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Balanced Parallel Scheduling for Video
Encoding with Adaptive GOP Structure

Hsu-Feng Hsiao, Member, IEEE, and Chen-Tsang Wu

Abstract—Due to the nature of a dynamic group of picture (GOP) structure, parallel scheduling for video encoding becomes

challenging. To address this, the balanced frame-level parallel scheduling algorithms are developed. The proposed approaches first
determine the frame priority and then the thread priority assignment for scheduling. The concept of the algorithms lies in the analysis of
coding complexity, temporal influence, and the required temporal burden to finish coding. To complete the scheduling with the dynamic
GOP structure, a block-based abrupt and gradual scene change detection algorithm is also proposed to determine the GOP structure
adaptively. The experiments show that the scheduling performance is close to the optimal. In addition, the concept of batch processing

is incorporated so that the required buffer can be reduced.

Index Terms—Adaptive GOP structure, parallel scheduling

1 INTRODUCTION

ATTENTION has been paid intensively to video compres-
sion technologies due to emerging multimedia appli-
cations over computers, mobile devices, and entertainment
systems that demand good video quality at increasing video
resolution and acceptable bit rate. To further improve the
compression ratio, many sophisticated predictive coding
tools, transformation utilities, entropy coding tools, and
adaptive filters are designed and implemented in the
recent video compression standards such as the MPEG-4
Advanced Video Coding (AVC) standard and also in the
new high-efficiency video coding that is currently under
joint development by the ISO/IEC Moving Picture Experts
Group and ITU-T Video Coding Experts Group. However,
the price paid for the improved compression performance is
heavy computation.

Each frame in a video may either represent a single event
itself or belong to a part of sequential frames that constitute
continuous related action, also known as a “scene.” Coding
performance is often influenced by the structure of group of
picture (GOP) in video sequences. If predictive coding tools
along temporal axis, such as motion prediction and
compensation, are used on the frames across the boundary
of two scenes, coding efficiency will usually suffer, and
severe error drifting problem is likely to occur for video
transmission over error-prone channels. In general, the
GOP structure in a video shall be content dependent. For
example, the GOP sizes for fast motion videos such as
football game videos and slow motion videos such as
surveillance videos shall be adjusted accordingly to achieve
better coding efficiency. If scene change detection can be
performed beforehand, a proper GOP structure can then
be determined for better coding efficiency.
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In addition, the increasing computation complexity for
modern video compression technologies such as AVC
should be addressed so that the required time for coding
can be much reduced. Accelerating the coding can be
achieved algorithm-wise and/or scheduling-wise. For
solutions in the algorithm domain, popular methods
mainly focus on reducing coding complexity at minimal
loss of compression efficiency, such as fast motion
estimation and fast coding mode selection [1]. In terms of
scheduling, parallel processing with multicore processing
units is quite feasible by distributing computation load
among a number of parallel-executing processors. Several
coarse-granularity parallelism methods have been pro-
posed in the literature, such as GOP-level parallelism [2],
frame-level parallelism [3], [4], slice-level parallelism [5],
and MB-level parallelism [6], [7]. In this paper, a frame-
level-based parallel scheduling is proposed for video
encoding with adaptive GOP structure where the schedul-
ing problem becomes more challenging.

This paper is organized as follows: In Section 2, we
briefly discuss the related work of scene change detection
and parallel processing for video encoding. In Section 3, the
proposed scene change detection algorithm and balanced
frame-level parallel scheduling algorithms for video encod-
ing are presented in detail. In Section 4, the experimental
results and the corresponding discussion are described,
followed by the conclusion in Section 5.

2 REeLATED WORK

The main objective of parallel scheduling for video coding
is to distribute computation load among multiple cores,
while scene change detection can be beneficial to video
coding. In this section, related work about these topics will
be briefly introduced.

2.1 Scene Change Detection

Scene changes can be divided into two categories: abrupt
scene changes and gradual scene changes. An abrupt scene
change indicates that transition from one scene into another
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only spends a period of one frame. On the other hand, a
gradual scene change takes a period of several frames to
complete a scene transition.

In general, there are certain steps to detect scene changes.
At first, selected features of video frames are extracted.
Popular features for scene change detection include
intensity statistics and color histogram information. Next,
indication of scene change, based on the features, is
determined. The usual indication is the difference of
selected features of consecutive frames. A scene change or
scene boundary can then be discovered by comparing the
indication with a certain threshold.

For example, in the pixel-based method [8], the sum of
mean absolute difference (SMAD) of pixel values at
corresponding location between two sequential frames is
calculated. If the SMAD is larger than a predefined
threshold, it is considered for a scene boundary to occur.
The disadvantage for the pixel-based method is that it is
sensitive to object motion in the scene. In [17], a block-
based similarity comparison based on first- and second-
order statistics is proposed. A scene change is declared if
the ratio of similar blocks between two frames is greater
than some threshold. In general, the block-based approach
can tolerate noises and slow motion. However, approaches
by high-order statistics usually suffer from high computa-
tional complexity.

On the other hand, the method proposed in [9] utilizes
the thresholding process on the difference of histograms
between two sequential frames in order to determine the
scene boundary. Without considering spatial information, it
can be difficult to detect scene change where different
scenes have similar histograms. In the optical flow-based
approach [10], possible locations of objects are predicted
according to the linear moving directions of the same
objects in the previous three frames. If the prediction error
is greater than a predefined threshold, it is believed that a
scene change happens. The edge-based method in [11]
detects edge pixels for every frame at first, followed by
observing the variation of edge pixels between two
sequential frames to determine the scene boundary. If
compressed videos are available, scene change detection
can take advantage of several video characteristics provided
in the compressed domain. Such characteristics that are
helpful for scene change detection include discrete cosine
transform (DCT) coefficients [12], motion vectors [19], [20],
and block modes/types [18]. The collection of DC coeffi-
cients in DCT forms a down-sampled version of original
data, and the method in [12] computes the difference of
DC image to determine scene boundary.

Scene change detection by using Markov Chain Monte
Carlo (MCMC) algorithm [21] and clustering-based [22]
approaches by applying K-means clustering algorithm also
provide feasible solutions. The posterior probability calcu-
lation of the MCMC algorithm is computed based on the
model priors and the data likelihood of the video and it
requires much computation effort. Study [23] has shown
that the complexity of clustering-based approaches is also
higher than both pixel-based and block-based luminance
difference approaches.

2.2 Parallel Processing for Video Encoding

Parallel processing with multicore processing units for
video encoding is about distributing computation load
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Fig. 1. An illustration of frame-level parallelism.

among a number of parallel-executing processors. The
parallel processing can be divided into instruction-level
parallelism (ILP) and thread-level parallelism (TLP) [15].
One of the simplest methods used to accomplish ILP uses
instruction pipelining. The steps to finish an instruction are
instruction fetch, instruction decode, execute, memory
access, and register write back. On the contrary, TLP is
the parallelism inherent in an application, which runs
multiple threads at once. The benefits of TLP are achieved
by distributing the workload among a number of processor
cores [16]. Several coarse-granularity methods based on
TLP are often used, such as GOP-level [2], frame-level [3],
[4], slice-level [5], and MB-level [6], [7] approaches.

In general, GOPs are coded independently with some
exceptions. For example, slices of a key picture can be either
intracoded or intercoded according to the MPEG-4 AVC
standard. If a key picture is intercoded, its reference frame
can be from the previous GOP. Therefore, the two GOPs are
no longer coded independently. However, due to error
drifting problem over error-prone channels, key pictures
are usually intracoded. In these cases, GOP-level paralle-
lism [13] can be easily achieved with good load balance at
the cost of long latency. For frame-level parallelism, the
basic concept is that reference frames are given priority to
be encoded than any other frames that rely on those
reference frames. Fig. 1 shows an example of the frame-level
parallelism, and the dashed lines indicate the prediction
relations among frames. For example, I0 is referred by B1,
B2, and P3; P3 is referred by B1, B2, B4, B5, and Pé.
Therefore, according to the frame dependence, the encoding
order can be “I0 P3 B1 B2 P6 B4 B5 P9 B7 B8.” Actually, after
the encoding of P3 is finished, P6, B1, and B2 can be
encoded simultaneously. Similarly, P9, B4, and B5 can be
processed in a parallel manner after P6 is completed. One of
the advantages of frame-level parallelism is that coding
efficiency is not affected. However, the dependence among
frames limits the thread scalability and it offers a challenge
for scheduling.

In the MPEG-4 AVC standard, slices of the same frame
are coded independently, and thus, slice-level parallelism is
also feasible. The acceleration rate of slice-level parallelism
is determined by the number of slices in a frame. Having
more slices in a frame leads to better acceleration. However,
pixel relevance in that frame cannot be exploited well and
the consequence of having more slices includes higher bit
rate [4]. For MB-level parallelism, due to the fact that
motion vectors are coded predictively, the key point of
parallel processing is that an MB can only be encoded
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completely after the motion estimation of the referenced
MBs (usually the left, top, and top-right neighboring ones)
is finished.

3 THE PROPOSED PARALLEL PROCESSING
ALGORITHMS FOR VIDEO ENCODING WITH
ADAPTIVE GOP STRUCTURE

Parallel processing with regular coding structure, such as
fixed GOP size, can be planned beforehand. However, the
regular coding structure usually results in worse coding
efficiency. In this section, a simple and efficient scene
change detection scheme is first proposed, followed by the
main contribution of this paper, the balanced frame-level
parallel scheduling algorithms, which take varying GOP
sizes and coding complexity into account.

3.1 Abrupt and Gradual Scene Change Detection

The fundamental idea of the proposed scene change
detection is as follows: If there is a scene change between
frame N — 1 and frame N, the difference between these two
frames shall be significant. However, the texture variation
of a frame can complicate the judgment and shall be taken
into consideration.

In this paper, the difference between two frames n, m is
modeled as their interframe variation. It is defined as the
sum of absolute temporal difference (SATD) between two
frames shown as follows:

Y-1X-1

ZZ|BTnyZLv (1)

y=0 z=0

SATD(n,m)

where B” is the pixel value at location (x,y) of frame n. X
and Y are the width and height of a frame, respectively.

To measure the texture variation of a frame, the
intraframe variation, defined as the sum of absolute spatial
difference (SASD), is utilized. The absolute spatial difference
of a pixel stands for the mean of absolute difference
between the pixel and each of its neighboring pixels.
Common definition of neighboring pixels includes four-
connected pixels and eight-connected pixels. The SASD
based on four-connected pixels is shown in (2) and Fig. 2. For
the case of eight-connected pixels, the corresponding SASD
is shown in (3). Since there is not much performance
difference between four neighbors and eight neighbors as
shown later, the SASD calculation with four neighbors is
more appealing due to less computation complexity:
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The interframe variation in (1) can indicate the difference
between two frames. Significant difference between two
frames is usually a good indication of scene change.
However, the interframe difference can result from both
scene change and object/camera motion within a scene. If
the level of intraframe variation by either (2) or (3) is higher,
the interframe variation shall be stronger in order to avoid
false alarm. In addition, since the pixel-based approach can
be sensitive to texture distribution and addition noise in a
scene, the block-based approach is taken to make the
detection robust and to reduce required computation.

The proposed scene change detection algorithm that is
able to distinguish abrupt scene change from gradual scene
change is shown in Fig. 3. In the step of block preparation,
every frame is decomposed into nonoverlapping blocks
with block size determined empirically and the determina-
tion of the size will be discussed soon. After that, each block
is assigned the average of the pixel values of that block as its
block value. Those block values are used to calculate the
interframe variation and the intraframe variation shown in
(1), (2), and (3), where B} is now the block value at block
location (x, y) of frame n. The abrupt scene change detection
algorithm is then performed first, followed by the gradual
scene change detection algorithm.

3.1.1 Abrupt Scene Change Detection Algorithm

An abrupt scene change indicates that a scene transition
from one scene into another scene only spends one frame.
The detection is according to the variation ratio Ratio(n,n —
1) of the interframe variation to the intraframe variation of
two successive frames n and n — 1. The variation ratio
Ratio(,j) of the interframe variation to the intraframe
variation of two frames ¢ and j is shown as follows:

_ SATD(i, j)
= "SASD() )

If Ratio(n,n — 1) is greater than the predefined threshold
T hase, it is determined for an abrupt scene change to occur.

To observe the effect of the Ratio(n,n — 1) value upon
the detection, a video mix with abrupt scene changes at
CIF format is composed by several test sequences: Akiyo,
Bridge, Bus, Deadline, Foreman, Irene, Mobile, Tempete, and
Waterfall. The actual abrupt scene changes happen at frame
30, 89, 169, 209, 359, 429, 486, 520, 583, 621, 651, 691, and 721,

Ratio(i, j)
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Fig. 4. The values of Ratio(n,n — 1) with four neighbors for the training
video with abrupt scene changes.

respectively. Every frame is first divided into nonoverlap-
ping blocks. The results of Ratio(n,n — 1) per frame with
four neighbors and eight neighbors according to (4) are
shown in Figs. 4 and 5, respectively. The value of
Ratio(n,n — 1) is rather low for most of the time except
for the 13 steep pulses whose locations exactly correspond
to the frames where actual abrupt scene changes occur. The
area enclosed by an ellipse in Fig. 4 indicates the “ratio
noise,” which means that the ratio of the interframe
variation to the intraframe variation within the same scene
can be close to 1. To identify the abrupt scene changes based
on (4), the predefined threshold Th,s. can be chosen as 1.4
safely. From the results, the approach with four neighbors is
better when taking ratio statistics and computation over-
head into account.

Besides comparing Ratio(n,n —1) with the threshold
Thys, the peak can also be detected by taking the second
derivative fr"(n,n — 1) of the ratio as defined in (5). The
local maxima of the ratios shall be at the positions where the
values of fz"(n,n — 1) are negative. According to the results
in Fig. 6, it is determined to have an abrupt scene change
when fr"(n,n — 1) is smaller than —1.0. This threshold is
actually not sensitive though:

fr"(n,n — 1) = Ratio(n + 1,n) + Ratio(n — 1,n — 2) 5
— 2 Ratio(n,n — 1). (5)

3.1.2 Gradual Scene Change Detection Algorithm

Because the transition of a gradual scene change takes a
period of several frames, the ratio Ratio(n,n —1) of the
interframe variation to the intraframe variation of two
successive frames n and n — 1 can be insignificant.

The proposed gradual scene change detection is to
monitor the values of Ratio(n,m), where n stands for the
current frame and m is the frame index where the last scene
change occurs. In Fig. 7, an actual example with gradual
scene change is shown. When a gradual scene change
occurs, the scene transition can be divided into two phases:
the phase of gradual increment and the phase of convergence.

For the phase of gradual increment, the interframe
variation between the current frame and the frame where

Ratio(n, n-1)

Frame number

Fig. 5. The values of Ratio(n,n — 1) with eight neighbors for the training
video with abrupt scene changes.
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the last scene change occurs grows. A heuristic threshold
“Threshold_L” = 0.7 for Ratio(n,m) is used to detect the
beginning of possible gradual increment. This threshold is
actually not a sensitive parameter. Different values of
“Threshold_L” between 0.3 and 1.0 do not affect the
detection performance, according to the simulation results.

After the phase of gradual increment, Ratio(n,m) will
part from the increasing trend and enter the phase of
convergence where Ratio(n,m) shall be still greater than
the threshold “Threshold_H.” Since the gradual scene
change is completed during the phase of convergence, the
characteristic of Ratio(n, m) of this phase shall be the same
as the case for abrupt scene change. Therefore, the value of
Threshold_H is equal to T'h,.. For better coding efficiency,
the first frame of each new scene is encoded as an
instantaneous decoding refresh (IDR) key frame. Since the
location of a new scene is content dependent, the GOP
structure will be dynamic and it is adaptively decided
according to the detected scenes in a video. Therefore, the
challenge for parallel scheduling becomes greater.

As mentioned earlier, the block-based approach for scene
change detection is chosen to make the detection robust
while reducing the computation effort. The video mix at CIF
resolution used in Fig. 4 is taken to observe the variation of
Ratio(n,n — 1) at different block sizes. To see the difference
of Ratio(n,n — 1) between scene changes and nonscene
changes, the min{10.0, Ratio(n,n — 1)} for each frame is
recorded in this experiment.

In Fig. 8, we can notice that the block sizes at both
“16 x 16” and “32 x 32” show better performance than the
others by not only reducing the noise effectively but also
enhancing the peak points where actual scene changes do
occur. The smallest real peak of Ratio(n,n — 1) for 32 x 32
blocks is 1.6, while it is more than 2.0 for 16 x 16 blocks. The
block size 16 x 16 is slightly better than 32 x 32; therefore,
block size 16 x 16 is chosen for the proposed abrupt and
gradual scene change detection scheme. If the video is at
CIF resolution, there will be 22 x 18 nonoverlapped blocks
in a frame. If the block number is too small, the results can
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Fig. 7. The variations of Ratio(n,m) in the example with gradual
scene change.
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Fig. 8. The variations of Ratio(n,n — 1) at different block sizes.

be inaccurate due to insufficient statistics information. More
simulation results at other video resolutions are available in
Section 4.

3.2 Balanced Frame-Level Parallel Scheduling

For frame-level parallel scheduling, coding dependence
among frames limits the thread scalability. Certain threads
can be idle during parallel processing, and the whole
encoding time is still determined by the thread which
finishes its job last.

After frames are cut into several GOPs according to the
scene change detection scheme described in the last section,
the proposed scheduling algorithm will determine which
thread takes care of which frames and in what order.

The frame-level parallel scheduling procedure is di-
vided into two stages: frame priority selection and thread
priority assignment. At the stage of frame priority selec-
tion, the frame with priority is picked for the thread
choosing stage where a certain thread will be assigned to
implement the frame coding by balancing and shortening
the operation time.

3.2.1 Frame Priority Selection for Scheduling

At the stage of frame priority selection, the frame with
priority will be recognized for the processing during thread
priority assignment.

Priority can be given according to the ordering of
interframe prediction. In other words, reference frames
shall have priority over other frames in a GOP. In video
encoding, if a frame refers to another frame by motion
compensation, the second frame is the reference frame of
the first frame and that reference frame shall have priority
during scheduling. For example, given a video sequence of
three GOPs with coding index “I0 B1 B2 P3 14 B5 B6 P7 B8
B9 P10 I11 B12 P13,” the English letter of a coding index
stands for the frame type and the following number is the
display order of that frame. As shown in Fig. 9, the arrows
indicate the reference structure. After the priority assign-
ment according to the reference structure, the order of
frames sent to the stage of thread priority assignment is “I10
P3 B1 B2 14 P7 B5 B6 P10 B8 B9 I11 P13 B12” shown step by
step in Fig. 9. For convenience’ sake, the method of frame
priority selection described above is called priority selection
by using prediction structure.
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Fig. 9. Priority selection by using prediction structure.

However, coding dependence is not the only factor that
can influence the results of parallel scheduling. The coding
complexity of a video frame will determine when the other
frames which will use that video frame as their reference
frame can start to encode. In addition, for parallel
scheduling with the dynamic GOP structure, the length
of a GOP cannot be presumed. The complexity of GOP
should be taken into account, since the GOP which takes
more time to complete coding is usually the bottleneck of
parallel scheduling.

For the reasons above, priority selection by using coding
complexity and temporal influence is proposed. The flowchart
of the priority selection is shown in Fig. 10. A frame is
assigned priority by completing the frame arrangement and
the temporal complexity analysis. The details of these steps
are as follows.

In this proposed approach, frames of each GOP are
rearranged first according to frame dependence and
temporal influence. Frame dependence is determined by
the reference structure. Temporal influence of a frame is an
indication of the number of frames that are affected by it.

If the influence of each frame is the same, frames of each
GOP are rearranged according to frame dependence and
display order.

After the rearrangement of each GOP, the GOP with the
longest temporal complexity will be chosen to select a
frame with priority. The priority order of frames in a GOP
is determined by the rearranged order mentioned earlier,
and the temporal complexity of a GOP stands for the
summation of estimated time complexity of the remaining
frames in the GOP.

Frame Arrangement
of Each GOP

Temporal Complexity
Analysis

Frame Priority
Selection

To select next frame

Fig. 10. The flowchart of the priority selection by using coding complexity
and temporal influence.
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Fig. 11. Priority selection by using coding complexity and temporal
influence.

The time complexity of a frame is estimated by using the
previously encoded frame of the same frame type. For the
initial values of time complexity, nine video sequences
(“Akiyo,” “Bridge,” “Bus,” “Irene,” “Foreman,” “Deadline,”
“Mobile,” “Tempete,” and “Waterfall”) are encoded and the
averaged time complexity will be used. The results of the
average time to encode those videos are 120 ms for I frame,
290 ms for P frame, and 360 ms for B frame. Only the ratios
of time complexity between different frame types (or slice
types) have effect on the decision of scheduling. As a result,
the initial values shall be good enough even if a different
processor is used to encode videos.

The procedure of the priority selection by using coding
complexity and temporal influence is summarized by the
following example, as shown in Fig. 11.

All the frames of each GOP are rearranged according to
the frame dependence and temporal influence. For example,
the encoding order for the frames in GOP1 is “I4 P7 P10 B5
B6 B8 BY.”

In order to select a frame with priority, temporal
complexity of each GOP is calculated as follows, where t,
stands for the time complexity for frame x. According to the
temporal complexity calculation shown below, GOP1 is the
bottleneck and its first frame, I4, is selected to have priority
to be assigned a thread at the next stage:

GOPO :

tro +tps +tp + tpe = 120 + 290 + 360 + 360 = 1,130,

GOP1:

try +tpr +tpio + tes +tps + tes + tpy = 120 + 290 + 290
+ 360 + 360 + 360 + 360 = 2,140,

GOP2:

trin + tpis + tp2 = 120 + 290 + 360 = 770.

After that, temporal complexity of GOPI is calculated
again. The GOP with most temporal complexity is chosen to
find another frame with priority. As shown below, GOP1 is
still the bottleneck and P7 is chosen to have priority. The
steps above are repeated until all the frames are processed:
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Fig. 12. The flowchart of the thread priority assignment.

GOPO :

tro +tps +tp +tpe = 120 4 290 + 360 + 360 = 1,130,

GOP1:

tpr +tpio +tps + tps + ts + tpg = 290 + 290 + 360
+ 360 + 360 + 360 = 2,020,

GOP2:

trin + tpis + tpz = 120 + 290 + 360 = 770.

3.2.2 Thread Priority Assignment for Scheduling
At the previous stage of frame priority selection, the frame
with priority will be recognized. In this section, thread
priority assignment for scheduling is proposed to assign a
thread to implement the coding. The flowchart of the thread
priority assignment is shown in Fig. 12. Time occupation of
each thread is determined first, and then, a thread with
minimal temporal burden is chosen. The details of these
steps are as follows.

The proposed approach relies on the time occupation of a
thread, which is defined as the indication of the end time
t1.ena Of the last frame [ coded by this thread shown as follows:

TrL,erld = tl,elapsed + tl,spcnt~ (6)

In (6), Tyena is the end time of thread n, i.e., the time
occupation of thread n. ¢ cjuspeq is the elapsed time before the
last frame [ starts to encode and ¢ ., is the temporal
duration to encode the last frame [. The start time of
encoding the last frame depends on the second last frame
and the reference frame. In other words, the last frame can
start its encoding after the encoding of the second last frame
and the reference frame is completed. Therefore, ¢ ¢jqspea CAN
be expressed as follows:

tl.clapsc - Max(tlfl,cnd’ tr’.end)~ (7)

In (7), ti—1 ena is the end time of the second last frame, and
t,ena 1S the end time of the reference frame.

We continue to use the GOP1 in Section 3.2.1 to explain
the concept of time occupation of a thread. The coding
index of the GOP1 is 14 B5 B6 P7 B8 B9 P10, and the
encoding order of these frames in each thread is assumed as
the ordering in Fig. 13. The time occupation of thread 0 and
1 can be calculated as follows:

VTV vy
Sequence: 14 B5 B6 P7 BS B9 P10
A A A

Threado [ 14 ] 5]

Fig. 13. An example to calculate the time occupation of a thread.

Thread 1
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Fig. 14. The screen shots of the 20 videos used in the first test sequence
in Section 4.

T0.end = tB3.clapsed + tB8 spent = Max(t s ends tP7.ends tP10,end)
+ tBS,spcnt
= tB5,f:nd + tBS,spent = Max(tPIU,enda t]4,end> tP?,end)
+ tBS,spent + tBS,spent

== t[4,spem‘, + tP7,spent + tPlO,spent + tBSﬁpent + tBSspent
=120 + 290 + 290 + 360 + 360 = 1,420,

®)

T\ end = tB9.clapsed + tB9,spent = Max(tBs.ends tP7.ends tP10,end)
+ tBy.spent
= tB6.end + tB9,spent = Max(t1send, LP7.end)
+ tB6,spent + T B9, spent
=+ =T spent T tP7spent T P10,spent + LB6,spent T+ EB9spent
=120 4290 + 290 + 360 + 360 = 1,420.

(9)

The thread priority assignment for scheduling is based
on the time occupation of a thread defined above. The
key concept is to determine which thread shall experience
the least temporal burden if the selected frame from the
frame priority selection step would have been assigned to
that thread.

As also shown in (10), the temporal burden 7}, .. for
thread ¢ is defined as the time occupation if the selected
frame is assigned to the thread and the new time occupation
to complete the new assignment is greater than the current
time occupation. If the new time occupation is equal to the
current time occupation, the temporal burden is defined as
zero. The thread with the minimal temporal burden will be
chosen to implement the coding of the selected frame:

. {0, if Ti,/‘,end < Ti,enda

Y onds  Otherwise.

Ti:u,'rden - (10)
In (10), T}, is the new time occupation of thread i, i.e.,
the new time occupation if the selected frame is imple-

mented in thread <.

4 EXPERIMENTAL RESULTS

The first test sequence of 1,268 CIF frames is composed of
“Bowing,” “Container,” “Flower,” “Hall,” “Google Map,”
“Highway,” “Ice,” “Mother-daughter,” “News,” *Silent,”
“Soccer,” “Students,” “Coastguard,” “Star Wars,” “Crew,”
“Football,” “Husky,” “Harbour,” “Nissin Noodles,” and
“City.” Their screen shots are shown in Fig. 14. There are
30 abrupt scene changes and 4 gradual scene changes in
this sequence. The video sequence in the following
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TABLE 1
The Accuracy Comparison between the Proposed Method and
the Pixel-Based Method

Abrupt scene change Gradual scene change

Accuracy

Correct | False Lost Correct | False Lost

Proposed method 30 0 0 3 0 1 97%

Pixel-based method 29 0 1 0 0 4 85%

simulations is encoded by the x264 software [14], which
can generate bit streams conforming to the H.264/MPEG-4
AVC standard.

4.1 Experimental Results of Adaptive GOP

Structure

The determination of adaptive GOP structure is achieved by
the proposed scene change detection algorithm described in
Section 3.1, and the first frame of each new scene is encoded
as an IDR key frame.

First, the performance of the proposed abrupt and
gradual scene change detection algorithm will be examined
and compared with the pixel-based approach [8]. Besides
numbers of correct detection and false alarm, a performance
metric, accuracy, is defined as follows:

Accuracy =
Correct Detection
Correct Detection + Lost Detection + False Detection

(11)

In (11), false detection denotes the number of the false
scene changes decided by an algorithm, and lost detection
is the number of the actual scene changes that are not
detected correctly. As shown in Table 1, the accuracy
measurement of the proposed abrupt and gradual scene
change detection algorithm is 97 percent, while that of the
pixel-based approach is 85 percent. The performance of the
proposed algorithm is quite well for both abrupt and
gradual scene changes. The pixel-based approach also
shows good ability in abrupt scene change detection;
however, it cannot detect the gradual scene changes and
its computation effort is greater than the block-based
approach of the proposed scheme.

In terms of coding efficiency, we consider the
GOP structure of the same size, the adaptive GOP structure
with pixel-based scene change detection algorithm [8], and
the adaptive GOP structure with the proposed scene change
detection scheme. For the GOP structure of the same size,
several sizes (4, 8, 16, 32, and 37) are simulated. The average
GOP size of the proposed algorithm is about 37 frames.
According to the rate-quality results shown in Fig. 15, the
coding efficiency of the approaches with adaptive
GOP structure is better than that of the approaches with
fixed GOP sizes. It can also be noticed that the coding
efficiency is not affected by the gradual scene changes
much. The reason is that even though gradual scene
changes are important to several video processing technol-
ogies, such as video indexing and retrieval, the transition of
gradual scene changes makes little difference if a key frame
is used or not.
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Fig. 15. Rate-quality performance comparison between the adaptive
GOP structure and the fixed GOP structure.

[ <k SR

Fig. 16. The screen shots of “MerryGoAround,” “SpinningWheel,”
and “Aurora.”

TABLE 2
The Detection Performance of the Proposed Scheme

Abrupt scene change Gradual scene change
Correct False Lost | Correct False Lost | Accuracy
[ar | e 0 0 5 0 1| 986%
[ 4ctF 10 0 0 1 1 1 84.6%

To see the performance of the proposed scene change
scheme, two more test sequences are composed at CIF and
4ACIF sizes. The test sequence at CIF format is composed by
“Bridge,” “Coastguard,” “Container,” “Flower,” “Foreman,”
“Hall,” “Highway,” “News,” “Paris,” “Silent,” “Stefan,”
“Tempete,” “Waterfall,” “MerryGoAround,” “SpinningWheel,”
and “Aurora.” Each of the videos appears in the composed
video multiple times with random orders. There are 70 scene
changes in total and 64 of them are abrupt scene changes.
“MerryGoAround,” “SpinningWheel,” and “Aurora” are se-
quences with rotating objects and luminance variation.
Their screen shots are shown in Fig. 16. For the test
sequence at 4CIF resolution, there are 10 abrupt scene
changes and two gradual scene changes. It is composed of
“City,” “Crew,” “Harbor,” “Ice,” “Soccer,” “MerryGoAround,”
“SpinningWheel,” and “Aurora.”

The results are shown in Table 2. By using the same
threshold parameters determined according to the training
sequence in Section 3, the detection performance is good for
videos at CIF and 4CIF. The object rotation in sequences
“MerryGoAround” and “SpinningWheel” does not affect the
detection results of abrupt scene changes, nor does the
luminance condition in “Aurora.”

4.2 Simulation Results of Frame-Level Parallel
Scheduling

In this section, four parallel scheduling algorithms are

simulated for performance comparison.

The first one is the proposed balanced parallel
scheduling algorithm according to the ordering of inter-
frame prediction, referred as the “BPSA-OIFP” for easier
discussion below. The second one “BPSA-CCTI” is
another proposed balanced parallel scheduling algorithm
according to the coding complexity and temporal influ-
ence. The third approach is the “Random” which assigns
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—+—Intum —e—Random —&—BPSAOIFP —+—BPSACCTI

0 20 120 140

4 60 80 100
The Number of Threads

Fig. 17. Speedup factors for different scheduling methods.

TABLE 3
The Encoding Time Comparison with Respective to the Optimal
Solution by the Exhaustive Search

Sequence
IIIPIPIPPP|IIIBPIBPBP
In Turn 1.69 sec | 1.90 sec
Random 1.69 sec | 1.54 sec
Method BPSA-OIFP 1.52 sec | 1.54 sec
BPSA-CCTI 1.06 sec | 1.25sec
Exhaustive Search | 1.06 sec | 1.25sec

frames to different threads randomly, and the fourth one
“In turn” assigns frames to different threads in turn.

4.2.1 Speedup Analysis

The performance of the different parallel approaches is
evaluated according to the speedup factor defined as follows:

Encoding time for a single thread
Speedup,, =

Encoding time for n threads (12)

The speedup performance of the four methods is shown
in Fig. 17. The proposed “BPSA-CCTI” shows rather good
load balance early on, as we can see that the slope before
45 threads is almost one. If the slope is equal to one, it
means that the multiple threads are utilized completely.
The speedup factor of the proposed “BPSA-CCTI” saturates
at around 46. The reason for that is the frame dependence,
which limits the thread usage when the number of threads
is large enough.

To have a better understanding of the load-balancing
capacity of the four approaches, exhaustive search is
performed on two shorter video sequences so that the
search can be finished within reasonable time.

The encoding time with respect to different sequences
and scheduling methods is shown in Table 3. The
thread number is two. The estimation of the encoding time
of I-frame, P-frame, and B-frame is 120, 290, and 360 ms,
respectively, as also described in Section 3.2. The encoding
time of the proposed “BPSA-CCTI” is the same as the
encoding time according to the scheduling done by the
exhaustive search method. To reach the scheduling decision
of 10 frames only, the time required for the exhaustive
search method is already 846 times more than the time for
the “BPSA-CCTI” algorithm. The computation complexity
to complete the developed parallel scheduling can be
considered as a negligible overhead, since only simple
addition and comparison operations are required.

4.2.2 Encoding End Time of Each Frame

In the case of eight threads, the encoding end time of each
frame is arranged according to the display order of frames
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Fig. 18. Encoding end time of each frame with eight threads.
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Fig. 19. Encoding end time of each frame with eight threads. Frame
type: | and P only.
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Fig. 20. Dynamic buffer size to encode the test sequence with respect to
the four scheduling approaches.

in Fig. 18. The end time curves of the “In turn” and the
“Random” methods are linear with respective to display
order. Therefore, the efficiency of parallel processing
suffers. For the curve of the “BPSA-CCTI,” the curve shows
zigzag pattern and the time to complete the coding of every
frame is much shorter.

If the frame type during video encoding is restricted to
either I frame or P frame, the encoding end time will
increase considerably for the methods “In turn” and
“Random.” However, the end time is not affected much in
the case of the methods “BPSA-CCTI” and “BPSA-OIFP,” as
shown in Fig. 19.

4.2.3 Dynamic Buffer Size

“Dynamic buffer size” means the buffer capacity required
to store the encoded frames before they are pushed out of
the encoder.

From the results in Fig. 20, the “In turn” and “Random”
methods only need a small buffer, while the “BPSA-CCTT”
method requires a larger buffer size for some period of the
time. Though good parallelism usually pays the price of
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Fig. 21. Encoding end time of each frame with eight threads. The batch
processing is applied.
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Fig. 22. Dynamic buffer size to encode the test sequence with respect to
the four scheduling approaches. The batch processing is applied.

higher resource consumption, the buffer requirement of the
“BPSA-OIFP” method is much less.

4.2.4 Recommended Methods and Batch Processing

From the descriptions and simulations above, the parallel
scheduling approach of the “BPSA-CCTI” shows the best
speedup performance, but a larger buffer is required to
complete the coding. If the bottleneck of video coding is
coding speed, the “BPSA-CCTI” method is the recom-
mended approach. However, if the buffer size and coding
speed are equally important, the “BPSA-OIFP” will be the
better candidate.

Nevertheless, another trade-off can be made by encod-
ing the frames in batches. An experiment is conducted in
a processor with eight threads. Every time a batch of
200 frames is scheduled. From the results shown in
Figs. 21 and 22, the buffer size is reduced, when compared
with the nonbatch processing. Therefore, if the video
sequence is very long and the capability of hardware is
not sufficient, the proposed algorithm with batch proces-
sing can present a good solution as well.

5 CONCLUSIONS

In the paper, the parallel processing for video encoding
with adaptive GOP structure is proposed. There are two
contributions. The major contribution of this paper is the
balanced frame-level parallel scheduling algorithms that
first determine frame priority, followed by the thread
priority assignment. The other contribution is the block-
based abrupt and gradual scene change detection algo-
rithm, which can detect both types of scene changes at less
computation effort. The adaptive GOP structure is formed
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according to the scene structure. There are two variations to
determine the frame priority: “priority selection by using
coding complexity and temporal influence” and “priority
selection by using prediction structure.” The first one can
take advantage of multiple threads so well that its
performance is the same as the speedup performance of
the exhaustive search scheduling, according to the experi-
mental results. The second approach requires much less
buffer. In addition, the batch processing can also help
reduce the required buffer overhead if the buffer size shall
be taken into account.

In this paper, the GOP structure is determined without
the consideration of parallel scheduling. Therefore, a simple
and efficient approach is developed so that it will not be the
computational bottleneck. A potential future work is to
take advantage of multiple cores to speed up scene change
detection such that more sophisticated algorithms with
better performance of scene change detection can be
considered at the same time of encoding videos.
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