F. Assume that u ¢ F by contra-
diction. We have {y%. |, 4% ,, 4% 4} C F.
By Proposition 1, |[F| > 2m, + (t — 1 —
mog —m1)+ (E—1)+3 =20+m; >
2t > 2{ — 1, which contradicts the assump-
tion that [F] < 2¢ — 1.
Subcase 3.2.2: If
(’y i (yl;’ 2 L/f’ 4)5 Tz]’f, (yfl,la ,w§’71)7
71113 (7, w? 5)) = (1,0,0), thenu € F.
Assume that u ¢ F by contradiction.
We have {y% i, 25, w5} C F. By
Proposition 1, | F'| > 2m1 +(t—1—mg-—
my)+(t—1)+3 =2t+my > 2t > 21,



which contradicts the assumption that
|F| < 2¢—1.
Subcase 3.2.3: If
(Ty?,y3 (yé')',Qv yﬁ')’,;i) (y]’ 1» w i 1)’ Tw o
(25, wh o) = (1, () 1), then u & F
Assume that u € F by contradiction.
Because ry: (7/?,2,.7}?/,4) = 1, and
TP 1(,4 LW 2) = 1, thus there is at least
one faulty Vertex in {yh 5. Y% 30 Y5 4
and in {28, w’, |, w? ,}, respectively. By
Proposition 1, | F| > 2mq + (¢ — 1 — g —
m)+{E—1)+3=2t+mq > 2t > 2t—1,
which contradicts the assumption that
|[£] < 2t — 1.
Subcase 3.2.4: If r p,,g(y,ly‘)'.,??yf’A) =1,
and r.» (y} ;,wh ) = 1, thenu ¢ F.
Assume that u € F by contradiction.
Because 7,7 (yj, 0¥y = 1, and
(y,, 1 w%’, 1) = 1, thus there is at least
one faulty Vertex in {y% 5,05 505 4}
and in {yJ, 1wt 1 z )}, respectively. By
Proposition 1, |F| > 27771 +{(t—1—mg—
my)+ (L — 1)+5 =2i+mq > 2t > 21,
which contradicts the assumption that
IF| <2t — 1.

Subcase 3.3: Suppose that my = (. We have the
following subcases.

Subcase 3.3.1: If there ex-

ists some 7 such that

(ryr, (W50t a)ryr, (W onia)) =
(0, 0) then w € F. Assume that
v ¢ I by contradiction. We have
Y% 1 € I'. Because ry» (y]p-,71,yf,73) =0,
and 7, (7//, 9: Yy 4) = 0, thus
{45 2»9§J' 3} € F. By Proposition 1, |F'| >
CED AU 42=20>2>2% 1,
which contradicts the assumption that
|[£] < 2t — 1.
Subcase 3.3.2: Suppose that either
v, (Wi YGa) = Lormye (yisyj,) =1
for all 1 < j <t — 1. There exists at least
one faulty vertex in {y? 4%, % 3,45 4}.
We have the following subcases.
Subcase 3.3.2.1: If there exists some j’
such that Tw?, 1(7?,, wh ,) = 1, then
u g F. Assume that v € F by con-
tradiction. Because Tu, (zf,, wh, 5) =
1, thus there ex1sts at least one faulty
vertex in {z, wh, |, w? ,}. By Propo-
sition 1, | F| > (t71)+(t71)+2—
2t > 2t > 2t — 1, which contradicts the
assumption that |F| < 2¢ — 1.
Subcase 3.3.2.2: If r,» ( 28, why) =0
foralll < j <t-— 1 and there exists
some j’ such that ’zf,(y]',u wj,J) =0,
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then « € F'. Assume thatu € F by con-
tradiction. We have ¢, ; € F. Because
(T'w; (ZP (wj)Z) Tz? (yy’ 17 wp' 1)) =
(0,0), there ex1st at least two faulty

vertices in {z}, w, |, w} 5}
By Proposmon 1, |F| > (t — 1)+ (t -

1) +2 = 2t > 2t > 2t — 1, which
contradicts the assumption that |F'| <
2t — 1.

Subcase 3.3.2.3: If

(7w w? | (28, why),r z»(?/J 1 wh ) =
(0, 1) foralll < j <i—1,thenu ZF.
Assume that v € F by contradiction.
Because Ng(xF) € F, there exists
some j' such that ?/?'_1 ¢ F. Because
(Tyr, (Zj?,,71)?,72),Tzf/(?]§,71,111§,71)) =
(0, 1) there is at least one faulty vertex
in {w} ,,2%}. By Proposition I,
Fl>2t-1D)+(t-1)+2=2t2>
2t > 2f — 1, which contradicts the
assumption that |F| < 2¢ — 1.

Thus the algorithm CFLDA1(BW B¢ (u;t), S) is

correct.

Case 4) Suppose that |S| = 0. We prove the correctness of

Pl (s, @) o,

the algorithm CFLDAO(BW Bg(u;t), S) as fol-
lows. Forevery 1 <3 <tandl1 <j3<¢t—1,let

Ty (?/,’3,27.7/3,4)> = ((),(L(LU)H

{j| (Tyf},l (TL74§) Tyt (T’ng) Tyl (93131}3) ;

vy (;/;2,;,;174)) = (0,0,0, 1)}‘ .and

U (s, 20 e (0 0i0) oy, (0000a) )
= (1,1,0)}].

Because | S| = 0, thus n} > n{,+n}. First, we claim
that, if nb > n) +n? + 2 forevery 1 < i < ¢, then
v € F. Assume that v & F' by contradiction. Let
§" = {z'|z* ¢ F, and LDA(WBg(z';t — 1)) =
1}. By Lemma 1, [S’| < 1. Suppose that [5'| = 1,
and 27 € S. Then by Proposition 1, we have |F'| >
2rL2+(tflerOer1er2)—|—(t71) =2t -2+
nd —n] —nj > 2t > 2t — 1, which contradicts the
assumption that | F'| < 2¢—1. Suppose that | 5’| = 0.
Because Ng(u) C F, wehave u € F.

Now we claim that there is at most one index z for
1 < i < t such that ny = 770+771+1 By
contradiction, assume that 772 = 770 + )t + 1,
andn2 = 770 +771 + 1 forsome 1 < 2; < ¢,
and 1 < 25 < t. We have two cases. First, the
two vertices 't and z% are faulty. Suppose that
{a™, 1’2} C F.By Propos1t1on 1, we have |F| >
2(770 +n7) + (1 - 1—770 —nit —ng' )+2(ng +
771 )+(t 1—ng —np —772 FE-2)+2 =(ng +
nt —nt )+ (ng +nP —ni)+(3t-2) =3t—4 >



LIN et al.: LOCAL DIAGNOSIS ALGORITHMS FOR MULTIPROCESSOR SYSTEMS UNDER THE COMPARISON DIAGNOSIS MODEL 809

2t — 1 if ¢ > b5, which contradicts the assumption
that [F| < 2¢ — 1. Second, one of z* and z’
is faulty. Without loss of generality, suppose that
# € F and 2> € S'. By Proposition 1, we have
|F| > 2(7161 +n1 ) F(t=1-ng —ni —ng' )+2n5 +
(f —1—ng —n® —ny)+(t-2)+1=(ng" +
nit —nS )+ (g —n —ni)+(3t—3) =3t —3 >
2t — 1 if ¢ > b5, which contradicts the assumption
that |F'| < 2t — 1. Hence let i/ be the only index
such that 712 no + n1 + 1, where 1 <7 <t We
have the following subcases
Subcase 4.1: If no = 0and ni #0, then u €
F.We claim that2* € F. Assume that z?' ¢ F
by contradiction. Because nl # 0, there exists
some  such that at least one of {y 5. i 5.y} 4}
is in fault. By Proposition 1, we have |F| >
o +(t—1—nh —ni —nd )+ (t—1)+1 =(nh —
ni —ni) + (2t —1) = 2t > 2t — 1, which
contradicts the assumption that |F| < 2¢ — 1.
Thus 2/ € F. Because Ng(u) C F, we have

u € F.

Subcase 4.2: Suppose that n) = O,
and ni = 0. Hence, we have
n L. Let j' be the index such that

(771]",1(‘]“1 ,Z;/),Ty;'rl( ’yj’ 2) ]" (U]’ 1=
'y;v',_yg))(l, 1, 0). We  prove  that if
i (J; 2 J7, 4 = 1,then uw ¢ F. As-
sume that u € F by contradiction. Because
Tz’,( a!/j/,l) =1, and7 (UJ/ zayj/ J=1
there /is /least one faulty vertex in
{"” ; y;’,lv Z;"}a and in {Jj,72‘/ y}’,37 y}’,4}’
respectively. By Proposition 1, we have
|F| > (t—1—ni —ni —ni)+({t—1)+3=
2t > 2t — 1, which contradicts the assumption
that |[F'| < 2t — 1. Now we prove that if
ryl,/s(yjlz y’,’,4) = 0, then u € I’. We claim
that y‘l, 1 & I Assume that yj/,l € F by
contradiction. Because 7/ (yzl,lyjl,3) =0,

J p

||I

and 7iyj',,3(yj’~,2’yj’s4) 0, we have

{y;',2 g;’,?,} C F. By Proposition 1, we have
IF|>@t—1—ni —ni —ni)+(t—1)+3=
2t > 2t — 1, which contradicts the assump-
tion that |[F| < 2t — 1; Thus, yj, , ¢ F.
Then we claim that z* & F. Assume
that :1:"// §Z F by contradietiou. Because
rys (@ >ZJ) = Loy (@) = L

and Ty (v ,Q.UJ, 1) 0, we have

{yj,:Q,yj,ﬁ,zj,} C F'. By Proposition 1, we
have |F| > (t—1—nj —ni —n} )+ (t—1)+3 =
2t > 2¢ — 1, which contradicts the assumption
< 2t — 1. Thus, ' € F. Because
Ng(u) C F,we haveu € F.

Subcase 4.3: Suppose that n) # 0.
We claim that z* ¢ F. Assume that

7

z* € ,F by contradiction Because
(7!/}',’1(7“12 vzlz’)v tl’/ ( 7yl’ 2) Ty

(y;’,hy;’,s)?Ty;,’ (yl’Z’yl’ ) = (07&070)
for some 1 < ' < + — 1, we have

{'u,yf,’J, yl‘,,z y,‘,rg} C F. By Proposition 1, we
have |[F| > 2(nd +ni) 4+ (t—1—nd —n} —
ny )+ (E—1)+4 =(nf +n] —nb ) +(2t+2) =
2t +1 > 2t — 1, which contradicts‘ the as-
sumption that [F| < 2t — 1. Thus, 2" & F.
Hence, if there exists some 7" such that
i (U, 1) = 0 for1 < j” <t —1, then
u & F. Now we prove that if r_. (u, y’lrl) =1
foralll1 < j<t—1,thenu € F. A_ssume that
u ¢ F by contradiction. We have y;, € F for
all1 < j <t—1.Because ng # 0, there exists
some /" such that Ty, B(yfu’z,y'j,%) = 0. Thus,

we have gf,’, 3 € F. By Proposition 1, we have
\F| > 2(nd +771)+772 +( t—1—ni —ni —
nh )+t —1)+1 = (nd +n] ) +(2t—1) > 2t -1,
which contradicts the assumption that
|F| <2t —1. Thus,u € F.

Therefore, the algorithm CFLDAO(BW Bg(u;t), S) is

correct.
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