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Valley-dependent resonant inelastic transmission through a time-modulated region in graphene
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We investigate resonant sideband processes in the transmission through a time-modulated-potential region in
graphene. Valley-dependent features in the time-dependent transmission due to trigonal-warping effects in the
electronic structures are explored within a tight-binding model. Three main results obtained are dip structures in
the transmission, valley dependence of the dip structures, and nontypical-Fabry-Pérot behavior in the dip-structure
amplitudes. Dip structures in the transmission are obtained when a relevant band edge is available for the sideband
processes. The relevant band edges are shown to become valley dependent, when the incident flow is formed
from states of the same group-velocity direction. This is a consequence of the trigonal-warping effects, and it
leads to the valley dependence in the dip structures. The dip-structure amplitudes, on the other hand, are found
to exhibit a nontypical Fabry-Pérot oscillatory behavior, in their dependence on the width of the time-modulated
region. This is shown, in our multiple sideband scattering analysis, to result from resonant sideband processes to
a relevant band edge. As such, the nontypical Fabry-Pérot oscillatory behavior serves as another evidence for the
key role the relevant band edges play in the transmission dip structures.
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I. INTRODUCTION

The successful fabrication of graphene1,2 has prompted
intensive attention to the utilization of its Dirac fermionlike
spectrum and its valley and pseudospin degrees of freedom
for novel physical phenomena explorations3–9 and for carbon-
based nanoelectronic applications.10–17 The two nonequivalent
valleys K and K ′ points (Dirac points) at the corners of
the Brillouin zone result from the triangular Bravias lattice,
and the amplitudes of the states in the sublattice constitute
a pseudospin. Various anomalous phenomena ranging from
the Klein tunneling,18 quantum Hall effects,19,20 weak (anti-)
localization,21–23 focusing electron flow24,25 electron beam
supercollimation,26 and edge-states physics27–32 are attributed
to the relativistic dispersion. Exploration of valleytronics
in graphene has led to studies on valley filter,33–37 valley
polarization detection,38 valley physics with broken inversion
symmetry,39 valley physics in strained graphene,36,40,41 and
valley-based qubit in graphene rings42 and in double quantum
dots.43

Quantum transport through a time-modulated region in
graphene provides us additional knobs for the manipulation
of carrier dynamics in the system, through a time-modulated
potential,44–50 or through a time-varying electric field.51–57

For the case of a time-modulated potential, and focusing
upon the low energy regime, when the two-dimensional Dirac
equation is at work, phenomena such as photon-assisted
transport,44,45 chiral tunneling,45 Fano-type resonance,49 and
transverse resonant current50 are studied. In particular, it was
shown that the Klein tunneling, in the total dc transmission
and for normal incidence, maintains a perfect transmission by
collecting contributions from different sidebands.45 The Fano-
type resonance was demonstrated for non-normal incidence
and for the simultaneous presence of a static potential barrier in
the time-modulated region.49 The transverse resonant current
could arise, depending on the superposition of the incident
states, when the time-modulated region has either linear or os-
cillatory spatial dependencies.50 For a short graphene nanorib-
bon described by a tight-binding model, where levels are all

quantized, Fabry-Pérot interference patterns are obtained in
the time-modulated-potential-induced conductance.46 On the
other hand, when the time-modulation driving field is an ac
and circularly polarized electric field, the pristine graphene is
shown to be driven into a topological insulator state.51–55

In this paper, we focus upon the valley-dependent nature
of the quantum transport through a time-modulated-potential
region in graphene. This is an aspect that is relevant to the val-
leytronics but has not yet been explored in the time-modulated
regime. In the dc regime, trigonal warping has recently been
invoked for the generation of a fully valley-polarized electron
beam in a graphene n-p-n-junction transistor.34 Here, we study
the trigonal-warping effect on the resonant sideband processes,
and the manifestations it would allow. Our study is facilitated
by a time-dependent wave-function-matching method for the
tight-binding model. This allows us to explore the trigonal-
warping effects in the vicinity of the low incident energy
regime, the regime that is of most interest to valleytronics.

The system we consider in this paper is a two-dimensional
graphene sheet with a time-modulated-potential region that
has a finite longitudinal width L, along x, and a long
transverse extension, along y (see Fig. 1). Transverse open
boundaries are not treated in this work. We obtain three
main characteristics in the time-dependent transmission: dip
structures in the transmission, valley-dependence of these dip
structures, and a nontypical-Fabry-Pérot behavior in the dip-
structure amplitudes. Dip structures in the transmission occur
when the sideband energy En = E0 + nh̄ω coincides with a
relevant band edge (at energy E

∗
B), where E0 is the incident

energy and ω is the frequency of the time-modulated potential.
Conservation of ky in the transmission causes the relevant band
to be a fixed-ky projection of the graphene energy band. In the
vicinity of the Dirac points (located at ±K0 x̂), when k̃y ≡
ky/K0 � 1, the relevant band picks up an energy gap �g(k̃y),

�g(k̃y) = 2 α t0|k̃y |
(
1 − α2k̃2

y

/
6
)
, (1)

which increases linearly with |k̃y |. Here, α = 2π/
√

3, and t0 is
the nearest-neighbor hopping coefficient. At the relevant band
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FIG. 1. (Color online) The time-modulated-potential region (gray
area) on a graphene sheet is shown extending from M = 1 to M = L.
Indicated are sites A (•) and B (◦) in a unit cell, the auxiliary lattice
vectors {A1,A2}, and the conventional primitive basis vectors {a1,a2}.

edge (E∗
B = ±�g/2), the longitudinal group velocity vgx is

zero, leading to a diverging effective density of states D(E ≈
E∗

B,ky) = 1/(2πh̄ vgx). This provides a favorable condition for
the sideband processes and the formation of dip structures
in the transmission. Similar sideband processes were found
in quasi-one-dimensional electron gas systems that contain a
time-modulated potential region.58,59 In these cases, the rele-
vant bands are naturally given by the subbands in the systems,
and the diverging density of states at the subband edges causes
the transmission dip structures, due to the sideband processes
to the quasi-bound-states formed at the subband edges.58

A richer manifestation of the dip structure characteristics
is expected in our case, due to the peculiar valley physics
in the system. Equation (1) shows, for a given ky , that the
relevant band edge energy E∗

B is the same for both valleys
(K and K ′ points). On the other hand, we find out that, for
a given group-velocity direction, the ky values are different
near the K and the K ′ valleys, even though the incident energy
E0 is the same. This is due to the warping effects: For a
given group-velocity direction and incident energy E0, the ky

magnitude is smaller near the K valley and larger near the K ′
valley. Thus the relevant band edge energy E∗

B as well as the
transmission dip structures become valley dependent. These
valley dependent features in the time-dependent transmission
will be of use if incident flow can be formed from states
of the same group-velocity direction. Fixing ϕ, the angle
denoting the direction of the incident group velocity, can be
achieved by the collimation of incident flow. This has been
achieved experimentally, in two-dimensional electron systems,
by the alignment of two point contacts in series.60,61 It should
thus be of interest for future exploration on electron beam
focusing and collimation in graphene.24–26 In this work, a
finite valley polarization P is obtained in the transmitted beam
even when the collimation angle ϕ has a finite angle range
�ϕ. Finally, the nontypical-Fabry-Pérot behavior in the dip-
structure amplitudes is found, according to our detail multiple
sideband scattering analysis, to originate from interference
between multiple inelastic sideband processes to the relevant
band edge.

This paper is organized as follows. In Sec. II, we present
our time-dependent wave-function matching method. We also
present an alternate approach, namely the multiple sideband
scattering approach, which is utilized for the analysis of
the physical mechanism behind the nontypical-Fabry-Pérot
behavior in the dip-structure amplitudes. Numerical results
and discussions are presented in Sec. III. Finally, a conclusion
is presented in Sec. IV.

II. THEORY

In this section, we present the theory for time-dependent
transmission in a graphene sheet. The graphene sheet is
assumed to be of infinite extent, with no open boundary, and
the time-modulated-potential (gray area in Fig. 1) region has its
boundaries running along an armchair chain. The conventions
and notations that we adopt in this work are described below
along with the introduction of our basic model. The unit
cells in Fig. 1 are denoted by Rj = Mj A1 + Nj A2, where the
auxiliary lattice vectors A1 = √

3a0/2 x̂ and A2 = 3a0/2 ŷ are
chosen such that Mj ± Nj must be even integers. Here a0 =
1.42 Å is the distance between neighboring carbon atoms. The
Dirac points are located at ±K0x̂, where K0 = 2π/3A1. A
more conventional choice for the Bravais lattice vectors is
denoted by a1 and a2 in Fig. 1.

The time-dependent Hamiltonian is given by H = H0 +
V (t), where

H0 = −t0
∑
〈i,j〉

(â†
i b̂j + b̂

†
j âi) + �

∑
i

(â†
i âi − b̂

†
i b̂i), (2)

and

V (t) =
∑

i

V (Mi,t) (â†
i âi + b̂

†
i b̂i). (3)

Here � is included in H0 to facilitate our study of the time-
dependent transport characteristics of nongapped (pristine,
with � = 0) and gapped (� �= 0) graphene. â

†
j (âj ) is the

creation (annihilation) operator for an electron at the A site
of the j th unit cell, and t0 = 2.66 eV is the nearest-neighbor
hopping coefficient. The time-modulated potential occurs only
in region II, with a form

V (M,t) =
{

V0 cos(ωt) 1 � M � L,

0 otherwise.
(4)

A Bloch state |�B
k 〉 incident upon this potential is scattered

into the scattering state |�(sc)
k 〉. Here k = p(μ)

0 is the incident
momentum at energy E0 and μ is the incident valley index.
The index denotes valley K (K ′) by μ = 1 (2), and right-
(left-) going state is denoted by momentum p (q). As ky is
conserved in the scattering, we can express the scattering state
in the form∣∣�(sc)

k

〉 =
∑
j,s

eikyNj A2 fs k(Mj,t) |j,s〉, (5)

where s = A(B) is the site index, and A2 is the magnitude
of A2. Time evolution of fs k(M,t) is obtained by substituting
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Eq. (5) into Eq. (2) and Eq. (3) to give

∂

∂t
Fk(M,t) = − i

h̄
[V (M,t) + �σz] Fk(M,t)

+ it0

h̄
[ T Fk(M + 1,t) + T Fk(M − 1,t)]

+ it0

h̄
σx Fk(M,t), (6)

where the hopping matrix T is given by

T =
(

0 e−ikyA2

eikyA2 0

)
(7)

and

Fk(M,t) =
(

fA k(M,t)

fB k(M,t)

)
. (8)

The form of V (M,t) in Eq. (3) has Fk divided into
three pieces: Fk(M,t) = F(I)

k (M,t) when M � 0, Fk(M,t) =
F(II)

k (M,t) when 1 � M � L, and Fk(M,t) = F(III)
k (M,t) when

L + 1 � M . Each F(i)
k (M,t) satisfies their own time-evolution

equation, Eq. (6), in their respective M ranges.
These three pieces of Fk are connected, at all time t , by the

conditions

F(I)
k (0,t) = F̃(II)

k (0,t), F(II)
k (1,t) = F̃(I)

k (1,t), (9)

at the left boundary, and the conditions

F(II)
k (L,t) = F̃(III)

k (L,t),
(10)

F(III)
k (L + 1,t) = F̃(II)

k (L + 1,t),

at the right boundary, where F̃(i)
k (M,t) is the auxiliary function

obtained from analytic continuing of the function F(i)
k (M,t) to

a location M outside its own M range.
The number current density along x̂ at location M due to

|�(sc)
k 〉 is given by

j
(sc)
k x (M,t)

= 〈
�

(sc)
k

∣∣ĵx(M)
∣∣�(sc)

k

〉
= it0

2h̄
[(F†

k(M + 1,t) − F†
k(M − 1,t))TFk(M,t) − c.c.].

(11)

Equation (11) is used for the calculation of the transmission
current and for the checking of the current conservation of
our time-dependent transmission results. In particular, the dc
component of j

(sc)
k x should remain position (or M) independent

in the presence of evanescent modes.
Expressing explicitly in terms of the reflection coefficients

R(ν)
m and transmission coefficients T (ν)

m , the Fk(M,t) functions

in their respective M ranges are of the form

F(I)
k (M,t) =

∑
m,ν

(
F(B)

k (M) δm0 δμν + R(ν)
m F(B)

q(ν)
m

(M)
)
e−iEmt/h̄,

F(II)
k (M,t) =

∑
m,l,ν

(
A(ν)

l F(B)

p(ν)
l

(M) + B(ν)
l F(B)

q(ν)
l

(M)
)

× Jm−l(V0/h̄ω) e−iEmt/h̄,

F(III)
k (M,t) =

∑
m,ν

T (ν)
m F(B)

p(ν)
m

(M) e−iEmt/h̄. (12)

Here Em = E0 + mh̄ω is the energy in the mth sideband, and
Jm(z) is the mth order Bessel function of the first kind. F(B)

p(ν)
l

(M)

is a column vector

F(B)

p(ν)
l

(M) =
(
f

(B)

A p(ν)
l

, f
(B)

B p(ν)
l

)T

, (13)

formed from the site coefficients f
(B)

s p(ν)
l

(M) of the Bloch state

for p(ν)
l = ( p

(ν)
l x ,ky) and at energy El . By making connection

with the Bloch state∣∣�(B)
p

〉 =
∑
j,s

eikyNj A2 f (B)
s p (Mj ) |j,s〉 e−iEl t/h̄, (14)

we obtain

F(B)
p (M) = Np eipxMA1 (Hp, Ep − �)T , (15)

with

Ep = ±
√

HpH̃p + �2 (16)

the electron- (hole-)like branch, Hp = −t0[1 + 2e−ikyA2

cos(pxA1)], H̃p = −t0[1 + 2eikyA2 cos(pxA1)], and Np is the
normalization constant. Note that H̃p �= H ∗

p for evanescent
waves, and the column vector in Eq. (15) is reckoned as a
pseudospin state.

The current transmission T (μ)(E0) is obtained by solving
the coefficients R(ν)

m ,A(ν)
m ,B(ν)

m , and T (ν)
m directly from Eq. (12)

while imposing the boundary conditions in Eq. (9) and
Eq. (10). In terms of the coefficients T (ν)

m , the dc current
transmission is given by45

T (μ)(E0) = j
(sc)
k,x

j
(B)
k,x

=
∑
m,ν

∣∣T (ν)
m

∣∣2
j

(B)

p(ν)
m ,x

j
(B)

p(μ)
0 ,x

, (17)

where j
(B)
k,x is essentially the time average of the current

in Eq. (11) albeit replacing the scattering state by the
corresponding Bloch state. The dependencies of T (μ)(E0), or
for that matter Tm, where T (μ)(E0) = ∑

m Tm, on E0, μ, and
L have shown important resonant sideband characteristics.
These characteristics and the underlying mechanisms are the
main focuses of our study in this paper. Whenever there is no
ambiguity, we will suppress the μ superscript, keeping only
the sideband index m in Tm.

We have also solved the current transmission T (μ)(E0) by
another approach, namely the multiple sideband scattering
approach. This latter approach provides us a more transparent
extraction of physical mechanisms behind various transmis-
sion characteristics. Essentially, the scattering matrices S(μ)

1

and S(μ)
2 for the scattering at the left and the right boundaries
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of the time-modulated potential region are determined by
applying Eq. (6) to the respective boundary. These matrices
are of the form

S(μ)
i (E0) =

(
t′i ri

r′
i ti

)
, (18)

where the primed (non-primed) submatrices take on right-
(left-) going incident channels, while ri (ti) submatrices denote
reflection (transmission) processes. Again, the superscript μ

are suppressed in the submatrices. The channels in each
submatrix include both sideband and valley indices. The
coefficients R(ν)

m ,A(ν)
m ,B(ν)

m ,T (ν)
m are then expressed in terms

of the above submatrices, given by

R(ν)
m = 〈

q(ν)
m

∣∣r′
1 + t1r′

2
1

1 − r1r′
2

t′1
∣∣p(μ)

0

〉
, (19a)

A(ν)
m = 〈

p(ν)
m

∣∣ 1
1 − r1r′

2

t′1
∣∣p(μ)

0

〉
, (19b)

B(ν)
m = 〈

q(ν)
m

∣∣r′
2

1
1 − r1r′

2

t′1
∣∣p(μ)

0

〉
, (19c)

T (ν)
m = 〈

p(ν)
m

∣∣t′2 1
1 − r1r′

2

t′1
∣∣p(μ)

0

〉
, (19d)

where the bra (ket) is to pick up the desired incident
(transmitted) channels in the column (row) of the submatrices.
Both this multiple sideband scattering approach and the afore-
mentioned direct-matching approach give the same results in
our numerical calculations.

III. RESULTS AND DISCUSSIONS

In this section, we present numerical results for the
current transmission characteristics through a time-modulated-
potential region in pristine graphene. Results for gapped
graphene will be included for comparison purposes. Demon-
strated in the following subsections are the transmission dip
structures, the valley dependence of these dip structures,
and the nontypical Fabry-Pérot resonance nature of the dip-
structure amplitudes.

A. Transmission dip structures and their valley dependence

The dip structures in the current transmission are presented
in Fig. 2, when T (μ) versus E0 is shown for fixed ky values. This
figure provides a straightforward exposition of the physical
origin for the dip structures. In Fig. 2, the time-modulated
potential acting upon a pristine graphene has a longitudinal
length LA1 (L = 150), frequency h̄ω = 0.1 t0, and potential
amplitude V0 = 0.05 t0. The lower figure of Fig. 2 shows
that the dip structures occur in all the transmission curves,
including states incident from either valley K or K ′, and for ky

fixed at values ky1 or ky2. More importantly, the E0 locations of
the dip structures are identified, according to the relevant bands
shown in Fig. 2 (upper figure), to be at E0 = E∗

B(ky) + h̄ω.
Here E∗

B(ky) is the relevant band-edge energy associated with
the relevant band gap, given by Eq. (1). E∗

B is also the threshold
energy for T (μ)(E0), below which the transmission drops
abruptly to zero. For ky1 = 0.029 K0 and ky2 = 0.044 K0,
Fig. 2 shows that E∗

B(ky) increases with ky in the ky � K0

regime, a result that is contained in Eq. (1). These transmission

FIG. 2. (Color online) Relevant bands and current transmission
T (μ)(E0) for fixed ky . In the upper figure, the relevant band for ky1 =
0.029 K0 (ky2 = 0.044 K0) is denoted by the solid (dashed) curve.
Blowups of the relevant bands show K-valley band edges E∗

B(ky1)
and E∗

B(ky2) for the corresponding ky values, and the momenta for the
n = 0 and the n = −1 sidebands for ky = ky1. Transmission curves
(lower figure) for incident states from valley K (μ = 1) are denoted
by × (ky1) and � (ky2), and that from valley K ′ (μ = 2) are denoted by
� (ky1) and � (ky2). The time-modulated potential has a longitudinal
length LA1 (L = 150), h̄ω = 0.1 t0, and V0 = 0.05 t0. Dip structures
in T (μ)(E0) occur at E∗

B + h̄ω.

dip-structure characteristics are understood as the resonant
sideband processes the transmitting electrons undergo to
the relevant band edge, whenever E∗

B = E0 − nh̄ω = E−n,
at which the effective density of states is singular. The
effective density of states D(E = Ek,ky) = 1/(2πh̄ vgx), with
the longitudinal group velocity vgx , given by

vgx = 2t0A1

h̄

∣∣∣∣ sin(kxA1)[cos(kyA2) + 2cos(kxA1)]

Ek

∣∣∣∣, (20)

vanishes at E = E∗
B .

A closer look at the E0 dependence of the sideband
coefficients in Eq. (12) finds (not shown here) a simultaneous
occurrence of the T (μ) dip structures and the peaking of
the coefficients |A(ν)

−1| and |B(ν)
−1|. This corroborates that the

resonant sideband processes are prompted by the singular
effective density of states of the relevant band edge, when
the sideband E−1 aligns with E∗

B.
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On the one hand, the dip structures in Fig. 2 do not exhibit
valley-dependent characteristics. This is seen by comparing,
for the ky1 case, the transmission curves for incident valleys
μ = 1 and μ = 2, denoted by symbols × and �, respectively.
The valley-independent feature is related to the fact that
E∗

B(ky) bears the same value at both valleys, as is evident
from the relevant bands shown in Fig. 2 (upper figure).
On the other hand, the T (μ)(E0) for given ky value is of
pedagogical importance in establishing the physical origin
of the transmission dip structures. A scheme more relevant
to experiment is in order here. In the following, we propose
considering T (μ)(E0) for incident flow formed from states of
the same group-velocity direction. This collimation of electron
beam has been achieved experimentally in two-dimensional
electron systems, by the alignment of two point contacts in
series.60,61 We explore the T (μ)(E0) characteristics for given
ϕ, the angle the incident beam group velocity formed with the
x̂ direction.

Current transmission characteristics T (μ)-E0 for fixed ϕ

values are presented in Figs. 3(a) and 3(b), for states incident
from K ′ and K valley, respectively. The time-modulated
potential has a longitudinal length L = 110, frequency h̄ω =
0.1 t0, and potential amplitude V0 = 0.05 t0. All ϕ �= 0 curves
exhibit dip structures. The absence of dip structures in the

FIG. 3. (Color online) Current transmission T (μ) versus incident
energy E0 for given group-velocity directions ϕ. Curves for ϕ = 0◦,
10◦, 20◦, and 30◦ are denoted by symbols square, sphere, triangle,
and inverted triangle, respectively. Upper (lower) figure is for incident
valley K ′ (K). Curves are vertically shifted by 0.1 for better presenta-
tion. The time-modulated potential has a longitudinal length L = 110,
V0 = 0.05t0, and h̄ω = 0.1t0. The vertical dashed lines are guides to
illustrate the valley dependence in the transmission dip structures.

ϕ = 0◦ (or ky = 0) curves is consistent with the fact that the
relevant band has no energy gap in the low energy regime
E0 ∼ h̄ω. While all the dip structures exhibit valley-dependent
features, those that occur in the lower E0 have weaker
valley dependence. As ϕ increases, the lower (higher) E0

dip structures shift towards lower (higher) E0 values. The
higher energy dip structure for ϕ = 30◦ is out of the E0 range
in the figure. A check on the sideband coefficients reveals
that all the dip structures shown are associated with n = −1
sideband processes. All these can be explained by the resonant
sideband processes, with the recognition that here ky is no
longer fixed, but becomes ky(ϕ,μ,E0), where μ is the valley
index. A more explicit exposition of ky(ϕ,μ,E0) will be given
in the following, but we want to give a simple picture here first.

With ky(ϕ,μ,E0) becoming a function of ϕ, E0, and μ,
different relevant energy bands will be invoked at different
E0 values for the resonant sideband processes consideration.
It is found that ky(ϕ,1,E0) ≈ ky(ϕ,2,E0) for E0 ≈ 0, but
ky(ϕ,1,E0) < ky(ϕ,2,E0) for larger E0 and for ϕ < π/3. This
difference in ky is due to the warping effect. It leads to
a smaller effective energy gap in the relevant band for the
K-valley incident beam than for the K ′-valley incident beam,
and subsequently, leads to the valley dependence in the dip
structures. The lower (higher) energy dip structures in Fig. 3
are the n = −1 sideband processes to the relevant band edge of
the negative (positive) energy relevant band, with the resonant
condition E0 = ∓E∗

B(ky) + h̄ω. Roughly speaking, subjected
to corrections from warping effect, the �E0 between the two
dips structures in the same T (μ)-E0 curve gives us the energy
gap of the relevant band. The general trend of the dip-structure
E0-shifts with ϕ reflects the increasing of ky with ϕ. Finally,
comparing with Fig. 2, the missing of the E0 = −E∗

B(ky) + h̄ω

dip structure there is due to the suppression of such process
when �g < h̄ω is not satisfied. Moreover, in the E0 ≈ 0 region,
energy gap approaches zero (as ky ≈ 0), so that there is no
thresholdlike T (μ)-E0 behavior in Fig. 3.

For comparison purposes, the case of a gapped graphene is
presented in Fig. 4. The T (μ)-E0 exhibits thresholdlike behav-
ior near E0 ≈ 0. Here, except for � = 0.01 t0, the other phys-
ical parameters are the same as in Fig. 3. All the curves shown
have the same threshold energy even though ϕ values are differ-
ent. This shows that all the constant ϕ contours converge to the
same band edge energy � in the E0 ≈ 0 region. Specifically,
dip structures are found in the ϕ = 0 curve, with the energy
separation equal to 2�. Other dip structures remain essentially
the same as in Fig. 3, since � = 0.01 t0 is quite small.

The trigonal warping effect is explicitly shown in Fig. 5
(lower figure), where contour plots of both ϕ and E are made
in the Brillouin zone. This result is obtained from Eq. (16)
and Eq. (20). Special symmetry points in the Brillouin zone
(dashed hexagon) are indicated in the upper figure of Fig. 5.
The ϕ contours are depicted by lines fanning out from these
special points, whereas the E-contour lines encircle the � and
K points. We note that a ϕ-contour line does not necessarily
cross the E contours normally. It is because connecting points
of the same group-velocity direction in the Brillouin zone
does not require the group-velocity direction to lie along the
ϕ contour. The trigonal-warping effect causes the E contour
around the K point to evolve from a circularlike shape
into a concave-triangularlike shape, as E increases. More
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FIG. 4. (Color online) Current transmission T (μ) versus incident
energy E0 for a gapped (� = 0.01t0) graphene and for given
group-velocity directions ϕ. Curves for ϕ = 0◦, 10◦, 20◦, and 30◦ are
denoted by symbols square, sphere, triangle, and inverted triangle,
respectively. Upper (lower) figure is for incident valley K ′ (K).
Curves are vertically shifted by 0.1 for better presentation. The time-
modulated potential has a longitudinal length L = 110, V0 = 0.05t0,
and h̄ω = 0.1t0. The vertical dashed lines are guides to illustrate the
valley-dependence in the transmission dip structures.

importantly, the orientation of the triangularlike E contour
encircling the K point is different from that encircling the
K ′ point. As a result, ϕ contours emanating from the K

point, for ϕ < π/3, will converge onto the M point, as E0

increases from zero to t0. But the ϕ contours that emanate
from the K ′ point, for 0 < ϕ < 2π/3, will converge onto
the M ′ point. This provides a pictorial insight to the result
ky(ϕ,1,E0) < ky(ϕ,2,E0) for ϕ < π/3, and for 0 < E0 < t0.
The insight is the key for the understanding of the valley
dependence in the sideband processes, and hence to the
valley-dependent resonant transmission.

Analytical expressions for the position of the dip structures,
as shown in Fig. 3 (for the � = 0 cases), can be obtained. With
q = (k − μK0x̂)/K0, and expanding up to the fourth order in
q in the dispersion relation of graphene, we obtain qx as a
function of qy and at energy E = ±E∗

B(qy) + ω, given by

qx � ω

α

√
1 ± 2αqy

ω
+ μω2

6α

[
1 ± 2αqy

ω
− 3

(
αqy

ω

)2]
.

To simplify notations, in this equation and those that follow in
this subsection, energies are in units of t0, and h̄ = 1. For
a given group-velocity direction ϕ, q needs to satisfy the

FIG. 5. (Color online) Contour of group velocities of the same
direction ϕ in the Brillouin zone. The contour is denoted by lines
fanning out from the origin (� point) and other special points labeled
in the top figure. Background concentric circles enclosing the origin
are energy contour lines.

condition

t ≡ tanϕ = ∂E(q)/∂qy

∂E(q)/∂qx

.

After a straightforward but lengthy derivation, the dip positions
are found to be at

E = ±α
(
q0

y + �qy

) + ω, (21)

where for the plus branch, q0
y = ωt/(αγ ) and

�qy � −4μ

3

ω2t

αγ 2

1

1 − γ t + μω[1/γ + 5t/3]
. (22)

For the minus branch, q0
y = ωγ t/α and

�qy � −μ

6

ω2t

α

9γ 2 + 2γ t − 1

1 + t/γ + μω[γ − 5t/3]
. (23)

Here γ = √
1 + t2 − t . The valley dependence of the dip-

structure positions is carried by μ’s in �qy . Excellent
numerical agreement of these expressions to the dip-structure
positions in Fig. 3 and Fig. 7 lends an unequivocal confirmation
of the physical origin of the dip structures, namely resonant
sideband processes via a relevant band edge. This making of
the resonant condition is a generic feature of the coherent
inelastic resonance in transmission.58,59

B. Nontypical Fabry-Pérot resonance

In this subsection, we show that the dip amplitude of the
T (μ) dip structures can be tuned by L, the length of the
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FIG. 6. (Color online) L dependence of the current transmission
dip-structure amplitude for a time-dependent-potential region in
a gapped graphene (� = 0.01t0). The dip-structure condition is
E0 = � + h̄ω. Parameters for the time-modulated potential are
h̄ω = 0.014 t0 and V0 = 0.001 t0. Normal incidence case is shown.
Presented are the full numerical result T (1) (solid curve), results
for T

(1)
0 (solid square), and for T (1)

a (crossed thin line). The L

dependence of transmission T (1)
s (dashed curve) through a static

potential (Vs = 0.5 t0) region is plotted, for contrast, with incident
energy Ei = � + h̄ω − Vs. The Ts curve is vertically shifted by 0.4.

time-modulated-potential region. The underlying mechanism,
as we find out, is not of a Febry-Pérot-type resonance, but
is a nontypical one that is the result of a coherent inelastic
resonance instigated by the relevant band edge for the first
sideband process.

We show in Fig. 6 that the dip amplitude, depicted by the
solid curve, exhibits an oscillatory dependence on L. Normal
incidence case is considered here. The T (1) dip structure we
focus upon is the E0 = � + h̄ω dip structure in Fig. 4, but for
h̄ω = 0.014 t0, V0 = 0.001 t0, and L � 1500. Our plot of the
T

(1)
0 dip amplitude (solid square) shows that it dominates the

total current transmission T (1).
For the purpose of comparing the L dependence, we also

plot in Fig. 6 a T (1)
s (dashed) curve due to a static barrier.

The barrier height Vs = 0.5 t0, barrier width (longitudinal) L,
and for incident energy Ei = � + h̄ω − Vs . This choice of Ei

is to give the same q
(μ)
0 and p

(μ)
0 in our case in the multiple-

scattering region. The oscillatory behavior in T (1)
s is of a Febry-

Pérot type, characterized by the condition �L = 2π , where

�L ≡ (
p

(1)
0 − q

(1)
0

)
A1 L (24)

is the phase picked up in a round trip inside the scattering
region. Here, the momenta in the barrier region have |p(1)

0 −
K0x̂| = |q(1)

0 − K0x̂| such that �L = 2|p(1)
0 − K0x̂| LA1. The

two different oscillatory behaviors in Fig. 6 show that the
dip-amplitude period doubles that for the static barrier. In other
words, the phase picked up in a round trip inside the scattering
region for the resonant sideband processes could be �L/2.
The dip-amplitude oscillatory behavior in Fig. 6 hence belongs
to a nontypical Febry-Pérot resonance. A multiple scattering
analysis is shown below to trace out the physical origin of the
�L/2.

Following Eq. (19), the transmission coefficient T (1)
0 is

expressed in the form

T (1)
0 =

∑
α,β

[t′2]0α

[
1

1 − r1r′
2

]
αβ

[t′1]β0, (25)

where the matrix elements

[r1]mn = 〈
p(1)

m

∣∣r1

∣∣q(1)
n

〉
, [t1]mn = 〈

q(1)
m

∣∣t1

∣∣q(1)
n

〉
,

[r′
2]mn = 〈

q(1)
m

∣∣r′
2

∣∣p(1)
n

〉
, [t′2]mn = 〈

p(1)
m

∣∣t′2∣∣p(1)
n

〉
,

[t′1]mn = 〈
p(1)

m

∣∣t′1∣∣p(1)
n

〉
.

Essentially, the indices α and β in Eq. (25) denote the sideband
indices of the intermediate processes, while both the starting
and the final sideband are n = 0.

To trace out how L enters Eq. (25), all we need to do is to
take note of the reflection and transmission matrices, r′

2 and
t′2, respectively, at the interface M = L. Expressed in terms of
the corresponding matrices r1 and t1 at the interface M = 0,
the matrices are given by

[r′
2]mn = [r1]mne

−i(q(1)
m −p

(1)
n )LA1 ,

(26)
[t′2]mn = [t1]mne

−i(p(1)
m −p

(1)
n )LA1 .

At the dip structure, we can simplify things by keeping only
the incident and the first sideband channels n = 0, and n =
−1 (or 1̄), respectively, for our multiple scattering analysis.
We note that the reflection and transmission matrices we kept
are calculated at a single interface and with many sidebands
included. Already, we see that the phases in Eq. (26) are related
to �L/2. For instance, for the (mn) = (01̄) case, we have
(p(1)

1̄ − q
(1)
0 )LA1 equals �L/2, because p

(1)
1̄ − K0x̂ = 0. The

reduced-dimension matrices are given by

r̃′
2 =

(
[r′

2]00 [r′
2]01̄

[r′
2]1̄0 [r′

2]1̄1̄

)

=
(

[r1]00e
i�L [r1]01̄e

i�L/2

[r1]1̄0e
i�L/2 [r1]1̄1̄

)
,

t̃′2 =
(

[t′2]00 [t′2]01̄

[t′2]1̄0 [t′2]1̄1̄

)

=
(

[t1]00 [t1]01̄e
−i�L/2

[t1]1̄0e
i�L/2 [t1]1̄1̄

)
. (27)

Correspondingly, the transmission coefficient in Eq. (25) is
replaced by

T̃ (1)
0 =

∑
α,β

[t̃′2]0α

[
1

1 − r̃1r̃′
2

]
αβ

[t̃′1]β0,

where [
1

1 − r̃1r̃′
2

]
αβ

= δαβ + (1 − 2δαβ)[r̃1r̃′
2]αβ

det(1 − [r̃1r̃′
2])

. (28)

The L dependence of the dip-structure amplitude we
get from T (1)

a ≡ |T̃ (1)
0 |2 matches remarkably with the full

numerical result, as shown in Fig. 6. It is sufficient to look
at det(1 − [r̃1r̃′

2]) for the L dependence. With

det(1 − [r̃1r̃′
2]) = h0 + h1e

i�L/2 + h2e
i�L, (29)
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where

h0 = 1 − [r1]2
1̄1̄,

h1 = −2[r1]1̄0[r1]01̄,

h2 = −h0[r1]2
00, − 2[r1]01̄[r1]1̄1̄[r1]1̄0[r1]00 + [r1]2

1̄0[r1]2
01̄

are functions independent on L, we see that the L period
in det(1 − [r̃1r̃′

2]) is determined by the phase factor ei�L/2,
leading to the condition �L = 4π . This phase factor, according
to Eq. (27), is originated from the resonant first-sideband
process to the relevant band edge. In short, the inelastic
nature of the resonance allows the electron to accumulate a
phase in its round trip around the scattering region from two
wave vectors of different magnitudes. This is in contrast to a
Febry-Pérot resonance, where the two wave vectors are of the
same magnitude. The nontypical Febry-Pérot feature in the
dip-structure amplitudes is thus another manifestation of
the generic feature of the coherent inelastic resonances.

IV. CONCLUSIONS

In this paper, we have demonstrated the valley-dependent
resonant inelastic transmission through a time-modulated
region in graphene. We have shown explicitly that this results
from a remarkable interplay between the trigonal-warping
effect and the generic nature of the coherent inelastic resonance
in transmission. The coherent inelastic resonance imposes the
condition for the occurrence of the transmission dip structures
to be the sideband process to a relevant band edge. The
trigonal-warping effect provides a valley-dependent relevant
band edge for the dip structures. This resonant condition does
not involve L. It is evident in Eq. (21), Eq. (22), and Eq. (23),
and in the excellent agreement of these expressions to the dip-
structure positions in Fig. 3 and Fig. 7, where L’s are different.

In contrast, trigonal-warping exerts its effect differently
in the case of tunneling through time-independent potential
barriers in graphene,35 as far as the resonant condition is
concerned. The resonance is established by the Febry-Pérot
processes within the barriers, while the trigonal warping
provides valley-dependent wave vectors for the phase accu-
mulation in the multiple scattering processes. Consequently
L, or the longitudinal configuration of the potential barriers,
will affect the resonant condition.35 On the other hand, in
our case, that the resonant condition is free from L is a
noteworthy feature. It allows a simpler connection between
the dip positions and the frequency ω. This feature might be
worth future exploration on possible application to frequency
detection. We stress, in addition, that the multiple scattering
in our case sets up the nontypical Febry-Pérot feature in
our dip-structure amplitudes, allows the L tuning of the dip
amplitudes, but does not determine the dip position.

Collimation, the fixing of the group velocity direction ϕ

of the incident flow, is important for the observation of the
findings in this work. It has been realized in two-dimensional
electron systems, by the alignment of two point contacts in
series.60,61 This work points out the importance to valleytronics
of realizing such collimation in graphene. The two aligned
point contacts would need to be etched out of graphene,
with both the transverse width of the point contacts and the
spatial separation between point contacts much greater than the

FIG. 7. (Color online) Averaged current transmission 〈T (μ)〉
�ϕ

and valley polarization P versus incident energy E0. Top figure
shows 〈T (μ)〉

�ϕ
(solid curves), T (μ) (dotted curves), and T (μ) (gray

curves) of 0.53 V0. Parameters h̄ω = 0.04t0, V0 = 0.06t0, L = 210,
ϕ = 30◦, and �ϕ = 5◦. In the bottom figure, the valley polarization
P (solid curve) has dip structures (arrows 1 and 2) due to −E∗

B + h̄ω

and −E∗
B + 2h̄ω resonant conditions, respectively. The dip-and-peak

structure (arrow 3) is due to E∗
B + h̄ω resonant condition.

electron wavelength.60,61 The orientation of the point contact
on the graphene lattice would have fixed the ϕ for the incident
electron flow.

Averaging our results over ϕ on a range ϕ ± �ϕ/2, we
show in Fig. 7 (bottom figure) that the valley polarization P
in the transmission remains significant. Here, ϕ = 30◦ and
�ϕ = 5◦. Dip structures on the curve, indicated by arrows 1
and 2, correspond to resonant conditions −E∗

B + nh̄ω, while
the dip-and-peak structure, indicated by arrow 3, corresponds
to the resonant condition E∗

B + h̄ω. The valley polarization is
defined as

P = 〈T (1)〉
�ϕ

− 〈T (2)〉
�ϕ

〈T (1)〉
�ϕ

+ 〈T (2)〉
�ϕ

,

where 〈T (μ)〉
�ϕ

is the averaged transmission. For reference,
we plot, in Fig. 7 (upper figure), the averaged transmission
〈T (μ)〉

�ϕ
(solid curves) and the transmission T (μ) (dotted

curves) at ϕ = 30◦. The transmission T (μ) (gray curves) for
a smaller V0 is added to better indicate the dip-structure
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locations. That the 2h̄ω sideband process is more evident
in Fig. 7 than in Fig. 3 is because of a larger V0/h̄ω [see
Eq. (12)]. This is essentially due to a smaller h̄ω = 0.04t0,
or a frequency of ω/2π = 25.7 THz. For an even smaller
h̄ω = 0.02t0 (or frequency ∼ 12 THz), and V0 = 0.03t0, our
finding (not shown) is that the dip-peak structure in P ranges
between ±10% for the E∗

B + h̄ω resonance. Thus our results
are within reach of the experimental capability,62 for the case
of graphene. Finally, we point out that the valley polarization
P in Fig. 7 does not depend on the magnitude of t0. Thus in
artificial honeycomb lattices,63 when t0 could be scaled down,
the frequency needed for the observation of the phenomenon
in this work would have been scaled down accordingly, to well
within the THz range. Thus our finding should also be relevant
to the recent work on artificial honeycomb lattices.63

In conclusion, we have studied the transmission of elec-
trons through a time-modulated-potential region in graphene.

Coherent sideband processes are found to be at work in the low
energy regime even for the case of a pristine graphene, when
the full electron dispersion is gapless. The relevant energy band
and its band edge in the case of non-normal incident provide
a favorable condition for the coherent sideband processes,
and to the formation of dip structures in the transmission. A
collimated incident beam is shown to exhibit valley-dependent
dip-structure characteristics, due to the trigonal warping
effects. Our results should be of interest to valleytronics in
graphene, and possible implications to the THz studies and
artificial honeycomb lattices are also discussed.
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