
Computers & Operations Research 40 (2013) 2817–2825
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05
http://d

n Corr
E-m

mcwu@
journal homepage: www.elsevier.com/locate/caor
Effect of solution representations on Tabu search
in scheduling applications

Chen-Fu Chen, Muh-Cherng Wu n, Keng-Han Lin
Department of Industrial Engineering and Management, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
a r t i c l e i n f o

Available online 20 June 2013

Keywords:
Tabu search
Scheduling
Solution representation
Flow shop
48/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.cor.2013.06.003

esponding author. Tel.: +886 3 5731913; fax: +
ail addresses: tom.iem96g@nctu.edu.tw (C.-F.
mail.nctu.edu.tw (M.-C. Wu), qa123654@hotm
a b s t r a c t

This research investigates the application of meta-heuristic algorithms to a scheduling problem called
permutation manufacturing-cell flow shop (PMFS) from two perspectives. First, we examine the effect of
using different solution representations (Snew and Sold) while applying Tabu-search algorithm. Experi-
mental results reveal that Tabu_Snew outperforms Tabu_Sold. The rationale why Tabu_Snew is superior is
further examined by characterizing the intermediate outcomes of the evolutionary processes in these
two algorithms. We find that the superiority of Snew is due to its relatively higher degree of freedom in
modeling Tabu neighborhood. Second, we propose a new algorithm GA_Tabu_Snew, which empirically
outperforms the state-of-the-art meta-heuristic algorithms in solving the PMFS problem. This research
highlights the importance of solution representation in the application of meta-heuristic algorithm, and
establishes a significant milestone in solving the PMFS problem.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Meta-heuristic algorithms have been widely used in solving
complex space-search problems. Such algorithms are essentially
based on an evolutionary paradigm [1–11]. That is, a set of
solutions are iteratively updated by an evolutionary mechanism
until a satisfactory solution is obtained. Examples of meta-
heuristic algorithms include genetic algorithm (GA), Tabu-search,
ant colony optimization (ACO), simulated annealing, etc. [12–19].

In a recent study on scheduling, we found that the solution
representation scheme of a meta-heuristic algorithm may have a
significant effect on the scheduling performance [20]. The sche-
duling problem is called permutation manufacturing-cell flow
shop (PMFS). Two different solution representations (Sold and Snew)
while applying GA and ACO to solve the PMFS problem are
compared. Experimental results indicate that GA_Snew outperforms
GA_Sold, and ACO_Snew outperforms ACO_Sold. Notice that GA_Sold
developed by Lin et al. [3] was the state-of-the-art benchmark.

As extension of the aforementioned study [20], this paper has
two research objectives. The first objective is to study the effect of
using Sold and Snew while applying the Tabu-search algorithm to
solve the PMFS problem (i.e., comparing Tabu_Snew against Tabu_-
Sold). The second objective is the development of a meta-heuristic
algorithm that outperforms all the other meta-heuristic algo-
rithms to date in solving the PMFS problem.
ll rights reserved.

886 3 5729101.
Chen),
ail.com (K.-H. Lin).
The first research objective leads to the following findings.
Experimental results indicate that Tabu_Snew outperforms Tabu_-
Sold. The reason why Tabu_Sold appears less effective is due to that
it has a higher probability of being trapped into a loop while
searching solutions. In addition, such a higher tendency to be
trapped into a loop is due to that the space spanned by Tabu_Sold
has a relatively lower degree of freedom.

The second research objective leads to the development of two
new meta-heuristic algorithms GA_Tabu_Snew and GA_Tabu_Sold for
solving the PMFS problem. Experimental results indicate that GA_Ta-
bu_Snew outperforms GA_Tabu_Sold. This finding gives further empirical
supports to the superiority of Snew over Sold. In addition, GA_Tabu_Snew
outperforms all the other meta-heuristic algorithms, including the two
state-of-the-art algorithms GA_Sold [3] and GA_Snew [20].

The remainder of this paper is organized as follows. Section 2
describes the PMFS scheduling problem and relevant literature.
Section 3 reviews various chromosome representations in solving
scheduling problems. Section 4 presents the two solution repre-
sentation schemes (Sold and Snew). Section 5 describes the com-
monality and distinction of the two Tabu-search algorithms
(Tabu_Sold and Tabu_Snew); their experimental results are in
Section 6 and the reasons why Tabu_Snew outperforms Tabu_Sold
are described in Section 7. In Section 8, we present GA_Tabu_Snew
and GA_Tabu_Sold and the experimental results for supporting their
merits. Conclusions are given in Section 9.
2. Scheduling problem and prior research

The PMFS scheduling problem has been examined by a few
studies [3,20,21–28]. The objective function is to minimize makespan.

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2013.06.003
dx.doi.org/10.1016/j.cor.2013.06.003
dx.doi.org/10.1016/j.cor.2013.06.003
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.06.003&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.06.003&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.06.003&domain=pdf
dx.doi.org/10.1016/j.cor.2013.06.003
dx.doi.org/10.1016/j.cor.2013.06.003


Fig. 1. A permutation manufacturing-cell flow shop.

Fig. 2. Allele, gene, and chromosome.

C.-F. Chen et al. / Computers & Operations Research 40 (2013) 2817–28252818
This section first presents the major assumptions of the scheduling
problem, and then proceeds to address the sequencing decisions of
the problem. Finally, a real example of the PMFS scheduling problem
is presented.

First, it is a multi-stage flow shop in which each stage involves
only one machine and one buffer with unlimited storage size for
storing waiting jobs (Fig. 1). Each machine is so reliable and
involves no breakdown in the scheduling horizon.

Second, the shop adopts a family-based scheduling paradigm.
All jobs are grouped into various families a priori. Each job family
is processed in a group manner. Once a job family starts processing
in a stage, the stage cannot switch to process any other family
unless all jobs in the present family have completed their opera-
tions. The shop is a permutation flow shop—the job sequence
within each family and the sequence among families keep the
same for each stage of the shop.

Third, jobs within a family are processed sequentially without
requiring new setups of the machines. In contrast, the setup times
among families are substantial and sequence-dependent. The setup
time required for switching to process a new family (say, F1)
depends upon how much is the degree of similarity between
family F1 and its preceding family (say, F2). For example, the setup
time required for undergoing a family switch F2-F1 may be
different from that of F3-F1.

Fourth, each job is individually transported. The jobs of a family
are not transported in a batch. Once a job completes its operation
at a stage, it is immediately and individually transported to the
buffer of the next stage.

The PMFS scheduling problem has two sequencing decisions:
among-family sequencing and within-family sequencing. Within-
family sequencing deals with the sequence of jobs within each
family; and among-family sequencing addresses the sequence of
families. The within-family sequencing decision is required only
when the aforementioned individual-transportation feature is
strictly imposed in the scheduling problem. Such a sequencing
decision would not be needed if the jobs are transported in a
batch, because in that case changing job sequence within a family
would not change the ultimate scheduling performance.

A real example of the PMFS scheduling problem can be referred
to the surface mounting machine (SMT) process that is for
mounting electronic components on printed circuit board [21].
In practice, a SMT process is a flow shop, involving a sequence of
machines designed for the surface mounting tasks. Each SMT
machine is a workstation (or stage) responsible for mounting a
particular group of electronic parts on the printed circuit (PC)
board, and the group of parts could be changed by a setup. A PC
board is taken as a job, which should go through the flow shop to
complete all its part mountings. Two jobs involving the same or
highly similar part profiles could consecutively go through the
flow shop without requiring any setup. Therefore, PC boards are
grouped into families and the family-based scheduling paradigm is
usually adopted. That is, for each workstation, a significant setup
time is urged if it switches to process a new family. The less similar
the two consecutive families, the longer the setup time required.
This implies that the family setup time is sequence-dependent.
The PMFS scheduling problem has been solved by various
meta-heuristic algorithms such as Tabu-search algorithm [23],
genetic algorithm (GA) [25], memetic algorithm [25], and simu-
lated annealing algorithm [26]. Of these meta-heuristic algo-
rithms, the GA (called GA_Sold) is the state-of-the-art algorithm
in 2009. And we had proposed a GA_Snew algorithm [20] which
outperforms GA_Sold.
3. Review on chromosome representations

This section reviews literature that uses different chromosome
representations in a particular meta-heuristic algorithm. A pioneer
work on different representations by Rothlauf and Goldberg [2] is
firstly introduced. Then, example studies [29–31] that use different
representations in the application of meta-heuristic algorithms to
solve scheduling problems are discussed.

Rothlauf and Goldberg [2] comprehensively investigated the
effect of chromosome representation on the performance of meta-
heuristic algorithms (also called evolutionary algorithms). In their
work, a chromosome (i.e., a solution) is represented by a sequence
of genes, and a gene is represented by a sequence of alleles.
As shown in Fig. 2, the chromosome involves two genes and each
gene is represented by two alleles. The value of each allele is either
0 or 1. The value that represents a gene is shown Table 1, which
indicates that each gene value has two gene representations. As a
result, a solution has multiple chromosome representations. This
property is called redundancy of encoding. In literature, a chromo-
some is called genotype, while a solution is called phenotype
[2,32]. According to this definition, the chromosomes in Fig. 2
involve 16 genotypes and four phenotypes.

In applying meta-heuristic algorithms to solve scheduling
problems, chromosome representations are typically categorized
into two paradigms. One is called multiple-segment paradigm,
and the other is called single-segment paradigm. A few scheduling
studies based on these two paradigms have been published
[29–31].

These two paradigms are illustrated by referring to a simple
scheduling problem, in which there are N jobs to be scheduled in a
shop with m parallel machines and each job has only one
operation [29–31]. Two types of scheduling decisions are to be
made: (1) job assignment—assigning each job to one of the m
machines, and (2) job sequence—determining the processing
sequence of the jobs assigned to a particular machine.

To model the two scheduling decisions, a chromosome represen-
tation based on the multiple-segment paradigm is as shown in Fig. 3
[31]. In the figure, a chromosome involves two sub-chromosomes
that are virtually connected. Each sub-chromosome (also called a
segment) is designed to model a scheduling decision. Each element of
the first sub-chromosome denotes a job; the sub-chromosome in
turn represents a job sequence decision. Each element of the second
sub-chromosome denotes a machine, which as a result represents
the job assignment decision.

In contrast, a chromosome based on the single-segment para-
digm is as shown in Fig. 4 [29,30]. In the figure, the single-segment
chromosome describes a job sequence embedded with two “✽”

signs. A “✽” sign denotes a cut-off point; all jobs in the chromo-
some are thus grouped into three categories (or assigned to the
three machines)—the job assignment decision is then made.



Table 1
Gene representation and gene value in Fig. 2.

Gene representation Gene value

0 0 0
0 1 0
1 0 1
1 1 1

Fig. 3. Multiple-segment chromosome.

Fig. 4. Single-segment chromosome.

Fig. 5. Traditional chromosome representation (Sold).

C.-F. Chen et al. / Computers & Operations Research 40 (2013) 2817–2825 2819
In turn, the job sequencing decision within each machine can be
easily made by referring to the job sequence in the chromosome.

For the PMFS scheduling problem addressed in this research,
all prior studies used the same chromosome representation (Sold)
based on the multiple-segment paradigm [3,20,21–26]. In contrast,
we propose a single-segment chromosome representation (Snew)
and compare the effect of using Snew and Sold while they are
embedded in a particular Tabu-search algorithm.
Fig. 6. New chromosome representation (Snew).
4. Chromosome representations

This section introduces the two chromosome representations
Sold and Snew. As stated, the PMFS scheduling problem includes two
types of decisions—within-family sequencing and among-family
sequencing. Thus, Sold and Snew must be eligible for accommodating
the two types of decisions. In the following, Sold and Snew are
illustrated by referring to a scheduling problem with n jobs (i.e.,
J1; J2;…; Jn) that have been grouped into k job families (i.e.,
f 1; f 2;…; f k).

4.1. Sold representation

To accommodate the two types of sequencing decisions, Sold has
two distinct features: clustering and multiple-segments. According
to Sold representation, a chromosome will have k+1 segments with
two clusters. The first cluster involves only one segment, which
represents the sequence among the k families. The second cluster
involves k segments, each of which represents the job sequence
within a family.

Fig. 5 illustrates Sold representation for a PMFS scheduling
problem with 10 jobs and 3 families. The first cluster comprises
only one segment, which implies that the sequence among
families is f 3-f 2-f 1. The second cluster comprises three seg-
ments; the first one implies that family f 1 comprises 3 jobs and
their processing sequence is J1-J3-J2. Accordingly, the second
and the third segments respectively represent the job sequence
within family f 2 and f 3.

4.2. Snew representation

In contrast with Sold, Snew has two other distinct features:
single-segment and decoding mechanism. A Snew chromosome is a
single-segment which comprises a sequence of jobs. By decoding
the chromosome, the two types of scheduling decisions (within-
family sequencing and among-family sequencing) can be obtained.

The decoding mechanism iterates through the chromosome to
obtain the sequencing of the families and the jobs. The families are
sequenced according to the order of first appearance within the
chromosome, while the sequencing of the jobs within the families
follows the order of the jobs in the chromosome. To illustrate,
Fig. 6 exemplify a scheduling problem with 10 jobs and 3 families.
The chromosome indicates that the sequence of the first four jobs
is J8-J7-J4-J1 and their corresponding family sequence is
f 3-f 2-f 2-f 1. This implies that the resulting family sequence
is f 3-f 2-f 1. By conforming to the job precedence relationships
of the chromosome, the job sequence within each family can be
easily obtained. That is, the job sequence within family f 3 is
J8-J9-J10, that withinf 2 is J7-J4-J6-J5, and that within f 1 is
J1-J3-J2.
5. Tabu search

The pioneer Tabu-search algorithm (called the TS) was devel-
oped by Glover [13,14]. This research attempts to compare the
effect of applying two different representations (Sold and Snew) to a
particular TS algorithmic flow. The TS algorithms embedded with
Sold and Snew are respectively called Tabu_Sold and Tabu_Snew. In the
following, we first describe the algorithmic flow of the TS, and
then present how to apply the TS to develop TS_Sold and TS_Snew.

5.1. Algorithmic flow of TS

In the TS [13,14], a chromosome is a sequence of elements (also
called genes) and each gene is a positive integer. An example
chromosome with five genes is like h¼(1, 5, 3, 2, 4). In the
algorithmic flow, the TS repeatedly uses two modules: (1) neigh-
borhood generation; and (2) tabu_list. We firstly present the
functions of the two modules and proceed to describe the TS
algorithmic flow.

Neighborhood generation: For a given chromosome h, we
could systematically impose a swap operation to generate its
neighborhood N(h)—a set of new chromosomes. An example
chromosome is like h¼(a1, a2, a3, a4, a5). The systematic swap
operations are so carried out. On each gene ai, we iteratively
exchange ai with each of its right-hand side genes. For example,
if h¼(a1, a2, a3, a4, a5), we can generate four new chromosomes by
swap a1 with each of the right-hand side four genes. Accordingly,



C.-F. Chen et al. / Computers & Operations Research 40 (2013) 2817–28252820
we can generate three for a2, two for a3, and one for a4. As a result,
N(h) in total has 10¼ C5

2 new chromosomes.
Tabu_List: In a swap operation, the two exchanged genes (say,

ai and aj) are called a swap pair (also called move in literature),
which is herein denoted by (ai, aj). The tabu_list is a set that
contains at most qsize swap pairs, which are placed in a sequential
manner. An example tabu_list with qsize¼3 is like {(a1, a3), (a2, a3),
(a1, a5)}. The tabu_list dynamically changes its contents whenever
a new neighborhood N(h) has been created. If a swap pair (ai, ak) is
to be placed into the tabu_list, the following two rules must be
followed. In the two rules, the tabu_list before placing the swap
pair is called the original_list and that after placing the swap pair is
called the new_list.

Rule 1: If (ai, ak), the swap pair to be placed into the tabu_list, is
also an element in the original_list, then the new_list is generated
by moving the (ai, ak) from the present position to the last
position. For example, the original_list is {(a1, a3), (a2, a3), (a1,
a5)} and the swap pair to be placed in is (a2, a3). Then, the new_list
is {(a1, a3), (a1, a5), (a2, a3)}.

Rule 2: If (ai, ak) is not an element in the original_list, the
new_list is generated by firstly placing (ai, ak) in the last position
and then taking away the first element of the original_list if the
resulting total number of elements is more than qsize. That is, if the
original_list is {(a1, a3), (a2, a3), (a1, a5)} and the swap pair to be
placed in is (a5, a3). Then, the new_list is {(a2, a3), (a1, a5), (a5, a3)}.
Alternatively, if the original_list is {(a1, a3), (a1, a5)} which involves
only two elements and the swap pair to be placed in is also (a5, a3),
then the new_list is {(a1, a3), (a1, a5), (a5, a3)}.

The algorithmic flow of the TS, called Tabu_Search is
presented below.

Procedure Tabu_Search

Step 1: Initialization
� generate an initial chromosome h0; evaluate h0;� set hn¼h0; h+¼h0; T¼0; Tabu_list¼ϕ;
� ⧸nηn is the local best solution; h+ is the global best solution; T

is the age of h+; Tabu_list is initially an empty setn/.

Step 2: Generate and sort N(hn)
� generate N(hn); evaluate each chromosome in N(hn); set T¼T+1;
� sort chromosomes in N(hn) according to their performances;
� name the sorted results as {h1, h2,…, hw}, in which hi is better

than hi+1 in terms of performance; name the swap pair that
generates hi from hn as ωi.
Step 3: Update hn, h+, and Tabu_list
� set i¼1;/n sequentially justify each hi in {h1, h2, …., hw}n/;� while (i ≤w)/nw is the total number of chromosomes in N(hn)n/.

If ωi∉Tabu_list,
place ωi in Tabu_list; set hn¼ hi;

if hi is better than h+, Set h+¼hi,
T¼1; go to Step 4;

elseif ωi∈Tabu_list,
if hi is better than hn, set hn¼hi; place

ωi in Tabu_list;
if hi is better than h+, Set h+¼hi,

T¼1; go to Step 4;
else i¼ i+1

if i¼w+1, Place ω1 in Tabu_list;
set hn¼h1; go to Step 4;

Endwhile
Step 4: Termination check
� If T4Tf, output h+ and STOP; /nTf is a predefined large

numbern/,
� else, go to Step 2.
5.2. Algorithms TS_Sold and TS_Snew
Procedure TS_Snew is essentially the same as Tabu_Search in
algorithmic flow, yet its evaluation of chromosomes is a bit more
complicated and needs to be elaborated further. To evaluate a Snew
chromosome, we have to use the decoding mechanism to obtain
its two sequencing decisions, and then evaluate its performance.
That is, Tabu_Search becomes TS_Snew if we elaborate Step 1 as
follows. “Evaluate h0” implies that h0 (now represented in Snew)
must be firstly decoded and then evaluated.

As stated, Sold uses multiple segments to model a solution.
TS_Sold is designed by applying Tabu_Search to each segment. As a
result, TS_Sold has two distinct features: (1) neighborhood genera-
tion, (2) multiple tabu_lists. Each feature is respectively
explained below.

Neighborhood generation: Consider a problem in which we
intend to obtain N(hn) for a given local best solution hn. In TS_Sold,
we generate N(hn) by applying the swap operation on the
segments in a one-segment-change paradigm. That is, while we
apply the swap operation on a particular segment, we have to
keep the other segments of hn unchanged. For example, if
hn¼s1−s2−s3 is a three-segment chromosome, then we have to
keep s1 and s2 unchanged while we apply swap operation on s3.
Suppose each of these three segments has 5 genes. Then we can
generate 10¼ C5

2 new chromosomes for each segment si, and the
total number of chromosomes in N(hn) is 30¼ 3 � C5

2.
Multiple Tabu_Lists: In TS_Sold, a chromosome is composed of

multiple segments; each segment is designed to have a unique
tabu_list, and each tabu_list shall be independently updated. The
independency among these multiple tabu_lists is due to that each
new chromosomes in N(hn) is created by applying the swap
operation on only one particular segment. For example, consider
a 3-segment chromosome hn¼s1–s2–s3, in which the correspond-
ing tabu_lists of these segments are T1, T2, and T3 respectively.
Let hi be the chromosome which has been identified from N(hn) for
updating hn. Suppose hi is created by applying the swap operation
on segment s2. In this case, only tabu_list T2 shall be updated while
we are updating hn (refer to Step 3 of Tabu_Search).
6. Empirical analysis

Numerical experiments are carried out to compare the two
algorithms Tabu_Sold and Tabu_Snew, by considering makespan as
the objective function. Parameters of the two algorithms are so
defined: Tf¼2000 and qsize¼Cns

2 � p, where qsize denotes the size of
tabu_list of each segment, p¼0.3 and ns is the total number of
genes in a segment. The two algorithms are both coded in C++

programming languages, running on personal computers
equipped with AMD Athlon(tm) IIn4640 3.0 GHz CPU and 4 GB
RAM.

Data sets for the experiments are adopted from prior studies
[21]. The data sets are categorized into 30 scenarios, and each
scenario includes 30 problem instances. In total, there are 900
(30�30) problem instances; each problem instance essentially
denotes a unique scheduling problem.

Of the 30 scenarios, each one is designated by X−F−m, where X
denotes the type of setup times (LSU, MSU, SSU), F is the number
of families, and m is the number of machines. In addition, SSU
denotes small setup times, MSU denotes medium setup times, and
LSU denotes large setup times. For example, as shown in Table 1,
LSU33 denotes a scenario with large setup times, 3 families, and
3 machines.

Of the 30 problem instances in a scenario, each one is varied by
randomly changing the following types of parameters: the number
of jobs per family (nf ), processing times, and family setup times.



Table 2
Experimental results of Tabu_Snew and Tabu_Sold.

Scenario Makespan Computation
time (s)

N Nw+Ne Ne Nw Cn Ct γ (%) Tn Tt

SSU33 30 30 3 27 134.48 137.27 2.04 0.94 0.33
SSU34 30 30 1 29 151.10 153.98 1.92 1.40 0.42
SSU44 30 30 0 30 186.55 191.57 2.65 2.64 0.61
SSU55 30 30 0 30 243.25 250.31 2.81 7.01 1.05
SSU56 30 30 0 30 254.87 262.76 3.04 7.30 1.17
SSU65 30 30 0 30 288.18 296.44 2.79 12.35 1.50
SSU66 30 30 0 30 296.83 305.63 2.88 13.43 1.66
SSU88 30 30 0 30 407.41 419.07 2.77 43.40 3.50
SSU108 30 30 0 30 489.27 504.36 2.99 95.58 5.30
SSU1010 30 30 0 30 530.67 546.58 2.90 128.91 6.83
MSU33 30 30 6 24 160.00 162.41 1.41 0.73 0.28
MSU34 30 30 3 27 184.71 187.60 1.53 1.09 0.38
MSU44 30 30 0 30 238.34 245.51 2.95 2.71 0.60
MSU55 30 30 0 30 309.52 318.11 2.70 6.09 1.03
MSU56 30 30 0 30 319.91 329.14 2.85 6.02 1.08
MSU65 30 30 0 30 366.90 378.18 3.00 10.96 1.43
MSU66 30 30 0 30 385.34 398.26 3.23 12.25 1.64
MSU88 30 30 0 30 521.90 540.04 3.36 36.51 3.30
MSU108 30 30 0 30 640.46 661.39 3.16 86.43 5.42
MSU1010 30 30 0 30 672.82 692.26 2.80 94.50 6.12
LSU33 30 30 4 26 228.09 233.21 2.24 1.06 0.37
LSU34 30 30 4 26 239.06 243.85 2.05 0.88 0.31
LSU44 30 30 0 30 324.89 333.18 2.62 2.41 0.55
LSU55 30 30 0 30 421.59 434.62 3.03 5.70 0.96
LSU56 30 30 0 30 442.82 455.67 2.84 6.84 1.13
LSU65 30 30 0 30 500.06 518.11 3.48 10.63 1.47
LSU66 30 30 0 30 524.49 540.73 3.02 10.93 1.50
LSU88 30 30 0 30 722.17 745.71 3.18 33.00 3.18
LSU108 30 30 0 30 880.50 910.78 3.31 71.70 5.02
LSU1010 30 30 0 30 935.79 968.47 3.37 85.92 6.10
Average 30 30.00 0.70 29.30 400.07 412.17 2.76 26.65 2.14

C.-F. Chen et al. / Computers & Operations Research 40 (2013) 2817–2825 2821
These parameters are so designed: nf is randomly generated from
a discrete uniform distribution U[1,10]. The processing times at
each stage are randomly generated from U[1,10]. Three different
cases of setup times were randomly generated, where U[1,20] is
used to model SSU, U[1,50] is used to model MSU, and U[1,100] is
used to model LSU.

Noticeably, in each problem instance, 15 experiments runs are
carried out. Using a different random number, each run generates a
different initial solution. In turn, the finally obtained solution in
each run may be different. Therefore, in each problem instance, the
average of its 15 experiment runs is taken as the performance of
the instance. Furthermore, in each scenario, the average of its 30
problem instances is taken as its ultimate performance measure. In
summary, to compare the two algorithms, we totally carry out
27,000 experiment runs (2 algorithms�30 scenarios/algorithm�
30 instances/scenario�15 runs/instance).

Table 2 shows the average experimental results for each of the
30 scenarios. Notation in the table is explained below. The
performance (makespan) obtained by Tabu_Sold is denoted by Ct
and that by Tabu_Snew is denoted by Cn; accordingly, the computa-
tion times are respectively denoted by Tt and Tn. The performance
difference between Tabu_Sold and Tabu_Snew is denoted by
γ ¼ ðCt−CnÞ=Ct . In addition, N¼30 denotes the total number of
instances in a scenario, Ne denotes the number of instances with
γ ¼ 0 and Nw denotes the number of instances with γ40. In turn,
Nw þ Ne denotes the number of instances that Tabu_Snew either
outperforms or performs equally well as Tabu_Sold. The higher is
Nw þ Ne, the better is Tabu_Snew comparing against Tabu_Sold. The
table shows that Nw þ Ne ¼N¼ 30 in each scenario; and γ ranges
from 1.41% to 3.37%, with an average of 2.76%. This indicates that
Tabu_Snew apparently outperforms Tabu_Sold in each of the 30
scenarios.

To statistically justify the performance difference between
Tabu_Snew and Tabu_Sold, a paired t-test for the 900 problem
instances (30 scenarios�30 instances/scenario) has been carried
out. For each problem instance, the test statistic for modeling the
performance difference is defined as d¼ ðCt−CnÞ=Ct , where Ct and
Cn respectively denotes the average performance of the 15 runs of
the two algorithms. The t-value is t0 ¼ d=ðSd=

ffiffiffi

n
p Þ where d is the

mean and Sd is the standard deviation of the 900 problem
instances. The obtained t-value is t0 ¼ 50:054t0:025;899 ¼ 1:96,
which indicates that Tabu_Snew significantly outperforms Tabu_Sold.
The results demonstrate the importance of representation in
enhancing the performance of meta-heuristic algorithms.

Finally, as shown in Table 2, the average of Tn is 26.65 s and that
of Tt is 2.14 s. Although Tn appears to be substantially larger than Tt,
yet they are both within 3 min in all scenarios. Such little
computational efforts are equally acceptable in practice. As stated,
Tabu_Snew on average outperforms Tabu_Sold by 2.76% in terms of
makespan. This implies that using Tabu_Snew is a good trade-off
because the throughput would increase 2.76% at the cost of taking
at most 3 min computation.
7. Rationale on the superiority of Tabu_Snew

This section attempts to explain why Tabu_Snew outperforms
Tabu_Sold. We start with an extensive observation on the inter-
mediate results of Tabu_Sold for a particular problem instance and
found that the solution-search mechanism ultimately proceeds in a
loop-search manner (simply called the loop feature). This loop
feature leads to that h+ (the global best solution) cannot be
improved any more once the algorithmic flow is trapped into the
loop. This observation inspires us to extensively examine whether
such a loop feature exists in the two algorithms. Further experi-
mental results reveal that Tabu_Sold (compared against Tabu_Snew)
has a much higher probability of being trapped into a loop. In the
following, we firstly summarize the algorithmic flow of the
Tabu_search procedures. Secondly, we describe the method used
to examine the loop feature and report the results of the
examination. Thirdly, the reason why Tabu_Sold has a much higher
probability of being trapped into a loop is analyzed.

7.1. Summary of Tabu search

To facilitate the understanding of the loop feature, we first
summarize the algorithmic flow of Procedure Tabu_Search as
stated in Section 5. In essence, the procedure is a solution
evolutionary process. That is, the proposed solution evolves in a
step-by-step manner; one such step is called one evolution-step.
For an evolution-step i, we could represent its input by Si ¼
ðhn

i ; fT1
i ;…; Tk

i gÞ and its output by Siþ1 ¼ ðhn

iþ1; fT1
iþ1;…; Tk

iþ1g; Þ. In
Si, h

n

i (also called the local best solution) is the reference chromo-
some for creating a set of new solutions Nðhn

i Þ; Tq
i is the tabu_list of

q-th segment of the chromosome; and the set fT1
i ;…; Tk

i g repre-
sents all the tabu_list for a multiple segment chromosome.

For an evolution-step i, the input/output conversion proceeds as
below. First, hn

i is used to generate Nðhn

i Þ. Then, an appropriate
chromosome from Nðhn

i Þ is selected to be hn

iþ1, which in turn could
be used to update the global best solution (i.e., obtaining hþiþ1).
Notice that hn

iþ1 is converted from hn

i by a particular swap pair,
which shall be used to update the tabu_lists (i.e., obtaining
fT1

iþ1; …; Tk
iþ1g).

To record the step-by-step evolution results, we define a
notation, called Track(i, i+m)¼fSi;Siþ1;…; Siþmg, which is a set that
includes all the input states from evolution-step i to i+m. This
implies that the step-by-step results of the whole evolution
process can thus be represented by Track(1, Nf)¼ fS1;S2;…; SNf

g,



C.-F. Chen et al. / Computers & Operations Research 40 (2013) 2817–28252822
where Nf denotes the total number of neighborhoods that has
been generated while the program terminates. In turn, as illu-
strated in Fig. 7, we can define the loop feature as follows: Track(i, i
+n) is a loop if Si ¼ Siþn and Si≠Siþk for 1okon, and n is called the
Loop_size.

7.2. Examination of loop feature

We examine whether the loop feature exists in the Tabu_Sold
and Tabu_Snew by a procedure called Loop_Check as stated below, in
which Tabu_Search represents either Tabu_Sold or Tabu_Snew,
depending upon the context we are concerned with.

Procedure Loop_Check
Step 1: Carry out the Tabu_Search process for determining Nf , SNf

while the Tabu_Search process terminates (i.e., hþNf
is

obtained),
record Nf , SNf

;

set k ¼ 0; in1 ¼Nf ; in2 ¼Nf .
Step 2: Repeat the Tabu_Search process for checking loop
existence

for each evolution-step 1≤ i≤Nf

if ðSi ¼ SNf
Þ, then/nwhile a loop seems appearn/

set k¼k+1, and ink ¼ i;/nrecord the evolution-stepn/
endfor
inLoop ¼ in1;

if ðin1 ¼Nf Þ then κ¼ 0; /nno loop is foundn/

if ðin1oNf Þ then κ¼ 1; /na loop is foundn/

compute Loop_Size¼ in2−i
n

1;
output κ; in1, Loop_Size; stop.

In the above procedure, we have κ¼ 1 if there exists a loop
ðin1oNf Þ in the Tabu_Search process. Once such a loop is found in
the Trackð1; Nf Þ, the Tabu_Search process will repeatedly go
through the loop. That is, when the Tabu_Search process reaches
at in1 ðin1oNf Þ, the search process has been trapped into a loop—the
size of the loop is Loop_Size. This implies that the effective search
track is at most as long as Trackð1; in1 þ Loop_SizeÞ; and any further
search beyond the evolution step in1 þ Loop_Size is in fact repeat-
edly going around the loop. That is, we cannot obtain any solution
better than hþ

in1
.

Due to the loop feature, in order to justify the effectiveness of
the search process, we define a notation η¼ ðin1 þ Loop_SizeÞ=Nf

which is called the ratio of effective search track. The higher the
value of η, the longer the effective search track, and the better is
the search process. Notice that if there is no loop found in the
search process ðin1 ¼Nf Þ, we obtain η¼ 1 and Loop_Size¼0. In
contrast, if there is a loop found ðin1oNf Þ, then we obtain Loop_-
Size40 and 0oηo1 in most cases. In very rare cases, we may
obtain η¼ 1 and Loop_Size40 while in2 ¼Nf .

As stated, in the experiment, there are 30 scenarios; each
scenario has 30 instances; and each instance has 15 replicates. In
other words, each scenario involves 450 (30�15) experiment runs
in total; and each run shall yield a κ value and a η value; let κ and
η respectively represent the averages of the 450 runs in a scenario.
The values of κ and η both range from 0 to 1. Herein, κ is defined as
the loop frequency indicator. The higher the κ value, the more
Fig. 7. The loop feature.
frequently the loop features would appear in a scenario, and the
less effective is the search algorithm. In addition, η is called
the average ratio of effective search track. The higher the value of
η , the longer the effective search track, and the more effective is
the search algorithm.

Table 3 shows the comparison of the two algorithms Tabu_Snew
and Tabu_sold in terms of κ and η . The table indicates that Tabu_Sold
has a very high κ value (i.e., 85.46% on average); that is, about 85%
Tabu_Sold experiment runs would be trapped into a loop. In contrast,
Tabu_Snew has a very low κ value (i.e., 0.38% on average); this implies
that Tabu_Snew experiment runs shall be rarely trapped into a loop.

In addition, Tabu_Sold has a low η value (i.e., 24.93% on
average). This implies that the search track that Tabu_Sold goes
through is only 24.93% effective; and the remaining 75.07% search
track is in fact ineffective because the search process now has been
trapped into a loop. In contrast, Tabu_Snew has a very high η value
(i.e., 99.75% on average); this implies that Tabu_Snew experiment
runs are very rarely trapped into a loop.

In summary, the reason why Tabu_Snew outperforms Tabu_Sold is
due to the loop feature, the degree of which are measured by two
indicators κand η The κ value reveals that Tabu_Sold has a much
higher probability of being trapped into a loop; and the η value
indicates that the effective search track of Tabu_Sold tend to be
much shorter, due to being trapped into a loop.
7.3. Effect of Snew and Sold on loop feature

This section attempts to explain why Tabu_Sold (compared
against Tabu_Snew) has a much higher probability of being trapped
into a loop. As stated, Tabu_Sold and Tabu_Snew both evolve in a
step-by-step manner. For an evolution-step i, its input state is
modeled by Si ¼ ð hn

i ; fT1
i ; …; Tk

i gÞ, where hn

i is the reference chro-
mosome for creating a set of new solutions Nðhn

i Þ and Tq
i is the

tabu_list of q-th segment of the chromosome; in turn the set
fT1

i ; …; Tk
i g represents all the tabu_list for a k-segment chromo-

some. Herein, we define Ψ ðSÞ as the modeling space of Si. That is,
Ψ ðSÞ is a set that contains all possible instances generated by freely
varying each component in Si.

Being trapped into a loop indicates that we could find an Si ¼ Sj;
where i≠j. This implies that, for a Tabu_Search algorithm, the
larger is Ψ ðSÞ, the lower is the probability of getting an Si ¼ Sj;
in turn the algorithm would have a lower probability of being
trapped into a loop. Define Ψ oldðSÞ and ΨnewðSÞ respectively as the
modeling space in Tabu_Sold and Tabu_Snew.

Taking the scheduling problem in Fig. 5as an example, we
analyze the complexity of Ψ oldðSÞ and ΨnewðSÞ as below. For Ψ oldðSÞ
in this case, there are four segments (s1–s2–s3–s4). In segment s3,
there are 4 genes, which leads to qsize¼C4

2 � 0:3¼ ½1:8�¼2. The
possible number of segment instances is 4!. The possible number of
tabu_list instances is 37 as explained below. In segment s3, the
possible number of swap pair is C4

2¼6, and there are two slots in
the tabu_list (qsize¼2). Each slot can be filled in either by a swap
pair or nothing. Then the possible number of tabu_list instances is
(6�5)+(6�1)+(1�1)¼P6

2 þ P6
1 þ P6

0, where the first term
denotes that the two slots are both filled, the second term denotes
that only the first slot is filled and the second slot is empty, and the
third term denotes that both the two slots are empty.

Following the above example procedure, for a segment si with
ni genes and qsize¼qi, we could obtain the modeling space of the
segment as follows. The possible number of segment instances is
ni!. The possible number of swap pair is Cni

2 , and there are qi slots in
the tabu_list. Then the possible number of tabu_list instances is

P
C
ni
2

qi þ P
C
ni
2

qi−1
þ…þ P

C
ni
2

0 ¼∑qi
j ¼ 0P

C
ni
2

j ; in turn, the modeling space of

this segment is ni!� ∑qi
j ¼ 0P

C
ni
2

j .



Table 3
Experimental results of the loop-feature examination.

Scenario
κ (%) η (%)

κnew κold ηnew ηold

SSU0 4.14 86.00 96.40 24.92
SSU1 1.61 80.92 99.46 30.11
SSU2 0.00 85.06 100.00 25.05
SSU3 0.00 81.38 100.00 28.78
SSU4 0.00 87.59 100.00 23.92
SSU5 0.00 82.99 100.00 27.79
SSU6 0.00 72.87 100.00 36.93
SSU7 0.00 71.03 100.00 41.50
SSU8 0.00 83.45 100.00 26.96
SSU9 0.00 78.39 100.00 32.61
MSU0 0.46 87.11 99.94 21.36
MSU1 0.00 81.84 99.65 26.19
MSU2 0.00 93.10 100.00 18.67
MSU3 0.00 87.13 100.00 22.50
MSU4 0.00 85.98 100.00 25.33
MSU5 0.00 94.94 100.00 15.41
MSU6 0.00 81.61 100.00 28.76
MSU7 0.00 84.37 100.00 27.51
MSU8 0.00 79.31 100.00 29.58
MSU9 0.00 86.67 100.00 24.98
LSU0 2.99 88.05 98.78 21.41
LSU1 0.22 91.49 99.80 18.57
LSU2 2.07 91.26 98.53 17.52
LSU3 0.00 88.51 100.00 21.17
LSU4 0.00 84.83 100.00 26.18
LSU5 0.00 90.80 100.00 20.26
LSU6 0.00 94.02 100.00 14.18
LSU7 0.00 91.95 100.00 19.53
LSU8 0.00 82.99 100.00 27.04
LSU9 0.00 88.05 100.00 23.02
Average 0.38 85.46 99.75 24.93

Table 4
Experiments with different p values for Tabu_Snew and Tabu_Sold.

Average Makespan Computation
time (s)

p Value N Nw+Ne Ne Nw Cn Ct γ
(%)

Tn Tt

0.3 30 30.00 0.70 29.30 400.07 412.17 2.76 26.65 2.14
0.5 30 30.00 1.17 28.83 400.00 411.51 2.60 26.91 2.18
0.7 30 29.97 1.37 28.60 399.86 410.49 2.37 27.77 2.26
0.9 30 29.97 1.90 28.07 398.37 408.98 2.27 28.82 2.27

C.-F. Chen et al. / Computers & Operations Research 40 (2013) 2817–2825 2823
Now consider a chromosome with k segments; we could
accordingly obtain that the number of elements in its Ψ ðSÞ is
∏k

i ¼ 1ðni!� ∑qi
j ¼ 0P

C
ni
2

j Þ. Following this formula, for the scheduling
problem in Fig. 1, the number of elements in Ψ oldðSÞ is 5:6� 106

and that in ΨnewðSÞ is 5:4� 1028. This indicates that Ψ oldðSÞ is much
smaller than ΨnewðSÞ; as a result, Tabu_Sold tends to have a higher
probability of being trapped into a loop.

In summary, the reason why Tabu_Snew outperforms Tabu_Sold
may be due to that ΨnewðSÞ has a higher degree of freedom than
Ψ oldðSÞ. This implies that increasing the degree of freedom of Ψ ðSÞ
might improve the solution quality. We justify this hypothesis by
increasing the tabu_list size (qsize¼Cni

2 � p) by setting p¼0.3, 0.5,
0.7, 0.9; and comprehensively carry out the numerical experiments
for each p value. As shown in Table 4, experiments results reveal
two important findings. Firstly, Tabu_Snew keeps outperforming
Tabu_Sold for each p value. Secondly, Tabu_Snew and Tabu_Sold both
improve their performances while we increase p value. These two
findings essentially support our hypothesis—a Ψ ðSÞ with a higher
degree of freedom tends to yield a better solution.
8. GA_Tabu_Snew and GA_Tabu_Sold

As stated, this research has two objectives. The first objective is
to compare Tabu_Snew and Tabu_Sold. The second objective is to
develop a meta-heuristic algorithm that outperforms the state-of-
the-art algorithms in solving the PMFS problem. To fulfill the
second objective, we develop two algorithms GA_Tabu_Snew and
GA_Tabu_Sold, and compare their solution quality with the latest
benchmark algorithms [3,20].

Adopting Snew as the solution representation scheme, the
GA_Tabu_Snew algorithm is a two-stage evolutionary process,
a mixture of global search and local search. The first stage is the
use of GA_Snew for carrying out a global search. The second stage is
the use of Tabu_Snew for carrying out a local search, by taking the
solution obtained from GA_Snew as the input (i.e., the initial
solution of Tabu_Snew). By contrast, GA_Tabu_Sold is a mixture of
GA_Sold and Tabu_Sold, which also adopts the two-stage evolution-
ary process but uses Sold as the solution representation scheme.

The parameters of GA_Tabu_Snew and GA_Tabu_Sold are both set as
follows: Psize¼1000, pc¼0.95, pm¼0.10, TGA

f ¼3,000,000; TTS
f ¼2000

and qsize¼Cns
2 � 0:3, where TG

f is the termination condition of GA
evolution and TTS

f is the termination condition of TS evolution.
Numerical experiments for comparing the two algorithms

(GA_Tabu_Snew and GA_Tabu_Sold) with other benchmark algo-
rithms are carried out. Table 5 compares the solution quality, with
their computation times shown in Table 6. Table 5 indicates that
GA_Tabu_Snew outperforms all the other algorithms; this finding
is statistically significant justified from paired t-tests (Table 7).
In addition, the computation times required for GA_Tabu_Snew in
each scenario is less than 3 min (Table 6), which is computation-
ally efficient from the perspective of practical applications.

Experimental results indicate that Snew appears to be superior
to Sold while they are embedded in a particular meta-heuristic
algorithm. That is, X_Snew is superior to X_Sold where X denotes a
particular meta-heuristic algorithm such as GA, ACO, Tabu, and
GA_Tabu. These findings, supported by their differences in make-
span as shown in Table 5, have been justified to be statistically
significant by paired t-tests (Table 8).
9. Conclusions

This research, investigating the application of meta-heuristic
algorithms to solve the PMFS scheduling problem, has two
objectives. First, we attempt to compare the effect of using two
different solution representations (Snew and Sold) while applying
the Tabu algorithm. Second, we attempt to develop a meta-
heuristic algorithm that outperforms the state-of-the-art meta-
heuristic algorithms for solving the PMFS problem.

For the first objective, experimental results indicate that
Tabu_Snew outperforms Tabu_Sold in terms of solution quality, with
practically acceptable computational efforts (requiring only a few
minutes). The reason why Tabu_Sold is inferior is due to that it
tends to be trapped into a loop. The loop feature is due to that Sold
in nature has a relatively lower degree of freedom than Snew in
modeling a Tabu neighborhood. This in turn increases the prob-
ability of visiting a state that have been searched and leads to a
loop search.

For the second objective, two meta-heuristic algorithms
(GA_Tabu_Snew and GA_Tabu_Sold) are proposed. Experimental
results indicate that GA_Tabu_Snew outperforms all the other
meta-heuristic algorithms to date which includes the state-of-
the art algorithms GA_Sold [3] and GA_Snew [20]. In addition, results
of paired t-tests reveal that X_Snew is superior to X_Sold where X
denotes one of the following four: GA, Tabu, ACO, and GA_Tabu.



Table 5
Experiments for comparing algorithms in terms of makespan.

Scenario
Makespan

Tabu GA ACO GA_Tabu

Tabu_Snew Tabu_Sold GA_Snew GA_Sold ACO_Snew ACO_Sold GA_Tabu_Snew GA_Tabu_Sold

SSU33 134.48 137.27 134.47 134.47 134.96 136.27 134.47 134.47
SSU34 151.1 153.98 150.98 150.99 152.56 154.46 150.98 151
SSU44 186.55 191.57 185.64 185.64 187.63 190.84 185.63 185.64
SSU55 243.25 250.31 241.94 242.11 246.79 250.53 241.9 242.09
SSU56 254.87 262.76 253.36 253.71 259.57 262.97 253.36 253.69
SSU65 288.18 296.44 285.78 285.96 292.51 297.35 285.77 285.95
SSU66 296.83 305.63 294.9 295.14 302.18 308.71 294.87 295.12
SSU88 407.41 419.07 402.6 403.14 418.97 424.28 402.46 403.12
SSU108 489.27 504.36 481.76 481.94 506.84 512.1 481.61 481.92
SSU1010 530.67 546.58 521.9 522.45 551.92 554.87 521.73 522.42
MSU33 160 162.41 160 160 160.76 162.74 160 160
MSU34 184.71 187.6 184.68 184.69 185.23 187.42 184.67 184.7
MSU44 238.34 245.51 237.6 237.61 239.03 242.31 237.6 237.6
MSU55 309.52 318.11 306.09 306.16 309.46 315.96 306.08 306.15
MSU56 319.91 329.14 317.47 317.68 321.72 329.32 317.47 317.68
MSU65 366.9 378.18 362.63 362.66 367.47 375.24 362.63 362.66
MSU66 385.34 398.26 380.02 380.07 386.52 396.05 380.02 380.06
MSU88 521.9 540.04 510.39 510.44 529.09 546.14 510.21 510.45
MSU108 640.46 661.39 623.95 623.51 655.03 667.53 623.88 623.49
MSU1010 672.82 692.26 655.17 655.52 687.61 698.2 655 655.48
LSU33 228.09 233.21 228.03 228.03 228.67 229.98 228.03 228.03
LSU34 239.06 243.85 239 239 239.38 241.19 239 239
LSU44 324.89 333.18 323.44 323.43 324.13 327.27 323.44 323.43
LSU55 421.59 434.62 415.97 415.97 419.19 426.5 415.97 415.97
LSU56 442.82 455.67 436.97 437.17 440.7 449.42 436.98 437.16
LSU65 500.06 518.11 491.92 492.02 496.02 507.07 491.92 492.02
LSU66 524.49 540.73 514.32 514.34 518.88 531.96 514.32 514.34
LSU88 722.17 745.71 701.63 701.11 715.14 736.53 701.62 701.11
LSU108 880.5 910.78 847.62 847.36 883.67 905.5 847.61 847.33
LSU1010 935.79 968.47 907.13 908.67 947.02 972.93 907.14 908.63
Average 400.07 412.17 393.25 393.37 403.62 411.39 393.21 393.36

Table 6
Experiments for comparing algorithms in terms of computation time.

Scenario
Computation time (s)

Tabu GA ACO GA_Tabu

Tabu_Snew Tabu_Sold GA_Snew GA_Sold ACO_Snew ACO_Sold GA_Tabu_Snew GA_Tabu_Sold

SSU33 0.94 0.33 14.88 18.54 3.35 0.64 11.75 14.67
SSU34 1.4 0.42 16.84 20.5 5.15 1.28 13.72 16.35
SSU44 2.64 0.61 21.17 24.56 9.77 2.14 17.97 19.68
SSU55 7.01 1.05 30.63 32.3 19.49 4.69 28.42 26.49
SSU56 7.3 1.17 31.95 34.81 21.03 6.7 29.58 28.55
SSU65 12.35 1.5 36.41 37.27 31.09 7.36 36.8 31.49
SSU66 13.43 1.66 40.16 40.03 31.67 7.72 40.68 33.57
SSU88 43.4 3.5 67.49 58.19 57.37 18.29 80.4 50.85
SSU108 95.58 5.3 95.61 72.24 100.11 25.48 134.05 65.27
SSU1010 128.91 6.83 107.94 83.84 98.01 29.51 161.38 76.64
MSU33 0.73 0.28 13.75 17.91 3.38 0.51 10.83 14.09
MSU34 1.09 0.38 15.7 19.59 5.13 0.97 12.69 15.66
MSU44 2.71 0.6 21.01 24.23 12.76 2.16 17.87 19.54
MSU55 6.09 1.03 29.64 31.42 31.04 5.66 27.37 25.83
MSU56 6.02 1.08 30.04 32.98 30.41 4.9 27.61 27.08
MSU65 10.96 1.43 35.92 36.68 49.92 7.51 35.84 30.79
MSU66 12.25 1.64 38.55 39.33 49.08 8.39 38.76 33.26
MSU88 36.51 3.3 65.15 56.55 102.58 20.49 78.2 50.2
MSU108 86.43 5.42 89.16 70.74 175.06 39.82 128.69 64.35
MSU1010 94.5 6.12 99.95 79.66 164.46 40.3 143.5 72.21
LSU33 1.06 0.37 15.44 18.79 4.98 0.8 12.39 15.1
LSU34 0.88 0.31 14.94 18.96 5.5 0.83 11.91 15.05
LSU44 2.41 0.55 19.99 23.81 16.36 1.95 17.02 19.06
LSU55 5.7 0.96 28 30.95 48.32 4.75 25.62 25.28
LSU56 6.84 1.13 30.72 33.24 50.98 5.8 28.61 27.44
LSU65 10.63 1.47 35.95 36.48 92.34 6.75 35.94 30.7
LSU66 10.93 1.5 36.37 38.44 87.37 8.96 36.47 32.5
LSU88 33 3.18 60.78 54.9 180.73 22.54 72.55 48.51
LSU108 71.7 5.02 85.85 68.94 328.03 64.14 121.7 62.46
LSU1010 85.92 6.1 101.14 78.04 295.34 61.76 138.82 71.05
Average 26.65 2.14 44.37 41.13 70.36 13.76 52.57 35.46

C.-F. Chen et al. / Computers & Operations Research 40 (2013) 2817–28252824



Table 7
Paired t-tests for supporting that GA_Tabu_Snew outperforms the other algorithms.

Paired t-test GA_Tabu_Snew vs. other algorithms

Algorithm Tabu_Sold Tabu_Snew GA_Sold GA_Snew ACO_Sold ACO_Snew GA_Tabu_Sold

t-Value 53.91 27.75 3.90 5.71 44.06 31.79 3.66

Table 8
Paired t-test for supporting that Snew outperforms Sold for each of the following four
meta-heuristic algorithms.

Paired t-test
Snew vs. Sold

Algorithm Tabu GA ACO GA_Tabu

t-Value 50.05 3.16 30.88 3.66

C.-F. Chen et al. / Computers & Operations Research 40 (2013) 2817–2825 2825
This research highlights the importance of developing novice
solution representations in the application of meta-heuristic algo-
rithms. This idea can be extended to investigate other scheduling
problems or other space search problems that have been solved by
meta-heuristic algorithms.
Acknowledgments

This work is financially supported by a research contract NSC
99-2221-E-009-110-MY3.
References

[1] Rothlauf F, Goldberg DE, Heinzl A. Network random keys—a tree network
representation scheme for genetic and evolutionary algorithms. Evolutionary
Computation 2002;10(1):75–97.

[2] Rothlauf F, Goldberg DE. Redundant representations in evolutionary computa-
tion. Evolutionary Computation 2003;11(4):381–415.

[3] Lin SW, Ying KC, Lee ZJ. Metaheuristics for scheduling a non-permutation
flowline manufacturing cell with sequence dependent family setup times.
Computers & Operations Research 2009;36:1110–21.

[4] Carotenuto P, Giordani S, Ricciardelli S, Rismondo S. A Tabu search approach
for scheduling hazmat shipments. Computers & Operations Research
2007;34:1328–50.

[5] Holland JH. Adaptation in neural and artificial systems. Ann Arbor, Michigan:
University of Michigan Press; 1975.

[6] Burak E, Sandra DE, Jain P. A Tabu search algorithm for the flowshop
scheduling problem with changing neighborhoods. Computers & Industrial
Engineering 2008;54:1–11.

[7] Buscher U, Shen L. An integrated Tabu search algorithm for the lot streaming
problem in job shops. European Journal of Operational Research
2009;199:385–99.

[8] Wen UP, Huang AD. A simple Tabu search method to solve the mixed-integer
linear bilevel programming problem. European Journal of Operational
Research 1996;88:563–71.

[9] Kim YK, Kim JY, Kang SS. A Tabu search approach for designing a non-
hierarchical video-on-demand network architecture. Computers & Industrial
Engineering 1997;33(3–4):837–40.

[10] Lokketangen A, Glover F. Solving zero–one mixed integer programming
problems using Tabu search. European Journal of Operational Research
1998;106:624–58.
[11] Cordeau JF, Maischberger M. A parallel iterated Tabu search heuristic for
vehicle routing problems. Computers & Operations Research
2012;39:2033–55.

[12] Demir L, Tunalı S, Eliiyi DT. An adaptive Tabu search approach for buffer
allocation problem in unreliable non-homogenous production lines. Compu-
ters & Operations Research 2012;39:1477–86.

[13] Ruiz R, Maroto C. A comprehensive review and evaluation of permutation
flowshop heuristics. European Journal of Operational Research
2005;165:479–94.

[14] Hejazi SR, Saghafian S. Flowshop-scheduling problems with makespan criter-
ion: a review. International Journal of Production Research 2005;43
(14):2895–929.

[15] Glover F. Tabu search Part I. ORSA Journal of Computing 1989;1:190–206.
[16] Glover F. Tabu search Part II. ORSA Journal of Computing 1990;2:4–32.
[17] Dorigo M, Gambardella LM. Ant colony system: a cooperative learning

approach to the traveling salesman problem. IEEE Transactions on Evolution-
ary Computation 2002;1(1):53–66.

[18] Kirkpatrick S, Gelatt Jr. CD, Vecchi MP. Optimization by simulated annealing.
Science 1983;202:671–80.

[19] Goldberg DE. The design of innovation: lessons from and for competent
genetic algorithms. Boston, MA: Kluwer Academic Publishers; 2002.

[20] Chen CF, Wu MC, Li YH, Tai PH, Chiou CW. A comparison of two chromosome
representation schemes used in solving a family-based scheduling problem.
Robotics and Computer-Integrated Manufacturing 2012;29(3):21–30.

[21] Schaller JE, Gupta JND, Vakharia AJ. Scheduling a flowline manufacturing cell
with sequence dependent family setup times. European Journal of Operational
Research 2000;125(2):324–39.

[22] Gupta JND, Stafford EF. Flowshop scheduling research after five decades.
European Journal of Operational Research 2006;169:699–711.

[23] Hendizadeh SH, Faramarzi H, Mansouric SA, Gupta JND, ElMekkawy TY. Meta-
heuristics for scheduling a flowline manufacturing cell with sequence depen-
dent family setup times. International Journal of Production Economics
2008;111(2):593–605.

[24] Ying KC, Gupta JND, Lin SW, Lee ZJ. Permutation and nonpermutation
schedules for the flowline manufacturing cell with sequence dependent
family setups. International Journal of Production Research 2009;48
(8):2169–84.

[25] Franca PM, Gupta JND, Mendes AS. Evolutionary algorithms for scheduling a
flowshop manufacturing cell with sequence dependent family setups. Com-
puters & Industrial Engineering 2005;48(3):491–506.

[26] Lin SW, Gupta JND, Ying KC, Lee ZJ. Using simulated annealing to schedule a
flowshop manufacturing cell with sequence dependent family setup times.
International Journal of Production Research 2009;47(12):3205–17.

[27] Bhushan S, Karimi IA. Heuristic algorithms for scheduling an automated wet-
etch station. Computers & Chemical Engineering 2004;28(3):363–79.

[28] Castro PM, Aguirre AM, Zeballos LJ, Méndez CA. Hybrid mathematical
programming discrete-event simulation approach for large-scale scheduling
problems. Industrial & Engineering Chemistry Research 2011;50(18):
10665–10680.

[29] Chan FTS, Choy KL, Bibhushan. A genetic algorithm-based scheduler for
multiproduct parallel machine sheet metal job shop. Expert Systems with
Applications 2011;38:8703–15.

[30] Tavakkoli-Moghaddam R, Taheri F, Bazzazi M, Izadi M, Sassani F. Design of a
genetic algorithm for bi-objective unrelated parallel machines scheduling
with sequence-dependent setup times and precedence constraints. Compu-
ters & Operations Research 2009;36:3224–30.

[31] M'Hallah R, Al-Khamis T. Minimising total weighted earliness and tardiness on
parallel machines using a hybrid heuristic. International Journal of Production
Research 2011;1:1–26.

[32] Palmer CC. An approach to a problem in network design using genetic
algorithms. (Unpublished PhD thesis), Polytechnic University, Troy, NY; 1994.

http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref1
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref1
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref1
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref2
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref2
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref3
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref3
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref3
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref3
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref4
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref4
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref4
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref4
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref5
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref5
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref6
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref6
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref6
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref6
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref7
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref7
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref7
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref8
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref8
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref8
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref9
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref9
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref9
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref9
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref10
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref10
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref10
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref11
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref11
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref11
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref11
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref12
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref12
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref12
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref12
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref13
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref13
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref13
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref14
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref14
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref14
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref15
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref16
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref17
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref17
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref17
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref18
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref18
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref19
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref19
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref20
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref20
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref20
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref21
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref21
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref21
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref22
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref22
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref23
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref23
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref23
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref23
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref24
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref24
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref24
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref24
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref25
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref25
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref25
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref25
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref26
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref26
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref26
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref27
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref27
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref27
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref28
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref28
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref28
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref28
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref28
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref29
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref29
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref29
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref30
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref30
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref30
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref30
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref30
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref31
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref31
http://refhub.elsevier.com/S0305-0548(13)00160-3/sbref31

	Effect of solution representations on Tabu search �in scheduling applications
	Introduction
	Scheduling problem and prior research
	Review on chromosome representations
	Chromosome representations
	Sold representation
	Snew representation

	Tabu search
	Algorithmic flow of TS
	Algorithms TSunderscoreSold and TSunderscoreSnew

	Empirical analysis
	Rationale on the superiority of TabuunderscoreSnew
	Summary of Tabu search
	Examination of loop feature
	Effect of Snew and Sold on loop feature

	GAunderscoreTabuunderscoreSnew and GAunderscoreTabuunderscoreSold
	Conclusions
	Acknowledgments
	References




