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Abstract For a given subspace, the Rayleigh-Ritz method projects the large
quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP.
Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the Rayleigh-
Ritz method defines the Ritz values and the Ritz vectors of the QEP with respect to
the projection subspace. We analyze the convergence of the method when the an-
gle between the subspace and the desired eigenvector converges to zero. We prove
that there is a Ritz value that converges to the desired eigenvalue unconditionally
but the Ritz vector converges conditionally and may fail to converge. To remedy the
drawback of possible non-convergence of the Ritz vector, we propose a refined Ritz
vector that is mathematically different from the Ritz vector and is proved to converge
unconditionally. We construct examples to illustrate our theory.
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1 Introduction

Consider the numerical solution of the large quadratic eigenvalue problem (QEP)

Q(λ)x ≡ (
λ2M + λD + K

)
x = 0, (1.1)

where λ ∈ C, x ∈ Cn\{0}, M , D and K are n × n complex matrices with M = MH >

0 Hermitian positive definite. The scalar λ and the nonzero vector x in (1.1) are
called an eigenvalue and a corresponding eigenvector of the quadratic pencil Q(λ) or
(M,D,K), respectively. The pair (λ, x) is called an eigenpair of (M,D,K). Since
M = MH > 0 in (1.1), Q(λ) has 2n finite eigenvalues.

QEP (1.1) arises in a wide variety of scientific and engineering applications [2,
28]. The theoretical framework for general matrix polynomials and in particular for
quadratic pencils can be found in books by Lancaster [18] and more recently by
Gohberg, Lancaster and Rodman [4]. A good survey of mathematical properties, per-
turbation analysis, and a variety of numerical algorithms for QEPs can be found in
the paper by Tisseur and Meerbergen [28].

In practice, a small number of eigenvalues that are nearest to a target τ or located
in a prescribed region of the complex plane and the corresponding eigenvectors are
often of interest. To this end, we exploit the shift transformation λτ = λ − τ with
det(Q(τ )) �= 0 to transform (1.1) to a new QEP of the form

Qτ (λτ )x ≡ (
λ2

τMτ + λτDτ + Kτ

)
x = 0, (1.2)

where Mτ = M , Dτ = 2τM + D and Kτ = τ 2M + τD + K is nonsingular. So,
without loss of generality, throughout the paper, we assume that the eigenvalues to be
sought are nonzero.

One kind of classical methods for solving QEP (1.1) is to reformulate it as a certain
standard (or generalized) eigenvalue problem via a so-called linearization process and
then to apply Krylov subspace based methods or Jacobi-Davidson type methods to
solve the corresponding linear eigenvalue problem. Most of these methods fall into
the category of the Rayleigh-Ritz method that is widely used for the computation of
partial eigenpairs of a standard linear eigenvalue problem from a given projection
subspace. As is well known, under the assumption that the angle between a desired
eigenvector and the projection subspace tends to zero, there exists a Ritz value that
converges to the desired eigenvalue unconditionally but its corresponding Ritz vector
may fail to converge; furthermore, when one is concerned with eigenvectors, one can
compute certain refined Ritz vectors whose convergence is guaranteed [10, 12, 13,
15, 16]; see also [25].
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Over the years, some reliable numerical methods have been proposed that are used
to solve large and sparse QEPs directly. Based on certain orthogonal projection con-
ditions, various methods are designed to construct suitable lower dimensional sub-
spaces. Then, the large QEP is projected onto a given subspace to produce a small
sized dense QEP which can be solved by the standard QR or QZ algorithm. They
fall into the category of the Rayleigh-Ritz method, as will be described in the next
paragraph. Methods of this type include the residual inverse iteration method [8, 21,
22], the Jacobi-Davidson method [23, 24], Krylov subspace type methods [6, 19],
the nonlinear Arnoldi method [29], second-order Arnoldi (SOAR) type methods [1,
17, 20, 30], the iterated shift-and-invert Arnoldi method [31] and the semiorthogonal
generalized Arnoldi (SGA) method [7].

Now we describe the Rayleigh-Ritz method for the QEP. For a given orthonormal
matrix Q ∈ Cn×m (m ≤ n), the Rayleigh-Ritz method is to find a scalar μ ∈ C and a
unit length vector x̂ ∈ Cm satisfying the orthogonal projection condition

(
μ2MQ + μDQ + KQ

)
x̂ ⊥ span{Q},

which amounts to solving the projected QEP

(
μ2M̂ + μD̂ + K̂

)
x̂ = 0, (1.3)

where

M̂ = QH MQ, D̂ = QH DQ, K̂ = QH KQ. (1.4)

If (μ, x̂) with ‖x̂‖ = 1 is an eigenpair of (M̂, D̂, K̂), i.e., (μ2M̂ + μD̂ + K̂)x̂ = 0,
then μ and Qx̂ are, respectively, called a Ritz value and a corresponding Ritz vector
of (M,D,K) with respect to span{Q}, and (μ,Qx̂) is a Ritz pair of (M,D,K).
Since M is Hermitian positive definite, so is M̂ for any given Q. Therefore, we have
2m finite Ritz values.

For a given Q, the assumption that M is Hermitian positive definite is a sufficient
condition to ensure the finiteness of both the eigenvalues and the Ritz values. Without
this assumption, M̂ would possibly be singular for some given orthonormal Q. In this
case, there could be some infinite Ritz values, the situation would become much more
complicated, and the Rayleigh–Ritz method may fail to work. Indeed, as will be seen,
some of our important convergence conclusions cannot be drawn, e.g., the bound in
Theorem 2.1 may not tend to zero when the subspace span{Q} is sufficiently good.
In contrast, as will be clear, QEP (1.1) is mathematically equivalent to some stan-
dard linear eigenvalue problem provided that M is nonsingular; see (2.1a)–(2.1c). It
is well known that the standard Rayleigh–Ritz method for the linear eigenvalue prob-
lem always computes finite Ritz values for any projection subspace. Therefore, there
are some essential differences between the Rayleigh–Ritz method for (1.1) and the
method for the linear eigenvalue problem. As is expected, it is nontrivial to establish
a convergence theory of the Rayleigh–Ritz method for (1.1). As a key step of our
further discussions, we first assume the finiteness of Ritz values for any projection
subspace span{Q}. It is simple to justify that for any orthonormal Q the Hermitian
positive definiteness of M is sufficient to ensure that of M̂ . Generally, what we need
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in the paper is to assume that ‖M̂−1‖ is uniformly bounded independently of Q. This
assumption is true if M is Hermitian positive definite, as ‖M̂−1‖ ≤ ‖M−1‖ for any
orthonormal Q. So, purely for simplicity of presentation, we assume that M is Her-
mitian positive definite throughout the paper. Nevertheless, we must keep it in mind
that all the convergence results and claims are true in this paper provided that M̂ is
nonsingular and ‖M̂−1‖ is bounded.

In this paper we study the convergence of the Ritz value and the corresponding
Ritz vector, and extend some of the results in [15, 16, 25] to the Rayleigh-Ritz method
for (1.1). Although a number of Rayleigh-Ritz procedures with respect to different
subspaces have been used, to our best knowledge, there has been no unified conver-
gence result and general theory. As will be seen later, carrying out this task is indeed
nontrivial and complicated. We establish some important results similar to those for
the linear eigenvalue problem. It turns out that there exists a Ritz value that con-
verges to the desired eigenvalue unconditionally but the corresponding Ritz vector
may fail to converge even if the corresponding projection subspace span{Q} contains
a sufficiently accurate approximation to the desired eigenvector. It is thus necessary
and significant to replace the Ritz vector by a refined Ritz vector that has residual
minimization and is mathematically different from the Ritz vector. We prove that
the refined Ritz vector converges unconditionally provided that the angles between
the desired eigenvector and the subspaces tend to zero. All convergence results are
nontrivial generalizations of the known results on the Rayleigh-Ritz method and the
refined Rayleigh–Ritz method for the linear eigenvalue problem in [15, 16, 25].

This paper is organized as follows. In Sect. 2, we analyze the convergence for Ritz
values and Ritz vectors and prove that the Ritz value is unconditionally convergent
but the associated Ritz vector may fail to converge. To remedy this drawback, in
Sect. 3, we introduce a refined Ritz vector and prove its unconditional convergence.
Finally, we conclude the paper in Sect. 4.

Throughout this paper, the superscripts H and T denote the conjugate transpose
and the transpose of a matrix or vector, respectively. In is the identity matrix of order
n. We denote by ‖ · ‖ both Euclidean vector norm and the spectral matrix norm.

2 Convergence of Ritz values and Ritz vectors

Throughout the paper, let (λ1, x1) with ‖x1‖ = 1 be a desired eigenpair of (M,D,K)

and assume that λ1 is simple. Furthermore, we keep in mind the assumption made in
the introduction that λ1 �= 0, which is without loss of generality due to the equivalence
of (1.1) and (1.2).

We convert QEP (1.1) to a generalized eigenvalue problem (GEP) of the form

A

[
λx

x

]
= λB

[
λx

x

]
, (2.1a)

or a standard linear eigenvalue problem (LEP) of the form

B−1A

[
λx

x

]
= λ

[
λx

x

]
, (2.1b)
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where

A =
[−D −K

In 0

]
and B =

[
M 0
0 In

]
. (2.1c)

So λ1 is an eigenvalue of the matrix pencil (A,B) or the matrix B−1A in (2.1a)–
(2.1c) and v1 ≡ [ λ1x1

x1

]
/
√

1 + |λ1|2 is its corresponding normalized eigenvector.
There are numerous linearizations of QEP (1.1). We use (2.1a)–(2.1c) for two rea-
sons. The first is that it is a very commonly used linearization in the literature. The
second is that we establish our results in this paper by relating the QEP to such lin-
earization. Other linearizations are certainly possible and useable, but if then we may
have to make a very different and more complicated analysis in order to establish
the convergence theory of the Rayleigh-Ritz method and refined Ritz vectors for the
QEP.

There are unitary matrices [v1, X] and [y1, Y ] ∈ C2n×2n with v1, y1 ∈ C2n such
that

[
yH

1
YH

]
A

[
v1 X

] =
[
α sH

0 L

]
,

[
yH

1
YH

]
B

[
v1 X

] =
[
β tH

0 N

]
, (2.2)

where L,N ∈ C(2n−1)×(2n−1) and λ1 = αβ−1. Since λ1 is supposed to be simple, it is
not an eigenvalue of (L,N).

For a given orthonormal matrix Q ∈ Cn×m with m ≤ n, define

W =
[
Q 0
0 Q

]
(2.3)

and let [Q,Q⊥] be unitary with Q⊥ ∈ Cn×(n−m). From now on, throughout the paper,
let θ1 be the acute angle between x1 and the projection subspace span{Q} and

q1 = QH x1, q⊥
1 = (

Q⊥)H
x1. (2.4)

Then it holds that [25, p. 249, Theorem 2.2]

∥∥q⊥
1

∥∥ = sin θ1, ‖q1‖ =
√

1 − sin2 θ1 = cos θ1. (2.5)

First of all, we want to show that there is a Ritz value μ1 that converges to λ1 un-
conditionally when sin θ1 → 0. The following perturbation result is needed, which
is expressed in terms of the a priori uncomputable tan θ1 and is different from The-
orem 1 in [27], which is a backward perturbation result in terms of the a posteriori
computable residual norm of an approximate eigenpair.

Lemma 2.1 With λ1, q1 and θ1 defined as above. Let M̂, D̂ and K̂ be defined in
(1.4) and q̂1 = q1/‖q1‖. Then there are perturbation matrices EM̂ ,ED̂,EK̂ ∈ Cm×m

with

‖EM̂‖ ≤ 1

3

(
m0 + 1

|λ1|d0 + 1

|λ1|2 k0

)
tan θ1, (2.6a)
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‖ED̂‖ ≤ 1

3

(
|λ1|m0 + d0 + 1

|λ1|k0

)
tan θ1, (2.6b)

‖EK̂‖ ≤ 1

3

(|λ1|2m0 + |λ1|d0 + k0
)

tan θ1, (2.6c)

such that (λ1, q̂1) is an exact eigenpair of the perturbed (M̂ +EM̂ , D̂ +ED̂, K̂ +EK̂ ),
where

m0 = ‖M‖, d0 = ‖D‖, k0 = ‖K‖. (2.7)

Proof Recalling (2.4) and (2.5), since

0 = (
λ2

1M + λ1D + K
)
x1 = (

λ2
1M + λ1D + K

) [
Q Q⊥][

QH

(Q⊥)H

]
x1,

we obtain

λ2
1MQq1 + λ1DQq1 + KQq1 = −(

λ2
1M + λ1D + K

)
Q⊥q⊥

1 . (2.8)

Pre-multiplying (2.8) by QH gives

r1 ≡ (
λ2

1M̂ + λ1D̂ + K̂
)
q̂1 = −(

λ2
1Q

H M + λ1Q
H D + QH K

)
Q⊥ q⊥

1

‖q1‖ . (2.9)

So, noting from (2.5) that tan θ1 = sin θ1
cos θ1

= ‖q⊥
1 ‖

‖q1‖ , we have

‖r1‖ ≤ (|λ1|2m0 + |λ1|d0 + k0) tan θ1.

Define

EM̂ = − 1

3λ2
1

r1q̂
H
1 , ED̂ = − 1

3λ1
r1q̂

H
1 , EK̂ = −1

3
r1q̂

H
1 .

By (2.9) it is easily seen that ‖EM̂‖, ‖ED̂‖ and ‖EK̂‖ satisfy (2.6a)–(2.6c) and

[
λ2

1(M̂ + EM̂ ) + λ1(D̂ + ED̂) + (K̂ + EK̂ )
]
q̂1 = 0,

which completes the proof. �

We may deduce from this lemma that there exists an eigenvalue μ1 of (M̂, D̂, K̂)

that converges to λ1 as θ1 → 0. However, things are subtle and by no means trivial
here. The difficulty is that, unlike a usual matrix perturbation problem where ma-
trices are given and fixed and perturbations are allowed to change, here the matrix
triple (M̂, D̂, K̂) and the perturbation triple (EM̂ ,ED̂,EK̂ ) change simultaneously as
θ1 → 0. This means that there may be a possibility that, as θ1 changes, the eigen-
value λ1 of (M̂ + EM̂ , D̂ + ED̂, K̂ + EK̂ ) and the eigenvalues of (M̂, D̂, K̂) become
ill conditioned so swiftly that no eigenvalue of (M̂, D̂, K̂) converges to λ1 though
θ1 → 0.
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Fortunately, by exploiting a theorem of Elsner [3] (also see [26, p. 168]) we can
prove that this cannot happen and there is indeed an eigenvalue μ1 that converges to
the desired λ1 provided that θ1 → 0. Elsner’s theorem states that, given matrices C

and C̃ of order n, for any eigenvalue λ of C there is an eigenvalue λ̃ of C̃ such that

|λ − λ̃| ≤ (‖C‖ + ‖C̃‖)1− 1
n ‖C − C̃‖ 1

n .

For our purpose, define the matrices Â and B̂ by

Â =
[−D̂ −K̂

Im 0

]
, B̂ =

[
M̂ 0
0 Im

]
. (2.10)

Then the eigenvalues μ of (M̂, D̂, K̂) are equal to those of (Â, B̂), whose normalized
eigenvectors v̂ ≡ [

μx̂

x̂

]
/
√

1 + |μ|2 with x̂ the eigenvectors associated with the eigen-

values μ of (M̂, D̂, K̂). Since M̂ is Hermitian positive definite, so is B̂ . Therefore,
all the μ are the eigenvalues of B̂−1Â. Furthermore, it holds that ‖B̂−1‖ ≤ ‖B−1‖
for any given orthonormal Q and Hermitian positive definite M .

From Lemma 2.1, λ1 is an eigenvalue of (Â + EÂ, B̂ + EB̂ ) with the perturbation
matrices

EÂ =
[−ED̂ −EK̂

0 0

]
, EB̂ =

[
EM̂ 0
0 0

]
,

i.e., an eigenvalue of (B̂ +EB̂ )−1(Â+EÂ) if (B̂ +EB̂ )−1 exists. Since B̂ is Hermitian
positive definite and its smallest singular value is bounded by that of B from below,
B̂ + EB̂ must be nonsingular for θ1 small enough. Moreover, for θ1 → 0, it follows
from Lemma 2.1 that

Lb‖(B̂ + EB̂ )−1
∥∥ = ∥∥B̂−1 + O(EB̂ )

∥∥ → ∥∥B̂−1
∥∥ ≤ ∥∥B−1

∥∥ (2.11)

is uniformly bounded independent of θ1. Since ‖Â‖ is always bounded from above
as ‖D̂‖ ≤ ‖D‖ and ‖K̂‖ ≤ ‖K‖, it follows that ‖B̂−1Â‖ ≤ ‖B̂−1‖‖Â‖ is uniformly
bounded independent of θ1. As a result, for θ1 → 0, since Â + EÂ → Â, it follows
from (2.11) and Theorem 2.1 that

∥∥(B̂ + EB̂ )−1(Â + EÂ)
∥∥ ≤ ∥∥(B̂ + EB̂ )−1

∥∥∥∥(Â + EÂ)
∥∥

is uniformly bounded independently of θ1.
Finally, from Theorem 2.1 and (B̂ + EB̂ )−1 = B̂−1 + O(EB̂ ), it is easily justified

that
∥∥B̂−1Â − (B̂ + EB̂ )−1(Â + EÂ)

∥∥ = O(sin θ1).

Based on Elsner’s theorem, we have the following result, which, together with the
above discussions, proves the global unconditional convergence of Ritz values when
θ1 → 0.
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Theorem 2.1 Assume that θ1 is small enough to make B̂ + EB̂ nonsingular. There is
a Ritz value μ1 such that

|μ1 − λ1| ≤
(∥∥B̂−1Â

∥∥ + ∥∥(B̂ + EB̂ )−1(Â + EÂ)
∥∥)1− 1

2m

× ∥∥B̂−1Â − (B̂ + EB̂ )−1(Â + EÂ)
∥∥

1
2m . (2.12)

The theorem indicates that as θ1 → 0 there is always a Ritz value μ1 → λ1 un-
conditionally. We should comment that bound (2.12) will in general be a too pes-
simistic overestimate and be for the worst case. If, as usually happens in practice, the
condition number of λ1 as an eigenvalue of (B̂ + EB̂ )−1(Â + EÂ) is bounded, the
convergence will be linear in θ1, much better than that predicted by bound (2.12).

Next, we analyze the convergence of the corresponding Ritz vector x̃1. Based on
decomposition (2.2), we can establish the following result, which is an analogue of
Theorem 3.1 in [9] for the standard linear eigenvalue problem. The result will be used
when we prove the unconditional convergence of refined Ritz vectors to be introduced
in the next section.

Lemma 2.2 Let (μ1, ṽ1) with ‖ṽ1‖ = 1 be an approximation to (λ1, v1) of the matrix
pair (A,B) with ‖v1‖ = 1. Let

r = Aṽ1 − μ1Bṽ1 (2.13)

be the residual of (μ1, ṽ1), and define sep(μ1, (L,N)) := ‖(L − μ1N)−1‖−1. Then

sin∠(v1, ṽ1) ≤ ‖r‖
sep(μ1, (L,N))

. (2.14)

Proof From (2.2), pre-multiplying (2.13) by YH leads to

YH r = YH
(
αy1v

H
1 + y1s

H XH + YLXH
)
ṽ1

− μ1Y
H

(
βy1v

H
1 + y1t

H XH + YNXH
)
ṽ1

= (L − μ1N)XH ṽ1.

Therefore, it follows from ‖XH ṽ1‖ = sin∠(v1, ṽ1) that (2.14) holds. �

In terms of the a posteriori computable residual r , Theorem 2.2 establishes the
relationship between the eigenvector v1 and its approximation ṽ1 for the generalized
eigenvalue problem (2.1a)–(2.1c).

Let (μ1, x̃1) be the Ritz pair approximating the desired the desired eigenpair
(λ1, x1) of (M,D,K), where x̃1 = Qx̂1 and (μ1, x̂1) with ‖x̂1‖ = 1 is the eigen-
pair of (M̂, D̂, K̂). In terms of θ1, we attempt to derive one of our main results, an a
priori bound for the Ritz vector x̂1 as an approximation to the eigenvector x1. Note
that μ1 is an eigenvalue of (Â, B̂) and v̂1 ≡ [ μ1x̂1

x̂1

]
/
√

1 + |μ1|2 is its correspond-

ing normalized eigenvector. Similar to (2.2), there are unitary matrices [v̂1, X̂] and
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[ŷ1, Ŷ ] ∈ C2m×2m with v̂1, ŷ1 ∈ C2m such that
[
ŷH

1
Ŷ H

]
Â

[
v̂1 X̂

] =
[
α̂ ŝH

0 L̂

]
,

[
ŷH

1
Ŷ H

]
B̂

[
v̂1 X̂

] =
[
β̂ t̂H

0 N̂

]
, (2.15)

where L̂, N̂ ∈ C(2m−1)×(2m−1) and μ1 = α̂β̂−1. Under the only hypothesis that
sin θ1 → 0, it is possible that there is an eigenvalue of (L̂, N̂) that could be arbi-
trarily near or even equal to μ1. For a multiple and derogatory μ1, that is, μ1 has
more than one trivial or nontrivial Jordan blocks, there are more than one x̃1 = Qx̂1
to approximate the unique eigenvector x1 of (M,D,K). If μ1 is near an eigenvalue
of (L̂, N̂), we will get a unique x̃1, but there is no guarantee that it converges to x1.
It leads us to postulate that x̃1 will converge provided that sep(λ1, (L̂, N̂)) is uni-
formly away from zero independent of θ1, i.e., sep(λ1, (L̂, N̂)) > c with c a positive
constant independent of θ1. We will, quantitatively, show that it is indeed the case.
Before proceeding, we need the following lemma.

Lemma 2.3 Let u = [ u2
u1

]
and ũ = [ ũ2

ũ1

]
where ui, ũi ∈ Cn for i = 1,2 and ‖u1‖ =

‖ũ1‖ = 1. Then

sin∠(u1, ũ1) ≤ min
{‖u‖,‖ũ‖} sin∠(u, ũ).

Proof Since ‖u1‖ = 1, from the definition of sin∠(u, ũ), we have

sin2 ∠(u, ũ) = min
α

∥∥
∥∥

u

‖u‖ − αũ

∥∥
∥∥

2

= min
α

(∥∥∥
∥

u1

‖u‖ − αũ1

∥∥∥
∥

2

+
∥∥∥
∥

u2

‖u‖ − αũ2

∥∥∥
∥

2)

≥ min
α

∥∥∥∥
u1

‖u‖ − αũ1

∥∥∥∥

2

= 1

‖u‖2
min

α
‖u1 − αũ1‖2

= 1

‖u‖2
sin2 ∠(u1, ũ1).

In the same way, we can also prove that

sin∠(u1, ũ1) ≤ ‖ũ‖ sin∠(u, ũ).

Therefore, the assertion holds. �

Theorem 2.2 Let (Â, B̂) be defined in (2.10) and it have decomposition (2.15). Sup-
pose that the Ritz pair (μ1, x̃1) is used to approximate the desired eigenpair (λ1, x1)

with ‖x̃1‖ = ‖x1‖ = 1. If sep(λ1, (L̂, N̂)) > 0, then

sin∠(x1, x̃1) ≤ sin θ1 + |λ1|2m0 + |λ1|d0 + k0

sep(λ1, (L̂, N̂))
tan θ1, (2.16)

where m0, d0 and k0 are defined in (2.7).
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Proof By the triangle inequality we have

∠(x1, x̃1) ≤∠
(
x1,QQH x1

) +∠
(
QQH x1, x̃1

)
. (2.17)

From (2.4) and (2.5), we have

cos∠
(
x1,QQH x1

) = |xH
1 QQH x1|

‖QQH x1‖ = ∥∥QH x1
∥∥ = cos θ1. (2.18)

Let q̂1 = QH x1
‖QH x1‖ . From (2.17) and (2.18) we get

sin∠(x1, x̃1) ≤ sin θ1 + sin∠
(
QQH x1, x̃1

) = sin θ1 + sin∠(Qq̂1,Qx̂1)

= sin θ1 + sin∠(x̂1, q̂1). (2.19)

From (2.10), it is easily seen that
(
μ1, v̂1 ≡ [ μ1x̂1

x̂1

])
is an eigenpair of (Â, B̂). So we

can regard
(
λ1, q̂ ≡ [ λ1q̂1

q̂1

])
as an approximation of (μ1, v̂1). Then the residual of

(λ1, q̂) as an approximate eigenpair of (Â, B̂) is

r̂ =
[−D̂ −K̂

Im 0

][
λ1q̂1
q̂1

]
− λ1

[
M̂ 0
0 Im

][
λ1q̂1
q̂1

]

=
[−(λ2

1M̂ + λ1D̂ + K̂)q̂1
0

]
≡

[−r̂1
0

]
.

By (2.9) in the proof of Theorem 2.1 we have

‖r̂‖
‖q̂‖ = ‖r̂1‖

‖q̂‖ ≤ |λ1|2m0 + |λ1|d0 + k0

‖q̂‖ tan θ1. (2.20)

From Lemma 2.3, Theorem 2.2 and (2.20), inequality (2.19) satisfies

sin∠(x1, x̃1) ≤ sin θ1 + sin∠(x̂1, q̂1)

≤ sin θ1 + ‖q̂‖ sin∠(v̂1, q̂)

≤ sin θ1 + ‖q̂‖ ‖r̂‖/‖q̂‖
sep(λ1, (L̂, N̂))

≤ sin θ1 + |λ1|2m0 + |λ1|d0 + k0

sep(λ1, (L̂, N̂))
tan θ1. �

From Theorem 2.2 we see that sep(λ1, (L̂, N̂)) > 0 uniformly is a sufficient con-
dition for the convergence of the Ritz vector x̃1. Furthermore, from Lemma 2.1, since
the Ritz value μ1 approaches the eigenvalue λ1 as θ1 → 0, by the continuity ar-
gument we have sep(μ1, (L̂, N̂)) → sep(λ1, (L̂, N̂)). However, as we have argued
above, sep(μ1, (L̂, N̂)) can be arbitrarily small (and even be exactly zero) when μ1
is arbitrarily near other eigenvalues (or is associated with a multiple eigenvalue) of
(L̂, N̂). Consequently, while the Ritz value converges unconditionally once θ1 → 0,
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the corresponding Ritz vector may fail to converge or may converge very slowly or
irregularly.

In the following, we give an example to illustrate that the Ritz vector fails to con-
verge to the desired eigenvector.

Example 2.1 Consider QEP (1.1) with

M =
⎡

⎣
1 1 0
1 2 1
0 1 2

⎤

⎦ , D =
⎡

⎣
−5.5 −5 0
−5 −11 −3
0 −3 −4

⎤

⎦ , K =
⎡

⎣
6 6 0
6 9 2
0 2 2

⎤

⎦ .

It is easy to see that M and K are symmetric positive definite and (1, [0,0,1]T ) is an
eigenpair of the QEP.

Suppose that we have come up with an orthonormal basis

Q =
⎡

⎢
⎣

0 8√
73

0 − 3√
73

1 0

⎤

⎥
⎦ .

Then we have sin θ1 = 0 exactly, and the projected matrices are

M̂ = QH MQ =
[

2 − 3√
73

− 3√
73

34
73

]

,

D̂ = QH DQ =
[ −4 9√

73
9√
73

− 211
73

]

,

K̂ = QH KQ =
[

2 − 6√
73

− 6√
73

177
73

]

,

from which it follows that

M̂ + D̂ + K̂ = 0.

Since M̂ + D̂ + K̂ is zero, any nonzero vector x̂1 with ‖x̂1‖ = 1 is an eigenvector
of (M̂, D̂, K̂) corresponding to the double eigenvalue one, a Ritz value equal to the
desired eigenvalue exactly. However, the Rayleigh-Ritz method itself cannot tell us
how to pick up a suitable x̂1. In practice, we might well take x̂1 = [1/

√
2,1/

√
2]T and

then the approximate eigenvector becomes [4√
2/

√
73, −3/

√
146, 1/

√
2]T , which

has no accuracy as an approximation of the desired eigenvector [0,0,1]T and is com-
pletely wrong. Thus the method can fail even though the projection subspace span{Q}
contains the desired eigenvector exactly.

In practice, we would not expect span{Q} to contain x1 exactly. Let us investigate
the case that span{Q} contains an enough accurate approximation to x1, i.e., sin θ1 is
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very small. We perturb Q by a matrix generated randomly in a normal distribution by
10−12 × randn(3,2) whose 2-norm is 2.2 × 10−12, and the resulting

sin θ1 = 1.7 × 10−12.

The orthonormalized

Q := Q(QH Q)−1/2 =
⎡

⎣
−0.000000000001074 0.936329177568703
−0.000000000001425 −0.351123441589302
1.000000000000000 0.000000000000506

⎤

⎦

and

M̂ =
[

1.999999999997149 −0.351123441589253
−0.351123441589253 0.465753424656353

]
,

D̂ =
[−3.999999999991449 1.053370324770698

1.053370324770698 −2.890410958899234

]
,

K̂ =
[

1.999999999997149 −0.351123441589253
−0.351123441589253 0.465753424656353

]
.

We use the Matlab function polyeig.m to solve the projected QEP, and the computed
μ1 = 1.000000000009369 and the associated eigenvector

x̂1 = [0.999982126253304,−0.005978894038382]T .

So the Ritz vector

x̃1 = Qx̂1 = [−0.005598212938803, 0.002099329850230, 0.999982126253300]T

and

sin∠(x1, x̃1) ≈ 0.005979,

at least nine orders bigger than sin θ1! so x̃1 is a very poor approximation to x1 for
the given accurate subspace span{Q}. It is also justified that the residual norm of the
Ritz pair (μ1, x̃1) is

∥∥(
μ2

1M + μ1D + K
)
x̃1

∥∥ ≈ 0.011958.

The poor accuracy of x̃1 is due to the fact that there is another Ritz value μ =
1.000000000010143 that is very near to μ1, so that sep(λ1, (L̂, N̂)) in (2.16) is tiny.

3 Convergence of refined Ritz vectors

As we have seen in Sect. 2, the Ritz vector may fail to converge or converges very
slowly. Since the Ritz value is known to converge to the simple eigenvalue λ1 when
sin θ1 → 0, this suggests us to deal with non-converging Ritz vector by retaining the
Ritz value but replacing the Ritz vector with a unit length vector z̃1 ∈ span{Q} with a
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suitably small residual. Naturally, for a given Ritz value μ1 we construct z̃1 = Qẑ1,
where the unit length ẑ1 is required to be the optimal solution

ẑ1 = arg min‖z‖=1

∥∥(
μ2

1M + μ1D + K
)
Qz

∥∥. (3.1)

The vector z̃1 = Qẑ1 is called a refined Ritz vector of (M,D,K) corresponding to
μ1 with respect to span{Q}. Obviously, ẑ1 is the right singular vector of the n × m

rectangular matrix (μ2
1M + μ1D + K)Q associated with its smallest singular value.

We can compute ẑ1 reliably by a standard SVD algorithm or generally cheaper but
still numerically stable cross-product based SVD algorithms; see [11, 17] and also
[25]. For a detailed round-off error analysis on the latter ones, we refer to [14].

Before establishing the convergence of the refined Ritz vector z̃1, we need two
lemmas.

Lemma 3.1 For W defined in (2.3), let (λ1, x1) with ‖x1‖ = 1 be the desired eigen-
pair of (M,D,K) and v1 = [ λ1x1

x1

]
/
√

1 + |λ1|2. Then it holds that

sin∠
(
v1, span{W }) = sin θ1. (3.2)

Proof By (2.3) and the definition of sin θ1, we have

sin2 ∠
(
v1, span{W })

= 1

1 + |λ1|2 min
u,v∈span{Q}

∥∥
∥∥

[
λ1x1
x1

]
−

[
u

v

]∥∥
∥∥

2

= 1

1 + |λ1|2 min
u,v∈span{Q}

(‖λ1x1 − u‖2 + ‖x1 − v‖2)

= |λ1|2
1 + |λ1|2 min

u∈span{Q} ‖x1 − u‖2 + 1

1 + |λ1|2 min
v∈span{Q} ‖x1 − v‖2

= |λ1|2
1 + |λ1|2 sin2 θ1 + 1

1 + |λ1|2 sin2 θ1

= sin2 θ1. �

Lemma 3.2 Let (A,B) be defined in (2.1c). It holds that

min‖z‖=1

∥∥
∥∥(A − μ1B)

[
μ1Qz

Qz

]∥∥
∥∥ =

√
1 + |μ1|2 min‖z‖=1

∥
∥(

μ2
1M + μ1D + K

)
Qz

∥
∥ (3.3)

and the minimum is attained at ẑ1.

Proof Without the minimizations, for any m dimensional vector z, it is direct to verify
that the two hand sides are equal. So the assertion holds. �

Theorem 3.1 Let μ1 be the Ritz value of (M,D,K) approximating the desired sim-
ple eigenvalue λ1. Suppose sep(μ1, (L,N)) > 0, where L,N are defined in (2.2).
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Then we have

sin∠(x1, z̃1) <

√
1 + |λ1|2(|λ1 − μ1|(‖B‖ + ‖A − μ1B‖) + ‖A − μ1B‖ sin θ1)

cos θ1sep(μ1, (L,N))
.

(3.4)

Proof Let v1 = [ λ1x1
x1

]
/
√

1 + |λ1|2. From Lemma 2.3, we have

sin∠(x1, z̃1) ≤
√

1 + |μ1|2 sin∠
([

λ1x1
x1

]
,

[
μ1Qẑ1
Qẑ1

])

=
√

1 + |μ1|2 sin∠(v1, z̃),

where z̃ = [ z̃2
z̃1

] ≡ [ μ1Qẑ1
Qẑ1

]
/
√

1 + |μ1|2. Let PW be the orthogonal projector onto the

subspace span{W }, where W = diag(Q,Q). Then

PWv1 =
[
λ1QQH x1

QQH x1

]
.

Therefore, we get

∥∥QH x1
∥∥−1

(
PWv1 −

[
(λ1 − μ1)QQH x1

0

])
=

⎡

⎣
μ1Q

QH x1
‖QH x1‖

Q
QH x1

‖QH x1‖

⎤

⎦ := v̂1,

which is an approximate eigenvector of the desired form in the left-hand side of (3.3)

and QH x1
‖QH x1‖ is a minimizer candidate for (3.3). Define

f = (In − PW)v1 + f2

with

f2 =
[
(λ1 − μ1)QQH x1

0

]
.

Then from cos θ1 = ‖QH x1‖ we have

‖f2‖
cos θ1

≤ |λ1 − μ1|.

From Lemma 3.1 we get ‖(In − PW)v1‖ = √
1 + |λ1|2 sin θ1. Therefore, we obtain

(A − μ1B)v̂1 = (A − μ1B)(PW v1 − f2)

cos θ1

= (A − μ1B)(v1 − f )

cos θ1

= (λ1 − μ1)Bv1 − (A − μ1B)((In − PW)v1 + f2)

cos θ1
.
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Taking the norms gives

∥∥(A − μ1B)v̂1
∥∥ ≤

√
1 + |λ1|2(|λ1 − μ1|‖B‖ + ‖A − μ1B‖ sin θ1)

cos θ1

+ |λ1 − μ1|‖A − μ1B‖.
From Lemma 3.2, by the optimality property of z̃ we have

‖(A − μ1B)z̃‖
√

1 + |μ1|2
≤ ‖(A − μ1B)v̂1‖√

1 + |μ1|2

≤
√

1 + |λ1|2(|λ1 − μ1|‖B‖ + ‖A − μ1B‖ sin θ1)√
1 + |μ1|2 cos θ1

+ |λ1 − μ1|‖A − μ1B‖
√

1 + |μ2
1|

.

Since ‖(A−μ1B)z̃‖√
1+|μ1|2

is a residual norm, it is direct from Theorem 2.2 that

sin∠(v1, z̃) ≤ ‖(A − μ1B)z̃‖
√

1 + |μ1|2sep(μ1, (L,N))
.

Therefore, it holds from Lemma 2.3 that

sin∠(x1, z̃1) ≤
√

1 + |μ1|2 sin∠(v1, z̃)

≤
√

1 + |λ1|2(|λ1 − μ1|‖B‖ + ‖A − μ1B‖ sin θ1)

cos θ1sep(μ1, (L,N))

+ |λ1 − μ1|‖A − μ1B‖
sep(μ1, (L,N))

<

√
1 + |λ1|2(|λ1 − μ1|(‖B‖ + ‖A − μ1B‖) + ‖A − μ1B‖ sin θ1)

cos θ1sep(μ1, (L,N))
,

which proves (3.4). �

Since μ1 is shown, as Corollary 2.1 indicates, to converge to λ1 as θ1 → 0, we have
sep(μ1, (L,N)) → sep(λ1, (L,N)), a positive constant independent of θ1, provided
that λ1 is a simple eigenvalue of (M,D,K). So the refined Ritz vector z̃1 converges
to x1 once sin θ1 → 0.

We mention that Hochstenbach and Sleijpen [5] proposed a refined Rayleigh–Ritz
method for the polynomial eigenvalue problem and derived an a priori bound for the
residual norm of the refined Ritz pair as the approximate eigenpair of the problem
without invoking any linearization; see Theorem 5.1 there.

We continue Example 2.1 to show considerable merits of refined Ritz vectors. For
the case that x1 lies in span{Q} exactly, recall that μ1 = λ1 exactly. It is easy to verify
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that the smallest singular value of the matrix (μ2
1M + μ1D + K)Q is both exactly

zero and simple, the optimal solution ẑ1 = [1,0]T in (3.1) and the refined Ritz vector
z̃1 = Qẑ1 = x1, exactly the desired eigenvector! So in contrast to the Ritz vector, the
refined Ritz vector can pick up the desired eigenvector perfectly.

For the case that span{Q} is perturbed in the way described in Example 2.1, the
optimal solution in (3.1) is

ẑ1 = [1.000000000000000, 0.000000000006175]T

and the refined Ritz vector

z̃1 = [0.000000000004708, −0.000000000003593, 1.000000000000000]T .

So

sin∠(x1, z̃1) = 5.9 × 10−12,

which is almost as small as sin θ1 = 1.7 × 10−12 and much more accurate than the
corresponding Ritz vector x̃1. Meanwhile, the computed residual norm of the refined
approximate eigenpair (μ1, z̃1) is

∥∥(μ2
1M + μ1D + K)z̃1

∥∥ = 1.3 × 10−13,

eleven orders smaller than that of the Ritz pair (μ1, x̃1).

4 Conclusions

Theoretically, we have proved that there exists a Ritz value of (M,D,K) that uncon-
ditionally converges to the desired eigenvalue when the angle between the subspace
span{Q} and the desired eigenvector tends to zero. However, the associated Ritz vec-
tor only converges conditionally. To this end, we have proposed the refined Ritz vec-
tor that is guaranteed to converge unconditionally. We have presented some examples
to demonstrate our theory.

The purpose of this paper is not to present efficient and reliable eigensolvers
for QEPs, but rather to establish a general convergence theory of the Rayleigh-Ritz
method and to show the unconditional convergence of Ritz values and refined Ritz
vectors and the conditional convergence of Ritz vectors. Refined Ritz vectors may
become a very valuable component and make great improvement in flexible eigen-
solvers for QEPs. Numerical experiments in [17] have shown that one can gain very
much by replacing Ritz vectors by refined Ritz vectors in second-order Arnoldi type
methods and their implicitly restarted algorithms.

Acknowledgements We thank the editor Professor Michiel Hochstenbach and the referee very much
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