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ABSTRACT. In this paper, we will obtain new algebraic transformations of the 2F1-
hypergeometric functions. The main novelty in our approach is the interpretation of iden-
tities among 2F1-hypergeometric functions as identities among automorphic forms on dif-
ferent Shimura curves.

1. INTRODUCTION

For a real number a and a nonnegative integer n, let

(a)n =

{
1, if n = 0,

a(a+ 1) . . . (a+ n− 1), if n ≥ 1,

be the Pochhammer symbol. Recall that, for real numbers a, b, c with c 6= 0,−1,−2, . . .,
the 2F1-hypergeometric function is defined by

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn

for z ∈ C with |z| < 1. The hypergeometric function is a solution of the differential
equation

θ(θ + c− 1)F − z(θ + a)(θ + b)F = 0, θ = z
d

dz
.

Hypergeometric functions arise naturally in many branches of mathematics. For exam-
ple, the periods ∫ ∞

1

dx√
x(x− 1)(x− λ)

of the Legendre family of elliptic curves Eλ : y2 = x(x− 1)(x− λ) can be expressed as

2F1

(
1

2
,

1

2
; 1;λ

)
.

Also, it is well-known that

E4(τ) = 2F1

(
1

12
,

5

12
; 1;

1728

j(τ)

)4

where E4(τ) is the Eisenstein series of weight 4 on SL(2,Z) and j(τ) is the elliptic j-
function.
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In this paper, we are concerned with algebraic transformations of hypergeometric func-
tions, that is, identities of the form

(1) 2F1(a, b; c; z) = R(z)2F1 (a′, b′; c′;S(z))

with suitable parameters a, b, c, a′, b′, c′ and algebraic functions R(z) and S(z). If w =
R(z) is of degree m over the field C(z) or if z is of degree m over the field C(w), we say
the algebraic transformation has degree m. Two examples of algebraic transformations of
degree 1 are given by

2F1(a, b; c; z) = (1−z)c−a−b2F1(c−a, c−b; c; z) = (1−z)−a2F1

(
a, c− b; c; z

z − 1

)
.

These identities can be easily proved using the well-known result in the classical analy-
sis that a Fuchsian differential equation with precisely 3 singularities at 0, 1, and ∞ is
completely determined by the local exponents at these three points.

Beyond transformations of degree 1, one of the simplest examples is Kummer’s qua-
dratic transformation

2F1

(
2a, 2b; a+ b+

1

2
; z

)
= 2F1

(
a, b; a+ b+

1

2
; 4z(1− z)

)
,

valid for any real numbers a, b with a + b + 1/2 6= 0,−1,−2, . . .. In [3], Goursat gave
more than 100 algebraic transformations of degrees 2, 3, 4, 6. One such example is

2F1

(
a, a+

1

3
;

1

2
;
z(9− 8z)2

(4z − 3)3

)
=
(

1 +
z

3

)3a
2F1

(
3a, a+

1

6
;

1

2
; z

)
of degree 3. (See Entry (96) on Page 132 of [3].) More recently, Vidūnas [10] gave dozens
of new algebraic transformations of degrees 6, 8, 9, 10, 12. For example, he showed that if
we set β = ±

√
−2,

(2) S(z) =
4z(z − 1)(8βz + 7− 4β)8

(2048βz3 − 3072βz2 − 3264z2 + 912βz + 3264z + 56β − 17)3
,

and

R(z) =

(
1 +

16

9
(4− 17β)z − 64

243
(167− 136β)z2 +

2048

6561
(112− 17β)z3

)−1/16
,

then

2F1

(
5

24
,

13

24
;

7

8
; z

)
= R(z)2F1

(
1

48
,

17

48
;

7

8
;S(z)

)
,

which is a transformation of degree 10. (See (32) of [10].) Vidūnas’ examples usually
involve Gröbner-basis computation. This is perhaps one of the reasons why Goursat could
not find these transformations.

In this paper, we will present several new algebraic transformations. For example, one
of our favorite identities is

2F1

(
1

20
,

1

4
;

4

5
;

64z(1− z − z2)5

(1− z2)(1 + 4z − z2)5

)
= (1− z2)1/20(1 + 4z − z2)1/42F1

(
3

10
,

2

5
;

9

10
; z2
)
.

(3)

The main novelty in our approach is the interpretation of 2F1-hypergeometric functions
as automorphic forms on Shimura curves. Then proving identities such as the one above
amounts to showing two certain automorphic forms on two Shimura curves are equal. This
point of view is especially useful in determining the function R(z) in (1). We will review
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the basic definitions regarding Shimura curves and their automorphic forms in the next
section.

2. PRELIMINARIES

The materials in this section are mostly taken from [11].

Quaternion algebras. A quaternion algebra B over a field K is a central simple algebra
of dimension 4 over K. (Here central means that the center of the algebra is K and simple
means that B has no proper nontrivial two-sided ideals.) If the characteristic of K is not 2,
then one can show that there are elements i and j in B and a, b ∈ K× such that

i2 = a, j2 = b, ij = −ji,

andB = K+Ki+Kj+Kij. In this case, we denote this algebra by
(
a,b
K

)
. For example,

we have M(2,K) '
(
1,1
K

)
and

(−1,−1
R
)

is the set of Hamilton’s quaternions. Moreover,
for α = a0 + a1i+ a2j + a3ij ∈ B, we set α = a0− a1i− a2j − a3ij. Then the reduced
trace tr(α) is defined to be α+α = 2a0 ∈ K and the reduced norm n(α) is defined to be
αα = a20 − a21a− a22b+ a23ab ∈ K.

If K = C, then up to isomorphisms, there is only one quaternion algebra over C, which
is M(2,C). If K = R or a non-Archimedean local field, then up to isomorphism, there are
only two quaternion algebras. One is M(2,K) and the other is a division algebra.

Now assume that K is a number field. Let v be a place of K and Kv be the completion
of K with respect to v. If the localization B ⊗K Kv is isomorphic to M(2,Kv), we say
B splits at v. If B ⊗K Kv is isomorphic to a division algebra, we say B ramifies at v. It is
known that the number of ramified places is finite and in fact an even integer. The product
of finite ramified places is called the discriminant of the quaternion algebra.

Still assume that K is a number field. Let R be its ring of integers. An order in B is
a finite generated R-module that is also a ring with unity containing a basis for B. An
order is maximal if it is not properly contained in another order. An Eichler order is the
intersection of two maximal orders. For example, if B = M(2,Q), then M(2,Z) is a
maximal order and

(
Z Z
NZ Z

)
= M(2,Z) ∩ ( 1 0

0 N )M(2,Z) ( 1 0
0 N )

−1 is an Eichler order.

Shimura curves. To define a Shimura curve, we assume that K is a totally real number
field and take a quaternion algebra B over K that splits at exactly one infinite place, that
is,

B ⊗Q R 'M(2,R)×H[K:Q]−1,

where H is Hamilton’s quaternion algebra
(−1,−1

R
)
. Then, up to conjugation, there is a

unique embedding ι of B into M(2,R). Note that we have n(α) = det ι(α) for all α ∈ B.
Let Ø be an order and Ø∗1 = {α ∈ Ø : n(α) = 1} be the norm-one group of Ø. Then

the image Γ(Ø) of Ø∗1 under the embedding ι is a discrete subgroup of SL(2,R). Let Γ(Ø)
act on the upper half-plane H in the usual manner(

a b
c d

)
: τ 7−→ aτ + b

cτ + d
.

Then the quotient space Γ(Ø)\H is called the Shimura curve associated to Ø. For example,
if B = M(2,Q) and Ø = M(2,Z), then Γ(Ø) = SL(2,Z) and Γ(Ø)\H is just the usual
modular curve Y0(1). Thus, Shimura curves are generalizations of classical modular curves
and they are moduli spaces of certain abelian varieties with quaternionic multiplication [5].
In a broader setting, if Γ is any discrete subgroup of SL(2,R) commensurable with Γ(Ø),
then the quotient space Γ\H will also be called a Shimura curve.
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An element γ of Γ(Ø) is parabolic, elliptic, or hyperbolic, according to whether |tr(γ)| =
2, |tr(γ)| < 2, or |tr(γ)| > 2. The fixed point of a parabolic element is called a cusp. This
can appear only whenB = M(2,Q). The fixed point τ of an elliptic element in H is called
an elliptic point of order n, where n is the order of the isotropy subgroup of τ in Γ(Ø)/±1.

Note that if B 6= M(2,Q), then the quotient space Γ(Ø)\H is a compact Riemann
surface, which we denote by X(Ø). If B = M(2,Q), we compactify the Riemann surface
Γ(Ø)\H by adding cusps and the resulting compact surface will also be denoted by X(Ø).

Now suppose that the compact Riemann surface X(Ø) has genus g. Then a classical
result says that there exist hyperbolic elements A1, . . . , Ag , B1, . . . , Bg , and elliptic or
parabolic elements C1, . . . , Cr that generate Γ(Ø)/± 1 with the single relation

[A1, B1] . . . [Ag, Bg]C1 . . . Cr = Id,

where [Ai, Bi] = AiBiA
−1
i B−1i is the commutator of Ai and Bi. (See [4, Chapter 4].)

We let (g; e1, . . . , er) be the signature of X(Ø).

Triangle groups. Suppose that a Shimura curve X(Ø) has signature (0; e1, e2, e3). Then
we say Γ(Ø) is an arithmetic triangle group. The complete lists of all arithmetic triangle
groups and their commensurability classes were determined by Takeuchi [7, 8].

If we cut each fundamental domain of an arithmetic triangle group Γ(Ø) into 2 halves
in a suitable way, then the fundamental half-domains give a tessellation of the upper half-
plane H by congruent triangles with internal angles π/e1, π/e2, and π/e3. The follow-
ing figure shows the tessellation of the unit disc, which is conformally equivalent to H
through τ → (τ − i)/(τ + i), by fundamental half-domains of the arithmetic triangle
group (0; 2, 3, 7).

Here each triangle represents a fundamental half-domain. Any combination of a grey trian-
gle with a neighboring white triangle will be a fundamental domain for the triangle group
(0; 2, 3, 7). The triangle group (0; 2, 3, 7) and its associated Shimura curve have been stud-
ied in details in [2].

In general, for any discrete subgroup Γ of SL(R) such that Γ\H has finite volume, we
can define its signature in the same way. If the signature is (0; e1, e2, e3), then we say Γ
is a (hyperbolic) triangle group. (There are also notions of parabolic and elliptic triangle
groups, corresponding to tessellation of C and P1(C), respectively.)

Automorphic forms on Shimura curves. The definition of an automorphic form on Shimura
curves is the same as that of a modular form on classical modular curves.

For simplicity, we assume that B 6= M(2,Q) so that we do not need to consider cusps.
Then an automorphic form of weight k on Γ(Ø) is a holomorphic function f : H → C
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such that

(4) f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for all
(
a b
c d

)
∈ Γ(Ø) and all τ ∈ H. The space of automorphic forms of weight k on Γ(Ø)

will be denoted by Sk(Ø). Also, if a meromorphic function f : H → C satisfies (4) with
k = 0, we say f is an automorphic function. If X(Ø) has genus 0, we call an automorphic
function a Hauptmodul if it generates the field of automorphic functions on Γ(Ø).

Using the Riemann-Roch formula, one can calculate the dimension of Sk(Ø).

Proposition 1 ([6, Theorem 2.23]). Assume that B 6= M(2,Q). Suppose that the Shimura
curve X(Ø) associated to an order Ø in B has signature (g; e1, . . . , er). Then for even
integers k, we have

dimSk(Ø) =



0, if k < 0,

1, if k = 0,

g, if k = 2,

(k − 1)(g − 1) +

r∑
j=1

⌊
k

2

(
1− 1

ej

)⌋
, if k ≥ 4.

The dimension formula for the case B = M(2,Q) is slightly different.
In the case B = M(2,Q), there are many methods to construct modular forms, such

as Eisenstein series, theta series, the Dedekind eta function, and etc. In practice, most
explicit methods for modular curves rely on the Fourier expansions of modular forms and
modular functions, i.e., the expansions with respect to the local parameter at the cusp∞.
However, in the case B 6= M(2,Q), because of the lack of cusps on Shimura curves, very
few explicit methods are available for Shimura curves. One of the few methods is given by
the second author of the present paper.

One of the key ideas in [12] is the following characterization of Sk(Ø). Here we assume
that the quaternion algebra is not M(2,Q).

Proposition 2 ([12, Theorem 4, Propositions 1 and 6]). Assume that a Shimura curve X
has genus zero with elliptic points τ1, . . . , τr of order e1, . . . , er, respectively. Let t(τ) be
a Hauptmodul of X and set ai = t(τi), i = 1, . . . , r. For a positive even integer k ≥ 4, let

dk = dimSk(Ø) = 1− k +

r∑
j=1

⌊
k

2

(
1− 1

ej

)⌋
.

Then a basis for the space of automorphic forms of weight k on X is

t′(τ)k/2t(τ)j
r∏

i=1,ai 6=∞

(t(τ)− aj)−bk(1−1/e1)/2c , j = 0, . . . , dk − 1.

Moreover, the functions t′(τ)1/2 and τt′(τ)1/2, as functions of t, satisfy the differential
equation

f ′′ +Q(t)f = 0,

where

Q(t) =
1

4

r∑
j=1,aj 6=∞

1− 1/e2j
(t− aj)2

+

r∑
j=1,aj 6=∞

Bj
t− aj
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for some constants Bj . Moreover, if aj 6=∞ for all j, then the constants Bj satisfy
r∑
j=1

Bj =

r∑
j=1

(
ajBj +

1

4
(1− 1/e2j )

)
=

r∑
j=1

(
a2jBj +

1

2
aj(1− 1/e2j )

)
= 0.

Also, if ar =∞, then Bj satisfy
r−1∑
j=1

Bj = 0,

r−1∑
j=1

(
ajBj +

1

4
(1− 1/e2j )

)
=

1

4
(1− 1/e2r).

Remark 3. In [12], the differential equation f ′′ + Q(t)f = 0 is called the Schwarzian
differential equation associated to t because Q(t) is related to the Schwarzian derivative
by the relation

2Q(t)t′(τ)2 + {t, τ} = 0,

where

{t, τ} =
t′′′(τ)

t′(τ)
− 3

2

(
t′′(τ)

t′(τ)

)2

is the Schwarzian derivative. In general, in literature [1], if f is a thrice-differentiable
function of z, then

D(f, z) := − {f, z}
2f ′(z)2

is called the automorphic derivative associated to f and z. In the case f is an automorphic
function on a Shimura curve, then D(f, τ) is also an automorphic function. In particular,
if t is a Hauptmodul on a Shimura curve of genus 0, then Q(t) = D(t, τ) is a rational
function of t.

The upshot of this result is that it is often possible to determine the differential equation
without explicitly constructing a Hauptmodul. For example, if Γ(Ø) is a triangle group
with signature (0; e1, e2, e3), then there always exists a (unique) Hauptmodul t with a1 =
0, a2 = 1, and a3 =∞. Then the relations between Bj uniquely determine the differential
equation. In general, one can usually use coverings between Shimura curves of genus 0
to determine the differential equation. This is done by the first author [9] of the present
paper for many Shimura curves of genus 0 associated to orders in quaternion algebras over
Q. Once the differential equation is determined, one can express automorphic forms in
terms of t-series and then study properties of automorphic forms using these t-series. For
example, in [12] the second author devised a method to compute Hecke operators on these
t-series.

In the case of triangle groups, since the number of singularities of the differential equa-
tion is 3, the differential equation is essentially a hypergeometric differential equation.

Proposition 4 ([12, Theorem 9]). Assume that a Shimura curveX has signature (0; e1, e2, e3).
Let t(τ) be the Hauptmodul of X with values 0, 1, and ∞ at the elliptic points of order
e1, e2, and e3, respectively. Let k ≥ 4 be an even integer. Then a basis for the space of
automorphic forms of weight k on X is given by

t{k(1−1/e1)/2}(1− t){k(1−1/e2)/2}tj
(
2F1(a, b; c; t) + Ct1/e12F1(a′, b′, c′; t)

)k
,

j = 0, . . . , bk(1− 1/e1)/2c+ bk(1− 1/e2)/2c+ bk(1− 1/e3)/2c−k, for some constant
C, where for a rational number x, we let {x} denote the fractional part of x,

a =
1

2

(
1− 1

e1
− 1

e2
− 1

e3

)
, b = a+

1

e3
, c = 1− 1

e1
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and
a′ = a+

1

e1
, b′ = b+

1

e1
, c′ = c+

2

e1
.

For general Shimura curves of genus 0, the following properties of automorphic deriva-
tives are very useful in determining the Schwarzian differential equation associated to a
Hauptmodul.

Proposition 5. Automorphic derivatives have the following properties.
(1) D((az + b)/(cz + d), z) = 0 for all

(
a b
c d

)
∈ GL(2,C).

(2) D(g ◦ f, z) = D(g, f(z)) +D(f, z)/(dg/df)2.

Proposition 6. Let z(τ) be a Hauptmodul for a Shimura curve X(Ø) of genus 0. Let
R(x) ∈ C(x) be the rational function such that the automorphic derivative Q(z) =
D(z, τ) is equal to R(z). Assume that γ is an element of SL(2,R) normalizing the norm-
one group of Ø and let σ be the automorphism of X(Ø) induced by γ. If σ : z 7→
(az + b)/(cz + d), then R(x) satisfies

(ad− bc)2

(cx+ d)4
R

(
ax+ b

cx+ d

)
= R(x).

Proof. We shall compute D(z(γτ), τ) in two ways. By Proposition 5, we have

D(z(γτ), τ) = D

(
az(τ) + b

cz(τ) + d
, z(τ)

)
+

D(z(τ), τ)

(dz(γτ)/dz(τ))2
= 0 +

(cz + d)4R(z)

(ad− bc)2
.

On the other hand, by the same proposition, we also have

D(z(γτ), τ) = D(z(γτ), γτ) +
D(γτ, τ)

(dz(γτ)/dγτ)2
= R(z(γτ)) = R

(
az + b

cz + d

)
.

Comparing the two expressions, we get the formula. �

Algebraic transformations of hypergeometric functions. Consider the following situa-
tion. Suppose that Γ1 < Γ2 are two arithmetic triangle groups with Hauptmoduls z1 and
z2, respectively. Since any automorphic function on Γ2 is also an automorphic function
on Γ1, we have z2 = S(z1) for some S(x) ∈ C(x). Likewise, if f1 and f2 are two auto-
morphic forms of the same weight k on Γ1 and Γ2, respectively, then the ratio f1/f2 is an
automorphic function on Γ1 and hence is equal to R(z1) for some R(x) ∈ C(x). In view
of Proposition 4, after taking the kth roots of the two sides of f1/f2 = R(z1), we obtain an
algebraic transformation of hypergeometric function. This explains the existence of Kum-
mer’s, Goursat’s and Vidūnas’ transformations. (Of course, the triangle groups appearing
in their transformations may not be arithmetic, but the argument above is still valid.)

More generally, if Γ1 and Γ2 are two commensurable arithmetic triangle groups such
that the Shimura curve associated to Γ = Γ1 ∩ Γ2 has genus 0. Let z be a Hauptmodul on
Γ. Then each of z1 and z2 is a rational function of z. Similarly, the ratio f1/f2 is also a
rational function of z. Again, Proposition 4 yields an algebraic transformation of the form

2F1 (a1, b1; c1;S1(z)) = R(z)2F1 (a2, b2; c2;S2(z))

for some rational functions S1(z) and S2(z) and some algebraic function R(z). This is the
theory behind (3) and other algebraic transformations given in the paper.

Definition 7. Let S(z) ∈ C(z) be a rational function. If the finite covering P1(C) →
P1(C) defined by S : z → S(z) is ramified at most at three points 0, 1, and∞, then S is
called a Belyi function.
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In practice, the Belyi functions S1(z) and S2(z) can be determined by the ramifica-
tion data of the coverings of Shimura curves. The function R(z) can be determined by
Propositions 2 and 4.

We now obtain algebraic transformations of hypergeometric functions using the above
idea. Note that according to [8], arithmetic triangle groups fall in 19 commensurability
classes. The first class in his list corresponds to classical modular curves. In this case, it
is easier to use classical modular forms to derive identities. We will not discuss this case
here. Identities arising from Classes II, V, and XII are special cases of a family of identities,
and so are identities from Classes IV, VIII, XI, XIII, XV, and XVII. These cases will be
treated in a later section. Here we first consider Class III in Section 3 and Class VI in
Section 4. (There are no identities from Classes IX and XIX since these classes consist of
a single group. Also, identities from Classes VII, XIV, XVI, and XVIII are just Kummer’s
quadratic transformations.)

3. ALGEBRAIC TRANSFORMATIONS ASSOCIATED TO CLASS III

According to [8], Takeuchi’s Class III of commensurable arithmetic triangle groups has
the following subgroup diagram. Here because all groups involved have genus zero, we
omit the genus information in the signatures of the groups.

(2, 6, 8) (2, 3, 8)

(4, 6, 6) (3, 8, 8) (3, 3, 4) (2, 4, 8)

(4, 4, 4) (2, 8, 8)

(4, 8, 8)

2

H
HHH

HH2

�
���

��

10
2

H
HHH

HH3

3

��
���� 2

2

2

The main goal in this section is to prove an algebraic transformation associated to the pair
of triangle groups (4, 6, 6) and (4, 4, 4).

Theorem 1. Let α be a root of x2 + 3 = 0 and β a root of x2 + 2 = 0. We have

(1 + z)1/8(1− 3z)1/8

(1 + αz)5/4
2F1

(
5

24
,

3

8
;

3

4
;

12αz(1− z2)(1− 9z2)

(1 + αz)6

)
=

1

(1 + (4 + 2β)z − (1 + 2β)z2)1/2
2F1

(
1

8
,

3

8
;

3

4
;R(z)

)
,

(5)

and

(1− z)1/4(1 + z)5/8(1− 3z)1/4(1 + 3z)5/8

(1 + αz)11/4
2F1

(
11

24
,

5

8
;

5

4
;

12αz(1− z2)(1− 9z2)

(1 + αz)6

)
=

(1 + (−7 + 4β)z2/3)

(1 + (4 + 2β)z − (1 + 2β)z2)3/2
2F1

(
3

8
,

5

8
;

5

4
;R(z)

)
(6)



HYPERGEOMETRIC FUNCTIONS 9

where

R(z) = − 4(1 + β)4z(1 + (−7 + 4β)z2/3)4

(1 + z)(1− 3z)(1 + (4 + 2β)z − (1 + 2β)z2)4
.

We first determine the signatures of the intersections.

Lemma 8. We have

(2, 6, 8) (2, 3, 8)

Γ1 = (4, 6, 6) Γ2 = (3, 8, 8) Γ3 = (3, 3, 4) (2, 4, 8)

Γ5 = (3, 4, 3, 4) Γ4 = (4, 4, 4) (2, 8, 8)

Γ6 = (46) (4, 8, 8)

2

H
HHH

HH
2

�
���

��

10
2

H
HHH

HH3∗

HHH
HHH

2
2

���
���

10
3

���
���

2
2

3

���
���

10
2

Moreover, the group of signature (46) is a normal subgroup of the group of signature
(3, 4, 3, 4). (Here (46) is a shorthand for (4, 4, 4, 4, 4, 4).)

Proof. Let Γ2 = (3, 8, 8) and Γ′2 be its commutator subgroup. From the group presentation

Γ2 ' 〈γ1, γ2 : γ31 , γ
8
2 , (γ1γ2)8〉

for Γ2, we know that Γ2/Γ
′
2 is cyclic of order 8. Thus, Γ2 has exactly one subgroup

of index 2, which must be the common intersection of the groups (4, 6, 6), (3, 8, 8) and
(3, 3, 4). The signature of this subgroup can be easily determined by observing that a
covering of degree 2 from a Shimura curve to the Shimura curve associated to (3, 8, 8)
can only ramify at the two elliptic points of order 8. We find that the signature must be
(3, 4, 3, 4).

We next observe that the commutator subgroup Γ′3 of the group Γ3 = (3, 3, 4) is cyclic
of order 3. Thus, Γ′3 is a normal subgroup of index 3 in Γ3. This Γ′3 must be the same as
the group of signature (4, 4, 4). If Γ′3 6= (4, 4, 4), then Γ′3 ∩ (4, 4, 4) is a normal subgroup
of (4, 4, 4) of index 3, but the group (4, 4, 4) cannot have a normal subgroup of index 3.
We next determine the signature of the intersection of Γ4 = (4, 4, 4) and Γ5 = (3, 4, 3, 4).

Let Xj denote the Shimura curve associated to the group Γj . Since Γ4 is a normal
subgroup of Γ3 of index 3, the intersection Γ6 of Γ4 and Γ5 is a normal subgroup of index
3 in Γ5, which implies that the two elliptic points of order 4 of X5 must split completely
on X6. In view of the Riemann-Hurwitz formula, the two elliptic points of order 3 of X5

must be totally ramified. We conclude that Γ6 has signature (46).
In fact, the subgroup relations mentioned above can be visualized by the following

figures.
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Here the small triangles are (2, 3, 8)-triangles. Let G be the group of all symmetries of the
tessellation of the hyperbolic plane by the (4, 4, 4)-triangles and G0 be the subgroup gen-
erated by the reflections across the edges of (4, 4, 4)-triangles. Then G/G0 is isomorphic
to D3. The (3, 3, 4)-triangle group corresponds to the cyclic subgroup of order 3 in G/G0,
while the group (2, 3, 8) corresponds the whole group G/G0. Similarly, if we piece 12
copies of (2, 6, 8)-triangles around the vertex of inner angle π/4, we get a regular hexagon
with inner angles π/4. Let H be the group of all symmetries of the tessellation by this
regular hexagon and H0 be the subgroup generated by the reflections across the edges of
hexagons. Then H/H0 is isomorphic to D6. The unique cyclic subgroup of order 3 in
H/H0 corresponds to the group (3, 4, 3, 4). See the figures below.

(The groups (2, 6, 8), (4, 6, 6), and (3, 8, 8) correspond to the whole H/H0, the cyclic
subgroup of order 6 of H/H0, and one of the D3-subgroups, respectively.) �

Now let Γ1 = (4, 6, 6), Γ2 = (3, 8, 8), Γ3 = (3, 3, 4), Γ4 = (4, 4, 4), Γ5 = (3, 4, 3, 4),
and Γ6 = (46). Let Xj = X(Γj), j = 1, . . . , 6, be the corresponding Shimura curves.
Label the elliptic points on X1 by P4, P6, and P ′6, those on X2 by Q3, Q8, and Q′8, those
on X3 by R3, R′3, and R4, those on X4 by S4, S′4, S′′4 , and those on X5 by T3, T ′3, T4, and
T ′4 (with the subscripts carrying the obvious meaning) such that the ramification data are
given by

T3 T ′3 T4 T ′4 T3 T ′3 T4 T ′4

P6 P ′6 P4 Q3 Q8 Q′8

2 2 1 1 1 1 2 2
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T3 T ′3 T4 T ′4

R3 R′3 R4

1 3 3 3 1 3 3 3 1 1 4 4

Label the elliptic points of X6 by U1, . . . , U6 such that the rotation around the center
of the (46)-polygon by the angle π/3 permutes the six points cyclically. From the figures
above, we know that if we label the points such that U1 lies above T4, then the ramification
data for X6 → X5 are

U1 U3 U5 U2 U4 U6 U0 U ′0

T4 T ′4 T3 T ′3

1 1 1 1 1 1 3 3

where U0 and U ′0 are the centers of the (46)-polygons. (The reader is reminded that each
(46)-polygon represents only half of the fundamental domain for the Shimura curve X6.
Referring to the figure in the proof of the lemma above, a fundamental domain consists of
a grey (46)-polygon and a neighboring white (46)-polygon.)

Lemma 9. The two elliptic points of X6 at the two ends of a diagonal of a (46)-polygon
lie above the same elliptic point of X4. That is, labeling the elliptic points of X4 suitably,
we have

U1 U4 U2 U5 U3 U6

S4 S′4 S′′4

1 1 4 4 1 1 4 4 1 1 4 4

Moreover, if we choose Hauptmoduls zj(τ) for Xj , j = 1, . . . , 6, by requiring

z1(P4) = 0, z1(P6) = 1, z1(P ′6) =∞,
z2(Q8) = 0, z2(Q3) = 1, z2(Q′8) =∞,
z3(R4) = 0, z3(R3) = 1, z3(R′3) =∞,
z4(S4) = 0, z4(S′4) = 1, z4(S′′4 ) =∞,
z5(T4) = 0, z5(T3) = 1, z5(T ′4) =∞,
z6(U1) = 0, z6(U3) = 1, z6(U4) =∞,

then we have

z1 =
4z5

(1 + z5)2
, z2 = z25 ,

z3 =
3(ζ − ζ2)z4(1− z4)

(1 + ζz4)3
, z5 =

3(ζ − ζ2)z6(1− z26)

1− 9z26
,

z3 =
(28 + 16β)z5(1 + (−17 + 56β)z25/81)4

(1 + z5)(1 + (13 + 8β)z5/3− (25 + 32β)z25/9 + (17− 56β)z35/81)3
,
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and

z4 = − 4(1 + β)4z6(1 + (−7 + 4β)z26/3)4

(1 + z6)(1− 3z6)(1 + (4 + 2β)z6 − (1 + 2β)z26)4
,

where ζ is a 3rd root of unity and β is a root of x2 + 2 = 0.

Proof. The ramification data for the covering X5 → X2 and the assumption z2(Q3) =
z5(T3) = 1 imply that z2 = z25 and

z(T ′3) = −1.

The relation between z1 and z5 is easy to determine. We find z1 = 4z5/(1 + z5)2.
To determine the relation between z3 and z4, we recall from Lemma 8 that Γ4 is a

normal subgroup Γ3. Any element of Γ3 not in Γ4 induces an automorphism of order
3 on X4. Such an automorphism must permute the three elliptic points S4, S′4, and S′′4
cyclically. In term of the Hauptmodul z4, such an automorphism is either

σ : z4 7−→
−1

z4 − 1

or its square. Moreover, the fixed points of such an automorphism are the ramified points
in the coveringX4 → X3. That is, if we let S0 and S′0 be the points lying aboveR3 andR′3
respectively, then z4(S0), z4(S′0) ∈ {−ζ,−ζ2}, where ζ is a primitive 3rd root of unity.
Then from the ramification data, we easily deduce that z3 = (ζ−ζ2)z4(1−z24)/(1+ζz4)3.

To determine the relation between z5 and z6, we argue similarly as above. The tessel-
lation of the hyperbolic plane by Γ6 has a D6-symmetry, in addition to the symmetries
arising from the reflections across the edges of the (46)-polygons. This provides many
useful informations. For example, if we let τ be the reflection across the diagonal joining
U1 and U4, then τ induces an involution on X6, which, in terms of z6, is given by

τ : z6 7−→ −z6,
which implies that

z6(P5) = −1.

Furthermore, let ρ denote the rotation by angle π/3 around the center of the hexagon. Then

ρ : z6 7−→
cz6 + 1

−cz6 + c

for some zero constant c since ρ maps 1 to ∞ and ∞ to −1. In light of ρ2 : 0 → 1, we
conclude that c = 3 and

z6(U2) = 1/3, z6(U6) = −1/3.

It follows that z5 = Az6(1− z26)/(1− 9z26) for some A. This constant A has the property
that Ax(1− x2)− (1− 9x2) has repeated roots. We find A = ±3

√
−3. The choice of the

sign must be synchronized with the choice of the third root of unity in the relation between
z4 and z5. This will be done later.

We now come to the more complicated part of the lemma. Let π : X6 → X4 be the
covering of the Shimura curves. Let γ be an element of Γ5 not in Γ6. Then γ normalizes
both Γ4 and Γ6 and induces automorphisms ρ1 and ρ2 onX4 andX6, respectively. We may
assume that ρ2 = ρ2, where ρ permutes U1, . . . , U6 cyclically, as defined in the previous
paragraph. It is easy to check that π ◦ ρ1 = ρ2 ◦ π. Thus, π(U1), π(U3), and π(U5) are
three different elliptic points on X4. We label them by S4, S′4, and S′′4 , respectively. Let
V1, V2 be the two ramified points lying above S4. Now there are three possibilities

π−1(S4) = {U1, U2, V1, V2}, π−1(S4) = {U1, U4, V1, V2}, π−1(S4) = {U1, U6, V1, V2}.
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We will show that the correct one is {U1, U4, V1, V2}.
Let V ′j = ρ2(Vj) and V ′′j = ρ22(Vj) for j = 1, 2. If π−1(S4) = {U1, U2, V1, V2}, then

we have

z4 =
Bz6(1− 3z6)(z6 − z6(V1))4(z6 − z6(V2))4

(1 + z6)(1 + 3z6)(z6 − z6(V ′′1 ))4(z6 − z6(V ′′2 ))4

for some constant B. The values of z6(V1) and etc. must satisfy

Bx(1− 3x)(1− x/z6(V1))4(1− x/z6(V2))4

− (1 + x)(1 + 3x)(1− x/z6(V ′′1 ))4(1− x/z6(V ′′2 ))4

= C(1− x)(1− x/z6(V ′1))4(1− x/z6(V ′2))4
(7)

for some constantC. Now if we let p1(x) = 1+ax+bx2 = (1−x/z6(V1))(1−x/z6(V2)),
then (1−x/z6(V ′1))(1−x/z6(V ′2)) and (1−x/z6(V ′′1 )(1−x/z6(V ′′2 )) are scalar multiples
of

p2(x) = (1 + 3x)2p1

(
x− 1

3x+ 1

)
= (1− a+ b) + (6− 2a− 2b)x+ (9 + 3a+ b)x2,

p3(x) = (1− 3x)2p1

(
x+ 1

1− 3x

)
= (1 + a+ b) + (−6− 2a+ 2b)z + (9− 3a+ b)x2,

respectively. Substituting these into (7) and equating the coefficients in the two sides, we
find A = B = 0, a = −2, b = −3, but obviously this is invalid. This means that
π−1(S4) 6= {U1, U2, V1, V2}. Likewise, π−1(S4) 6= {U1, U6, V1, V2}. Thus, we must
have π−1(S4) = {U1, U4, V1, V2}. Now equating the coefficients in the two sides of

Bx(1 + ax+ bx2)4 − (1− x)(1 + 3x)p2(x)4 = C(1 + x)(1− 3x)p3(x)4

and excluding the invalid solutions, we get the claimed relation between z4 and z6. The
relation between z3 and z5 can be determined by the known relation between z3 and z4,
that between z4 and z6, and that between z5 and z6. This process also determines the
choices of the third roots of unity in the relation between z3 and z4 and that between z5
and z6. We omit the details. �

Lemma 10. The automorphic derivative Q(z6) = D(z6, τ) is equal to

15

64

(
1

z26
+

1

(1− z6)2
+

1

(1 + z6)2
+

1

(z6 − 1/3)2
+

1

(z6 + 1/3)2

)
+

45

128

(
1

1− z6
+

1

1 + z6
+

3

1− 3z6
+

3

1 + 3z6

)
.

(8)

Proof. By Proposition 2, the rational functionR(x) such that automorphicQ(z6) = D(z6, τ)
is equal to R(z6) is equal to

R(x) =
15

64

(
1

x2
+

1

(1− x)2
+

1

(1 + x)2
+

1

(x− 1/3)2
+

1

(x+ 1/3)2

)
+
B1

x
+

B2

x− 1
+

B3

x+ 1
+

B4

x− 1/3
+

B5

x+ 1/3

for some constants Bj satisfying

(9) B1 +B2 +B3 +B4 +B5 = 0, B2 −B3 +
1

3
B4 −

1

3
B5 +

15

16
= 0.
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Now the normalizer of Γ6 in SL(2,R) contains at least the group of signature (2, 6, 8). The
factor group, in terms of the Hauptmodul z6, is generated by σ : z6 7→ (3z6+1)/(−3z6+3)
and τ : z6 7→ −z6. By Proposition 6, R(x) satisfies

R(−x) = R(x),
144

(−3x+ 3)4
R

(
3x+ 1

−3x+ 3

)
= R(x).

Combining these informations with (9), we find

B1 = 0, B2 = B4 = − 45

128
, B3 = B5 =

45

128
.

This gives us the formula. �

We now prove the theorem.

Proof of Theorem 1. By Proposition 1, we have

dimS6(Γ1) = 1− 6 +

⌊
6

2

(
1− 1

4

)⌋
+ 2

⌊
6

2

(
1− 1

6

)⌋
= 1,

dimS6(Γ4) = 1− 6 + 3

⌊
6

2

(
1− 1

4

)⌋
= 1,

dimS6(Γ6) = 1− 6 + 6

⌊
6

2

(
1− 1

4

)⌋
= 7.

By Proposition 4, the one-dimensional spaces S6(Γ1) and S6(Γ4) are spanned by

(10) F1 = z
1/4
1 (1− z1)1/2

(
2F1

(
5

24
,

3

8
;

3

4
; z1

)
+ C1z

1/4
1 2F1

(
11

24
,

5

8
;

5

4
; z1

))6

and

(11) F2 = z
1/4
4 (1− z4)1/4

(
2F1

(
1

8
,

3

8
;

3

4
; z4

)
+ C2z

1/4
4 2F1

(
3

8
,

5

8
;

5

4
; z4

))6

for some complex numbers C1 and C2, respectively. Furthermore, by Proposition 2, if we
let

f1 = z
3/8
6

(
1− 15

7
z26 −

111

14
z46 −

2045

46
z66 −

11355195

39928
z86 −

77997477

39928
z106 − · · ·

)
f2 = z

5/8
6

(
1− 5

3
z26 −

245

34
z46 −

7269

170
z66 −

115223

408
z86 −

55230121

27880
− · · ·

)
be a basis for the solution space of the Schwarzian differential equation d2f/dz26+Q(z6)f =
0, where Q(z6) is the rational function in (8), then a basis for S8(Γ6) is

{zj6g : j = 0, . . . , 6}, g =
(f1 + C3f2)8

z26(1− z26)2(1− 9z26)2
.

Now from Lemma 9, we have

z1 =
12αz6(1− z26)(1− 9z26)

(1 + αz6)6

and

z4 = − 4(1 + β)4z6(1 + (−7 + 4β)z26/3)4

(1 + z6)(1− 3z6)(1 + (4 + 2β)z6 − (1 + 2β)z26)4
,
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where α is a root of x2 + 3 = 0 and β is a root of x2 + 2 = 0. Substituting these into (10)
and (11) and comparing the coefficients, we find

F1 = c1(1 + 3z26)3g

and

F2 = c2

(
1 +
−7 + 4β

3
z26

)(
1 + (4 + 2β)z6 − (1 + 2β)z26

)
×
(
1− (4 + 2β)z6 − (1 + 2β)z26

)
g

for some constants c1 and c2. Taking the sixth roots of F1 and F2 and simplifying, we
obtain the identities claimed in the theorem. �

4. ALGEBRAIC TRANSFORMATIONS ASSOCIATED TO CLASS VI

According to Appendix A, the subgroup diagram for Takeuchi’s Class VI is

(2, 4, 5) (2, 4, 10)

(2, 5, 5) (4, 4, 5) (2, 10, 10)

(2, 2, 5, 5) (5, 10, 10)

(5, 5, 5, 5)

2

H
HHH

HH6

�
���

��

2
2

HH
HHHH

6
2

��
����

2
2

2

���
��� 2

Let Γ1 = (2, 5, 5), Γ2 = (5, 10, 10), Γ3 = (5, 5, 5, 5), and X1, X2, X3 be the Shimura
curves associated to these three groups. (The reader is reminded that the subgroup diagram
should be read as “there are arithmetic Fuchsian subgroups of SL(2,R) such that their
subgroup relations are given by the diagram”.) The subgroups relations Γ3 < Γ1,Γ2 admit
Coxeter decompositions as the following figures show.

Here the small triangles are (2, 4, 5)-triangles. Associated to this triplet of groups is the
following identities.

Theorem 2. We have

2F1

(
1

20
,

1

4
;

4

5
;

64z(1− z − z2)5

(1− z2)(1 + 4z − z2)5

)
= (1− z2)1/20(1 + 4z − z2)1/42F1

(
3

10
,

2

5
;

9

10
; z2
)
.

(12)
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and

(1− z − z2)2F1

(
1

4
,

9

20
;

6

5
;

64z(1− z − z2)5

(1− z2)(1 + 4z − z2)5

)
= (1− z2)1/4(1 + 4z − z2)5/42F1

(
2

5
,

1

2
;

11

10
; z2
)
.

(13)

Proof. Label the elliptic points of Xj by P2, P5, P ′5 for X1, Q5, Q10, Q′10 for X2, and Ri,
i = 1, . . . , 4, for X3 such that the ramifications data are given by

R1 R3 S1 S3 R2 R4 S2 S4 R2 R4 R1 R3

P5 P ′5 Q5 Q10 Q′10

1 1 5 5 1 1 5 5 1 1 2 2

Here the numbers next to the lines are the ramification indices. We have omitted P2 from
the diagram. There are 6 points lying above P2. Each has ramficiation index 2. Choose
Hauptmoduls zj for Xj by requiring

z1(P5) = 0, z1(P2) = 1, z1(P ′5) =∞, z2(Q10) = 0, z2(Q5) = 1, z2(Q′10) =∞
and

z3(R1) = 0, z3(R2) = 1, z3(R3) =∞.
The relation between z2 and z3 is easy to figure out. We have

(14) z2 = z23 ,

which implies that z3(R4) = −1. To determine the relation between z1 and z3, we observe
that the tessellation of the hyperbolic plane by the (5, 5, 5, 5)-polygons has extra symme-
tries by rotation by 90 degree around the center of any (5, 5, 5, 5)-polygon. In terms of
groups, this means that Γ3 has a supergroup Γ normalizing Γ3 such that Γ/Γ3 is cyclic
of order 4. (In fact, Γ is the (4, 4, 5)-triangle group in the subgroup diagram.) Therefore,
the automorphism group of X3 has an element σ of order 4 that permutes R1, R2, R3, R4

cyclically. In terms of the Hauptmodul, we have

σ : z3 7−→
z3 + 1

z3 − 1
.

Thus, if the value of z3 at S1 is a, then we have

z3(S1) = a, z3(S2) =
a− 1

a+ 1
, z3(S3) = −1

a
, z3(S4) = −a+ 1

a− 1
.

Therefore, the relation between z1 and z3 is

z1 =
Bz3(z3 − a)5(z3 + 1/a)5

(1− z23)(z3 − (a− 1)/(a+ 1))5(z3 + (a+ 1)/(a− 1))5

for some constantB. Moreover, the automorphism σ ofX3 rotates 4 of the six points lying
above P2 cyclically and fixes the other two. (The reader is reminded that each (5, 5, 5, 5)-
polygon represents only half of the fundamental domain for Γ3. The two fixed of σ are the
centers of the (5, 5, 5, 5)-polygons.) In terms of the Hauptmodul z3, this means that the
values of z3 at the two fixed points of σ are ±i and if the value of z3 at one of the other 4
points above P2 is b, then the values at the other 3 points are −1/b, (b − 1)/(b + 1), and
−(b+ 1)/(b− 1). Thus, we have

z1 − 1 =
C(1 + z23)2(z3 − b)2(z3 + 1/b)2(z3 − (b− 1)/(b+ 1))2(z3 + (b+ 1)/(b− 1))2

(1− z23)(z3 − (a− 1)/(a+ 1))5(z3 + (a+ 1)/(a− 1))5
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for some constant C. Comparing the two sides, we find a = 0,±1,±i, a2 + a− 1 = 0, or
a2 − a− 1 = 0. The first five solutions are invalid. The other two solutions give

(15) z1 =
64z3(1− z3 − z23)5

(1− z23)(1 + 4z3 − z23)5

or

(16) z1 = − 64z3(1 + z3 − z23)5

(1− z23)(1− 4z3 − z23)5
.

Both are valid because of the following reason. Notice that Γ2 normalizes Γ3. If we take an
element γ of Γ2 not in Γ3, then γ−1Γ1γ is again a triangle of signature (2, 5, 5) containing
the same Γ3. If the relation between the Hauptmoduls of Γ1 and Γ3 is (15), then the relation
between the Hauptmoduls of γ−1Γ1γ and Γ3 will be (16).

Having determining the relations among Hauptmoduls, we can composite identity (36)
in [10] with Kummer’s quadratic transformation several times to get the identities in the
theorem. However, the procedure is very tedious. Here we provide a better proof using the
theory of automorphic forms on Shimura curves.

By Proposition 1, we have

dimS8(Γ1) = 1− 8 +

⌊
8

2

(
1− 1

2

)⌋
+ 2

⌊
8

2

(
1− 1

5

)⌋
= 1,

dimS8(Γ2) = 1− 8 +

⌊
8

2

(
1− 1

5

)⌋
+ 2

⌊
8

2

(
1− 1

10

)⌋
= 2,

dimS8(Γ3) = 1− 8 + 4

⌊
8

2

(
1− 1

5

)⌋
= 5.

By Proposition 4, the one-dimensional space S8(Γ1) is spanned by

(17) F1 = z
1/5
1

(
2F1

(
1

20
,

1

4
;

4

5
; z1

)
+ C1z

1/5
1 2F1

(
1

4
,

9

20
;

6

5
; z1

))8

for some constant C1, and the function

(18) F2 = z
3/5
2 (1− z2)1/5

(
2F1

(
3

10
,

2

5
;

9

10
; z2

)
+ C2z

1/10
2 2F1

(
2

5
;

1

2
;

11

10
; z2

))8

is contained in S8(Γ2) for some constant C2. To get a basis for S8(Γ3), we need to work
out the Schwarzian differential equation associated to z3. It is actually easy in this case.

By Proposition 2, the function z′3(τ), as a function of z3, satisfies

d2

dz23
f +Q(z3)f = 0,

where

(19) Q(z3) =
6

25

(
1

z23
+

1

(1− z3)2
+

1

(1 + z3)2

)
+
B1

z3
+

B2

z3 − 1
+

B3

z3 + 1

for some complex numbers satisfying

(20) B1 +B2 +B3 = 0, B2 −B3 +
12

25
= 0.

To determine the values of Bj , we use the automorphism of X3 coming from the normal
subgroup relation Γ3 C Γ1. Let γ be an element of Γ2 not in Γ3. We know that

z3(γτ) = −z3(τ).
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Now by Proposition 5, we have

D(−z3(τ), τ) = D(z3(γτ), τ) = D(z3(γτ), γτ) +D(γτ, τ)/(dγτ/dτ)2 = Q(z3(γτ))

=
6

25

(
1

z23
+

1

(1− z3)2
+

1

(1 + z3)2

)
+

B1

−z3
+

B2

−z3 − 1
+

B3

−z3 + 1

(21)

On the other hand, we also have, by the same proposition,

(22) D(−z3, τ) = D(−z3, z3) +D(z3, τ)/(−1)2 = Q(z3)

Comparing (19), (21), and (22), we find B1 = 0 and B2 = −B3. Together with (20), this
gives us

B1 = 0, B2 = − 6

25
, B3 =

6

25
and

Q(z3) =
6

25

(
1

z23
+

1

(1− z3)2
+

1

(1 + z3)2
+

1

1− z3
+

1

1 + z3

)
.

Now a basis for the solution space of the Schwarzian differential equation d2f/dz23 +
Q(z3)f = 0 is given by

f1 = z
2/5
3

(
1− 4

15
z23 −

52

475
z43 −

13436

206625
z63 −

46348

1033125
z83 −

2024924

60265625
z103 − · · ·

)
f2 = z

3/5
3

(
1− 12

55
z23 −

28

275
z43 −

2708

42625
z63 −

393636

8738125
z83 −

7503908

218453125
z103 − · · ·

)
.

By Proposition 2,

g, z3g, z
2
3g, z

3
3g, z

4
3g, g =

(f1 + C3f2)8

z33(1− z3)3(1 + z3)3
,

form a basis for S8(Γ3) for some constant C3. That is, after substituting (15) and (14)
into (17) and (18), respectively, we have F1 = h1(z3)g and F2 = h2(z3)g for some
polynomials h1(x) and h2(x) of degree ≤ 4. Indeed, by comparing the coefficients, we
find

F1 = 26/5(1− z3 − z23)(1 + 4z3 − z23)g, F2 = z3g.

(The computation becomes easier if we take the 8th roots of the functions first.) Simplify-
ing the relation z3F1 = 26/5(1 − z3 − z23)(1 + 4z3 − z23)F2, we get the two identities in
the theorem. This completes the proof. �

5. ALGEBRAIC TRANSFORMATIONS ASSOCIATED TO OTHER CLASSES

5.1. Classes II, V, and XII. The subgroup diagrams of Class II, V, and XII are all of the
form

(2, 4, 2n)

(2, 2n, 2n) (4, 4, n)

(n, 2n, 2n) (2, n, 2, n)

(n, n, n, n)

��
��

2 HH
HH2

�
���
2 H

HHH2

�
��� 2

HH
HH
2 ��

�� 2



HYPERGEOMETRIC FUNCTIONS 19

The subgroup relation (2, 2n, 2n) ∩ (4, 4, n) = (2, n, 2, n) is a special case of

(2, 2m, 2n)

(m, 2n, 2n) (n, 2m, 2m)

(m,n,m, n)

�
���
2 H

HHH2

HHHH
2 ���� 2

which arises from the Coxeter decompositions of a quadrilateral polygon that is symmetric
with respect to both the diagonals as shown below

�
��

2 @
@@2

@
@@

2 �
�� 2

Associated to this family of subgroup relations is the following identity.

Theorem 3. For real numbers a and b such that neither b+ 3/4 nor 2b+ 1/2 is a nonpos-
itive integer, we have

(1 + z)2a+2b
2F1

(
a+ b, a+

1

4
; b+

3

4
; z2
)

= 2F1

(
a+ b, b+

1

4
; 2b+

1

2
;

4z

(1 + z)2

)

in a neighborhood of z = 0.

This identity can be easily proved using Kummer’s quadratic transformation. Alterna-
tively, one can verify that both sides are solutions of the differential equation

2z(1−z)(1+z)2F ′′−(1+z)((3−4b)z2+8(a+b)z−4b−1)F ′−(a+b)(1+4b)(1−z)F = 0.

and that the local behaviors at z = 0 agree. We omit the details.
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5.2. Classes IV, VIII, XI, XIII, XV, XVII. The subgroups diagrams of Classes IV, VIII,
XI, XIII, XV, and XVIII are either of the form

(2, 3, 12n)

(3, 3, 6n) (3, 4n, 12n) (2, 6n, 12n)

(3, 3, 2n, 6n) (6n, 6n, 6n) (2n, 4n, 6n, 12n) (3n, 12n, 12n)

(2n
3
, 6n

3
) (3n

2
, 6n

2
) (n, 3n, 4n

2
, 12n

2
)

(1;n
2
, 2n

2
, 3n

2
, 6n

2
)

��
���

��

2
4

HH
HHH

HH
3

4

HHH
HHHH

���
����

HHH
HHHH

���
����

4

HHH
HHHH

2

H
HHH

HH

3
4

H
HHH

HH
2

�
���

��

2

H
HHH

HH

�
���

��
2

4

H
HHH

HH

2
4

�
���

��
2

or sub-diagram of it with Class XI having one extra node. There are two families of essen-
tially new identities associated to these classes. One corresponds to the pair of (3, 3, 6n)
and (3, 4n, 12n). (Theorem 4 below.) One corresponds to the pair of (3, 4n, 12n) and
(2, 6n, 12n). (Theorem 5 below.)

Theorem 4. For a real number a such that neither 3a + 1 nor 2a + 1 is a nonpositive
integer, we have

(1 + z)a+1/6(1− z/3)3a+1/2
2F1

(
2a+

1

3
, a+

1

3
; 3a+ 1; z2

)
= 2F1

(
a+

1

6
, a+

1

2
; 2a+ 1;

16z3

(1 + z)(3− z)3

)
in a neighborhood of z = 0.

Theorem 5. For a real number a such that neither 6a + 1 nor 4a + 1 is a nonpositive
integer, we have

(1− z)9a+3/4
2F1

(
4a+

1

3
, 2a+

1

3
; 6a+ 1;−27z2(1− z)

1− 9z

)
= (1− 9z)a+1/12

2F1

(
3a+

1

4
, a+

1

4
; 4a+ 1;− 64z3

(1− z)3(1− 9z)

)
in a neighborhood of z = 0.

In principle, these two identities can be deduced from Kummer’s and Goursat’s transfor-
mations, once the related Belyi functions are determined. Here we briefly indicate how one
can prove the theorems in the cases where the parameters correspond to discrete Fuchsian
groups using theory of automorphic forms.

Proof of Theorem 4 in the cases of Shimura curves. For the pair of (3, 3, 6n) and (3, 4n, 12n),
the subgroup relations admit Coxeter decompositions, as shown in the figures
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Here the parameter n in the figures is 1 and the smaller triangles are (2, 3, 12)-triangles.
Let Γ1 = (3, 3, 6n), Γ2 = (3, 4n, 12n), Γ3 = Γ1 ∩ Γ2, and let Xi, i = 1, . . . , 3 be
the associated Shimura curves. Denote by P3, P ′3, and P6n the elliptic points of or-
ders 3, 3, and 6n on X1, by Q3, Q4n, and Q12n the elliptic points of orders 3, 4n, and
12n on X2, and by R3, R′3, R2n, and R6n the elliptic points of order 3, 3, 2n, and 6n
on X3. The points are labelled in a way such that the ramification data are given by

R3 S1 R′3 S2 R2n R6n R3 R′3 R2n R6n

P3 P ′3 P6n Q3 Q4n Q12n

1 3 1 3 3 1 1 1 2 2

Choose Hauptmoduls zj on Xj , j = 1, 2, 3, by requiring

z1(P6n) = 0, z1(P3) = 1, z1(P ′3) =∞, z2(Q4n) = 0, z2(Q3) = 1, z2(Q12n) =∞
and

z3(R2n) = 0, z3(R3) = 1, z3(R6n) =∞.
It is easy to see from the ramification informations that

(23) z2 = z23 ,

which implies that z3(R′3) = −1. For z1, we have

z1 =
Az33

(1 + z3)(1− az3)3

for some complex numbersA and a, where 1/a is the value of z3 at S1. These two numbers
satisfy

(24) 1− Az33
(1 + z3)(1− az3)3

= 1− z1 =
(1− z3)(1− bz3)3

(1 + z3)(1− az3)3
,

where 1/b is the value of z3 at S2. Now observe that Γ3 is a normal subgroup of Γ2. Thus,
an element of Γ2 not in Γ3 induces an automorphism on X3. In terms of the Hauptmodul
z3, it is easy to see that this automorphism sends z3 to−z3. Since this automorphism maps
S1 to S2, we find b = −a. Then comparing the two sides of (24), we get A = 16/27,
a = 1/3, and

(25) z1 =
16z33

(1 + z3)(3− z3)3
.

Now by Proposition 1, we have

dimS6(Γ1) = dimS6(Γ2) = 1, dimS6(Γ3) =

{
2, if n = 1,

3, if n ≥ 2.

From now on, we assume that n ≥ 2.
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By Proposition 4, the one-dimensional spaces S6(Γ1) and S6(Γ2) are spanned by

F1 = z
1−1/2n
1

(
2F1

(
1

6
− 1

12n
,

1

2
− 1

12n
; 1− 1

6n
; z1

)

+ C1z
1/6n
1 2F1

(
1

6
+

1

12n
,

1

2
+

1

12n
; 1 +

1

6n
; z1

))6(26)

and

F2 = z
1−3/4n
2

(
2F1

(
1

3
− 1

6n
,

1

3
− 1

12n
; 1− 1

4n
; z2

)

+ C2z
1/4n
2 2F1

(
1

3
+

1

12n
,

1

3
+

1

6n
; 1 +

1

4n
; z2

))6

,

(27)

respectively, for some constants C1 and C2. Also, if we let f1 = z
1/2−1/4n
3 (1 + c1z+ · · · )

and f2 = z
1/2+1/4n
3 (1 + d1z + · · · ) be a basis of the solution space of the Schwarzian

differential equation d2f/dz23 + Q(z3)f = 0 associated to z3, then by Proposition 2,
S6(Γ3) is spanned by g, z3g, and z23g, where

g =
(f1 + C3f2)6

z23(1− z3)2(1 + z3)2

for some constant C3. Now we substitute (25) and (23) into (26) and (23), respectively.
We find

F1 = a1z
3−3/2n
3 + · · · , F2 = z

2−3/2n
3 + · · · ,

where a1 = (16/27)1−1/2n, and thus

F1 = a1z
2
3g, F2 = (z3 + a2z

2
3)g

for some constant a2. That is, a1zF2/F1 = 1 + a2z3. We then take the 6th roots of the
two sides and compare the coefficients of z3/2−1/4n, we find that a2 is actually 0. After
simplifying, we arrive at

(1 + z)1/6−1/12n(1− z/3)1/2−1/4n2F1

(
1

3
− 1

6n
,

1

3
− 1

12n
; 1− 1

4n
; z2
)

= 2F1

(
1

6
− 1

12n
,

1

2
− 1

12n
; 1− 1

6n
;

16z3

(1 + z)(3− z)3

)
.

This proves Theorem 4 in the case the parameters correspond to arithmetic triangle groups.
�

Proof of Theorem 5 in the cases of Shimura curves. The subgroups (3, 4n, 12n), (2, 6n, 12n)
and their intersection admit Coxeter decompositions as the figures below show.

Here the parameter n in the figures is 1 and the small triangles are (2, 3, 12)-triangles.
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Denote the groups (3, 4n, 12n), (2, 6n, 12n), and (2n, 4n, 6n, 12n) by Γ1, Γ2, and Γ3,
respectively. Label the elliptic points of (3, 4n, 12n) by P3, P4n, and P12n, those of
(2, 6n, 12n) by Q2, Q6n, and Q12n, and those of (2n, 4n, 6n, 12n) by R2n, R4n, R6n,
and R12n. The ramifications are shown as follows.

R2n R4n R6n R12n R2n R6n R4n R12n

P4n P12n P3 Q6n Q12n Q2

2 1 2 1 3 3 1 3 1 2 2

Choose Hauptmoduls zj for Γj , j = 1, . . . , 3, by requiring that

z1(P4n) = 0, z1(P3) = 1, z1(P12n) =∞,
z2(Q6n) = 0, z2(Q2) = 1, z2(Q12n) =∞,
z3(R2n) = 0, z3(R4n) = 1, z3(R6n) =∞.

It is easy to work out the relation between z1 and z3 and that between z2 and z3. They are

(28) z1 =
27z23(1− z3)

1− 9z3
, z2 = − 64z33

(1− z3)3(1− 9z3)
.

Here 1/9 is the value of z3 atR12n. We then follow the same arguments as before to obtain
the claimed identities. We omit the details. �

APPENDIX A. LIST OF ARITHMETIC TRIANGLE GROUPS

In this section, we determine the signatures of the intersections of commensurable tri-
angle groups.

According to [7, 8], there are totally 85 arithmetic triangle groups, falling in 19 different
commensurability classes. Here we give the subgroup diagrams. Note that since most
groups here have genus 0, we omit the genus information from the signature, unless the
group has a positive genus. Also, to save space, the notation (g; en1

1 , . . . , enr
r ) means that

the Shimura curve has ni elliptic points order ei. Furthermore, for convenience, we will
often call the groups by their signatures, even though this raises some ambiguity.

Remark 11. There is some ambiguity when we say “the intersections of commensurable
triangle groups” because there may be more than one orders whose norm-one groups have
the same signature and the intersections of these groups with another group may have
different signatures. For example, in the case B = M(2,Q), the subgroups Γ0(2) and
Γ0(2) of SL(2,Z) have the same signature (0; 2,∞,∞) and the group Γ0(4) has signature
(0;∞,∞,∞). The intersection of Γ0(2) and Γ0(4) is just Γ0(4), but the intersection of
Γ0(2) and Γ0(4) has signature (0;∞,∞,∞,∞). Thus, the subgroup diagrams described
here should be read as “there are arithmetic groups whose subgroup relations are given by
the subgroup diagrams”.

Since it is not easy to describe explicitly the orders associated to arithmetic triangle
groups, here we use group theory and properties of discrete subgroups of SL(2,R) to
determine the signatures. We will work out the case of Class IV in [8] and omit the proof
of the others.
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According to [8], Class IV of arithmetic triangle groups has the following subgroup
diagram.

(2, 3, 12)

(3, 3, 6) (3, 4, 12) (2, 6, 12)

(6, 6, 6) (3, 12, 12)

���
���

2
4

HHH
HHH3

H
HHH

HH3

�
���

�� 2

H
HHH

HH2

Here the numbers next to the lines are the indices. Set

Γ1 = (2, 3, 12), Γ2 = (3, 3, 6), Γ3 = (3, 4, 12),

Γ4 = (2, 6, 12), Γ5 = (6, 6, 6), Γ6 = (3, 12, 12),

and let Xi, i = 1, . . . , 6, denote the respective Shimura curves. To determine Γ2 ∩ Γ3, we
observe that Γ2 is a normal subgroup of Γ1 of index 2 and Γ1 = Γ2Γ3. Thus, Γ2 ∩ Γ3 is a
normal subgroup of Γ3 of index 2. Now the elliptic point of order 3 on X3 must split into
two points in X(Γ2 ∩Γ3) because 2 - 3. Then from the Riemann-Hurwitz formula, we see
that the elliptic points of order 4 and 12 must be ramified. That is, the curve X(Γ2 ∩ Γ3)
must have signature (2, 3, 3, 6). In fact, this can also be seen from the following figures.

Here the smaller triangles are (2, 3, 12)-triangles. The figures show that the triangle group
(2, 3, 12) contains two subgroups of signatures (3, 3, 6) and (3, 4, 12), respectively, whose
intersection has signature (2, 3, 3, 6). (In fact, the theoretical argument above shows that
for any pair of subgroups of Γ1 with signatures (3, 3, 6) and (3, 4, 12), respectively, the
intersection must have signature (2, 3, 3, 6).)

Likewise, the figures
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show that there are two subgroups of Γ1 of signatures (2, 6, 12) and (3, 4, 12) such that
there intersection has signature (2, 4, 6, 12). We have the following subgroup diagram.

(2, 3, 12)

(3, 3, 6) (3, 4, 12) (2, 6, 12)

(2, 3, 3, 6) (6, 6, 6) (2, 4, 6, 12) (3, 12, 12)

�
���

��

2
4

H
HHH

HH3

4

HH
HHHH

��
����

HH
HHHH

��
����

HH
HHHH2

4

Let Γ7 = (2, 3, 3, 6) and Γ8 = (2, 4, 6, 12) and X7 and X8 be their associated Shimura
curves. Again, because Γ5 is a normal subgroup of Γ4 of index 2 and Γ5Γ8 = Γ4, the
intersection of Γ5 and Γ8 is a subgroup of index 2 of Γ8. Now the group (2, 4, 6, 12) has
many subgroups of index 2. (The structure of the quotient group of (2, 4, 6, 12) over its
commutator subgroup is C2 × C4 × C6.) To determine which of them is contained is the
group (6, 6, 6), we use the following properties.

(1) If p is an elliptic point of order e on X8, then its preimage in the covering X(Γ5 ∩
Γ8) → X8 consists of either a single elliptic point of order e/2 or two elliptic
points of order e.

(2) The total branch number of any finite covering of compact Riemann surface is
always even.

(3) The volume of X(Γ5 ∩ Γ8) is twice of that of X8. Thus, if (g; e1, . . . , er) is the
signature of X(Γ5 ∩ Γ8), then we must have

2g − 2 +

r∑
i=1

(
1− 1

ej

)
= 2

(
2− 1

2
− 1

4
− 1

6
− 1

12

)
= 2.

From these informations, we find that possible signatures of a subgroup of index 2 of
(2, 4, 6, 12) are

(1; 2, 3, 6), (0; 2, 62, 122), (0; 3, 42, 122), (0; 42, 63)

(0; 23, 3, 122), (0; 23, 63), (0; 22, 3, 42, 6).
(29)

Likewise, an elliptic point of order 6 on X5 can

(1) splits into 4 elliptic points of order 6, or
(2) splits into 2 elliptic points of order 3, or
(3) splits into 1 elliptic point of order 3 and 2 elliptic point of order 6, or
(4) splits into 1 elliptic point of order 2 and 1 elliptic point of order 6,

in the covering X(Γ5 ∩ Γ8)→ X5 of degree 4. Also, the total branch number of X(Γ5 ∩
Γ8)→ X5 must be a positive even integer and the volume of X(Γ ∩ Γ8) is 2. We find the
possible signatures of a subgroup of index 4 of Γ5 are

(30) (0; 23, 63), (0; 22, 32, 62), (0; 2, 34, 6), (0; 36).

From (29) and (30), we conclude that the signature of Γ5 ∩ Γ8 must be (0; 23, 63). This
can also be seen from the figures.
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By the same argument, we can also show that the intersection of Γ6 and Γ8 must have
signature (0; 3, 42, 122) and the intersection of Γ5 and Γ6 has signature (0; 3, 3, 6, 6). The
subgroup diagram becomes

(2, 3, 12)

(3, 3, 6) (3, 4, 12) (2, 6, 12)

(2, 3, 3, 6) (6, 6, 6) (2, 4, 6, 12) (3, 12, 12)

(23, 63) (32, 62) (3, 42, 122)

��
����

2
4

HH
HHHH
3

4

H
HHH

HH

�
���

��

H
HHH

HH

�
���

��

H
HHH

HH
2

4

H
HHH

HH
3

4

H
HHH

HH

2
�
���

��

H
HHH

HH
4

�
���

��

Finally, we can show that the only possible signatures of subgroups of index 2 in (23, 63)
are

(0; 26, 32, 62), (0; 24, 3, 64), (0; 22, 66), (1; 24, 33), (1; 22, 32, 62), (1; 3, 64), (2; 33),

while the only possible signatures of subgroups of index 2 in (3, 42, 122) are

(0; 32, 44, 62), (0; 2, 32, 42, 6, 122), (0; 22, 32, 124), (1; 22, 32, 62).

From these, we see that the common intersection of (23, 63), (3, 42, 122), and (32, 62) has
signature (1; 22, 32, 62). This completes the proof of the case of Class IV.

Now we give the subgroup diagrams for arithmetic triangle groups.

Class II.

(2, 4, 6)

(2, 6, 6) (3, 4, 4)

(3, 6, 6) (2, 2, 3, 3)

(3, 3, 3, 3)

���
2 HHH2

�
��
2 H

HH2

�
�� 2

HHH
2 ��� 2
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Class III.

(2, 6, 8) (2, 3, 8)

(4, 6, 6) (3, 8, 8) (3, 3, 4) (2, 4, 8)

(22, 43) (3, 4, 3, 4) (4, 4, 4) (2, 8, 8)

(46) (2, 4, 2, 4) (4, 8, 8)

? (4, 4, 4, 4)

?

2

H
HHH

HH
2

�
���

��

10
2

H
HHH

HH3∗

3∗
H
HHH

HH

2
2

�
���

��

10
3∗

�
���

��
2

2

HHH
HHH

2
3∗

���
���

10
2

���
���

2
2

2

���
����

10 2

���
���

2

2

���
����

10

Class IV.

(2, 3, 12)

(3, 3, 6) (3, 4, 12) (2, 6, 12)

(3, 3, 2, 6) (6, 6, 6) (2, 4, 6, 12) (3, 12, 12)

(23, 63) (32, 62) (3, 42, 122)

(1; 2, 2, 3, 3, 6, 6)

���
���

2
4

HHH
HHH

3

4

HHH
HHH

���
���

HH
HHHH

��
����

4

HHH
HHH

2

HH
HHHH

3∗
4

HH
HHHH
2

��
����

2
HH

HHHH

��
����
2

4

H
HHH

HH

2
4

�
���

��
2
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Class V.

(2, 4, 12)

(2, 12, 12) (4, 4, 6)

(6, 12, 12) (2, 2, 6, 6)

(6, 6, 6, 6)

�
��
2 H

HH2

���
2 HHH2

��� 2

HHH
2 ��� 2

Class VI.

(2, 4, 5) (2, 4, 10)

(2, 5, 5) (4, 4, 5) (2, 10, 10)

(2, 2, 5, 5) (5, 10, 10)

(5, 5, 5, 5)

2

HHH
HHH6

���
���

2
2

H
HHH

HH

6∗
2

�
���

��

2
2

2

��
���� 2

Class VII.

(2, 5, 6)

(3, 5, 5)

2

Class VIII.

(2, 3, 10)

(3, 3, 5) (2, 5, 10)

(5, 5, 5)

�
�

��

2 Q
Q
QQ3

Q
Q
QQ

3 �
�

�� 2

Class IX.

(3, 4, 6)
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Class X.

(2, 4, 7) (2, 3, 7) (2, 3, 14)

(2, 7, 7) (3, 3, 7) (2, 7, 14)

(1; 7, 7) (7, 7, 7)

(1; 76)

Q
Q
QQ

2 �
�

��

9 Q
Q
QQ8

�
�

�� 2

Q
Q
QQ3

Q
Q
QQ

8 �
�

�� 9

Q
Q
QQ3

�
�
�� 2

Q
Q
QQ3

�
�

�� 9

Class XI.
(2, 3, 9) (2, 3, 18)

(3, 3, 9) (3, 6, 18) (2, 9, 18)

(3, 3, 3, 9) (9, 9, 9) (3, 6, 9, 18)

(33, 93)

4

�
�����

2
4

H
HHHHH

3

4

H
HHH

HH

�
���

��

H
HHH

HH

�
���

��
4

HHH
HHH

3∗
4

����
��

2

Class XII.

(2, 4, 18)

(2, 18, 18) (4, 4, 9)

(9, 18, 18) (2, 2, 9, 9)

(9, 9, 9, 9)

���
2 HHH2

���
2 HHH2

��� 2

HHH
2 ��� 2

Class XIII.

(2, 3, 16)

(2, 8, 16) (3, 3, 8)

(4, 16, 16) (8, 8, 8)

(4, 4, 8, 8)

�
��
3 H

HH2

���
2 HHH2

��� 3

HHH
2 ��� 2
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Class XIV.

(2, 5, 20)

(5, 5, 10)

2

Class XV.

(2, 3, 24)

(3, 3, 12) (3, 8, 24) (2, 12, 24)

(3, 3, 4, 12) (12, 12, 12) (4, 8, 12, 24) (6, 24, 24)

(43, 123) (62, 122) (2, 6, 82, 242)

(1; 22, 42, 62, 122)

��
����

2
4

HH
HHHH
3

4

H
HHH

HH

�
���

��

H
HHH

HH

�
���

��
4

H
HHH

HH
2

HHH
HHH

3∗
4

HHH
HHH

2

���
���

2
HHH

HHH

���
���

2
4

HH
HHHH

2
4

��
����
2

Class XVI.

(2, 5, 30)

(5, 5, 15)

2

Class XVII.

(2, 3, 30)

(3, 3, 15) (3, 10, 30) (2, 15, 30)

(3, 3, 5, 15) (15, 15, 15) (5, 10, 15, 30)

(53, 153)

���
���

2
4

HHH
HHH

3

4

HH
HHHH

��
����

HH
HHHH

��
����

4

HH
HHHH

3∗
4

��
����

2
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Class XVIII.
(2, 5, 8)

(4, 5, 5)

2

Class XIX.
(2, 3, 11)
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