
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 3, JUNE 2011 575

Short Papers

Template-Based Shell Clustering Using a Line-Segment
Representation of Data

Tsaipei Wang

Abstract—This paper presents the algorithms and experimental results
for template-based shell clustering when the datasets are represented by
line segments. Compared with point datasets, such representations have
several advantages, which include better scalability and noise immunity, as
well as the availability of orientation information. Using both synthetic and
real-world image datasets, we have experimentally demonstrated that line-
segment-based representations result in both better accuracy and better
efficiency in shell clustering.

Index Terms—Line-segment approximation, line-segment matching,
line-segment models, possibilistic c-means (PCMs), shell clustering,
template-based clustering, template matching.

I. INTRODUCTION

Fuzzy c-means (FCM) [1] and possibilistic c-means (PCM) [2] clus-
tering algorithms are representative examples of prototype-based clus-
tering algorithms. In these algorithms, each cluster is represented by a
prototype, which is updated during the clustering procedure to mini-
mize an objective function. The most-common algorithms of this class
are intended for detecting “compact” or “filled” clusters.

Shell-clustering algorithms, on the other hand, use prototypes that
are “shells” in the feature space. The ability to efficiently detect shell-
like structures of particular shapes is useful in many image processing
and computer-vision applications. Examples of shell-clustering algo-
rithms include the detection of circles [3]–[5]; general quadratic shells,
such as ellipses and hyperbola [6]–[9]; rectangles [10]; and template-
based shapes [11], [12].

All the existing shell-clustering algorithms are designed to cluster
points in the feature space. However, for most common applications
of shell clustering, where we are concerned with 2-D data, the shells
are curvilinear features and can be approximated with a set of line
segments, which provides a more compact representation of the data
than the original set of points. Edge points in images are often grouped
into line segments before processing, such as in [13] and [14]. Some
researchers have studied the problem of matching line-segment-based
data with a line-segment-based model or template [14]–[16]. However,
this approach has never been studied in the context of shell clustering.
In the following, we describe several advantages of representing the
data points with line segments before clustering them into particular
shapes.

1) Scalability and efficiency: The number of data points needed to
represent a shape varies with its size, assuming a fixed spatial res-
olution. On the other hand, the number of line segments needed
to represent the same shape remains constant. As a result, a
data representation based on line segments is more efficient and

Manuscript received January 22, 2010; revised July 6, 2010 and October 5,
2010; accepted December 7, 2010. Date of publication January 13, 2011; date
of current version June 6, 2011.

The author is with the Department of Computer Science, National Chiao
Tung University, Hsinchu 300, Taiwan (e-mail: wangts@cs.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2011.2105880

Fig. 1. Templates used in our experiments.

practical for larger datasets, such as the edges extracted from
high-resolution images.

2) Immunity to noise/outliers: During the process of grouping data
points into line segments, an additional benefit is the identifi-
cation of those points that are unlikely to belong to any line
segments. Such points are presumably outliers, and by removing
them in this stage, we simplifies the problem and prevents these
outliers from affecting the final clustering results.

3) Estimation of line widths: The amount of scatter (or the line/curve
width) is an important parameter for many other algorithms for
line, curve, and shape detection. For example, in our previous
template-based shell-clustering algorithm [12], this parameter is
directly related to the range parameter used in the computation
of linear densities and convergence checking for individual pro-
totypes. Previously, this parameter has to be assigned by the user.
By first grouping the data points into line segments, we can ob-
tain an estimation of this parameter for the subsequent clustering
process, thereby making the overall algorithm either globally or
locally more adaptive to different data characteristics.

The motivation and main contribution of this paper is to demon-
strate the feasibility and advantages of applying shell clustering to a
dataset represented as line segments. To allow for meaningful com-
parison between the experimental results using point-based and line-
segment-based data representation, we always start from a set of
points, obtain a corresponding line-segment representation, and then
apply shell clustering on both using identical conditions, including
the number of clusters, the method of initialization, and other shared
parameters.

This study is based on our previous work on possibilistic shell clus-
tering of template-based shapes (PCT) [12], a brief review of which is
given in Section II. Section III describes the modifications to the ex-
isting algorithm for the clustering of line segments. The methods used
in our experiments to obtain line-segment-based representations from
sets of points are covered in Section IV. We present our experimental
results in Section V, followed by the conclusion in Section VI.

II. SHELL CLUSTERING OF TEMPLATE-BASED SHAPES

PCT is a prototype-based clustering method with each prototype
being a transformed version of a template. A template is defined by
a set of vertices and the edges that connect them. Fig. 1 displays the
templates used in our experiments.

Three types of prototype transforms are described in [12], which are
as follows.

Type I: a transform that involves translation, scaling, and rotation;
Type II: similar to type I, but with a different scaling factor for each

dimension in the template frame of coordinates;
Type III: affine transform.

1063-6706/$26.00 © 2011 IEEE

576 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 3, JUNE 2011

The update equations for the prototypes and memberships are de-
rived from the standard objective function of PCM [2]:

JPCM =
C∑

i=1

N∑

j=1

um
ij d2

ij +
C∑

i=1

ηi

N∑

j=1

(1 − uij)m . (1)

Here, N is the number of data points, C is the number of clusters, m
is the fuzzification factor, uij is the membership of a point xj (1 ≤ j
≤ N) in the ith cluster, and dij is the distance between xj and the ith
cluster prototype. The parameter ηi is the “bandwidth” of a cluster that
controls the dependence of uij on dij . For PCT, the distance measure
dij is computed as the shortest Euclidean distance between xj and the
ith cluster prototype. This requires the identification of pij , which is
the match point of xj (i.e., the closest point to xj) on the ith cluster
prototype.

Our algorithms, both in [12] and in this paper, are based on PCM
instead of FCM. One reason is the well-known issue that FCM is more
sensitive to noise or outliers. Another problem of FCM is that when
a prototype converges at an incorrect location that overlaps with part
of one or more actual clusters, which happens frequently for general
shapes, it can prevent other prototypes from converging to those clus-
ters as well. This is not a problem with PCM as each prototype in PCM
is independent. On the other hand, the known problems of PCM (sen-
sitivity to initialization and overlapping prototypes) are handled with
the progressive clustering procedure described below.

To overcome the many local optima in the optimization process,
the alternating-optimization scheme to update prototypes and mem-
berships is placed inside a progressive clustering procedure. The main
features of our progressive clustering procedure are summarized as
follows.

1) A fixed number of prototypes are maintained by replacing deleted
prototypes with new ones.

2) In each iteration, prototypes that are very close to each other are
merged.

3) Prototypes with high densities are moved to a separate list, and
points within a small range δw of such good prototypes are
excluded from subsequent iterations. The density works as a
single-cluster validity measure [9] and is given by

ρi =
1
Li

∑

d i j ≤δw

uij (2)

where Li is the total length of all the edges in a prototype.
4) Spurious (i.e., low-density) prototypes are deleted.
5) For each prototype, the bandwidth parameter ηi in (1) is initial-

ized to a large value and gradually reduced to a lower bound
close to δ2

w .
6) The main loop of progressive clustering terminates when the

number of remaining data points drops below a predetermined
ratio or when a maximum number of iterations are reached.

Detailed description of these features can be found in [12].

III. SHELL CLUSTERING OF TEMPLATE-BASED SHAPES WITH

LINE-SEGMENT DATA

This section describes how we extend our previous algorithm to
work with datasets consisting of line segments instead of points. These
line segments are called “data segments” below. The objective function
(1) is modified to

JLPCT =
C∑

i=1

N L∑

j=1

nj u
m
ij d2

ij +
C∑

i=1

ηi

N L∑

j=1

nj (1 − uij)m (3)

Fig. 2. Various data-segment-to-prototype-edge distance measures. (a) Mid-
point method. (b) MSPD method. (c) Multipoint method with four key points.
The gray solid line represents the data segment, and the black solid line repre-
sents the prototype edges.

where NL is the number of data segments, and nj is the number of
original data points represented by the jth data segment.

The first problem that arises here is how to compute dij between a
data segment and a prototype. Three different possibilities are listed as
follows and are illustrated in Fig. 2.

1) The midpoint method [see Fig. 2(a)]: This method reduces the
problem to point-based PCT, with the jth data segment repre-
sented only by its midpoint μj . Here, dij is simply the distance
between μj and pij , which is the match point of μj on the
ith prototype. This approach is efficient and requires minimal
modification to the point-based PCT implementation. The draw-
back is that we lose the orientation information of the data seg-
ments, which is important for determining the correct prototype
transform.

2) The mean-squared-perpendicular-distance (MSPD) method [see
Fig. 2(b)]: The idea is to compute the mean-squared distance
between all the points on the data segment and the prototype edge
that contains pij . Let hj be the length of the jth data segment, and
let θij be the angle between the data segment and the prototype
edge containing pij . Assuming that the whole data segment is
matched to the same prototype edge, it is straightforward to prove
that

d2
ij =

1
hj

∫ h j /2

−h j /2

[‖μj − pij ‖ + x sin θij]2dx

= ‖μj − pij ‖2 +
h2

j

12
sin2 θij . (4)

This MSPD distance measure does contain the orientation infor-
mation through θij , and it is actually possible to optimize the
prototype rotation angle based on this distance for type I trans-
forms [15]. However, it is difficult to use this angle to optimize
our types II and III or other more complicated prototype trans-
forms. In addition, the match points of a data segment often fall
on multiple prototype edges. This adds a lot of computational
complexity since a data segment needs to be subdivided into
subsegments, with each matched to a different prototype edge,
so that (4) can be computed for each subsegment. An approxi-
mate solution, as used in [15], is to match the whole data segment
to a single (infinitely extended) prototype edge [see the dotted
line in Fig. 2(b)].

3) The multipoint method [see Fig. 2(c)]: This is a compromise
between the midpoint and MSPD methods. We place a small
number of evenly spaced key points on a data segment and com-
pute their mean-squared distances to a prototype, thereby leading
to a distance measure that is an approximation of MSPD

d2
ij =

1
np (j)

n p (j)∑

k=1

‖y(k)
j

− p(k)
i j

‖2 . (5)

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 3, JUNE 2011 577

Here, np (j) is the number of key points, y
(k)
j is the kth key point

on the jth data segment, and p
(k)
ij is the match point of y

(k)
j on the

ith prototype. By imposing an upper bound on np (j), we can limit the
computational complexity to stay linear with respect to the number of
data segments. In our experiments, we have used an upper bound of
four key points per data segment, which is a value selected empirically
that provides good compromise between accuracy and efficiency for
our datasets.

The multipoint method is what we have implemented in our system.
Compared with the midpoint method, here, we are able to make use
of the orientation information, although only implicitly. To better un-
derstand this, let us consider the case when there is an angle between
a data segment and a prototype edge, while the midpoint of the data
segment falls on the prototype edge. The distance according to the mid-
point method is zero. However, with the multipoint method, the torque
created by the “attraction” from the key points can rotate (or, more gen-
erally, modify the orientation of) the prototype edge toward the data
segment. The use of orientation information without explicitly using
angles also makes the application to, say, affine prototype transforms
straightforward, which is an advantage over the MSPD method. As the
key points of a data segment can have match points on different proto-
type edges, the multipoint method provides an approximate solution to
the problem of data-segment subdivision of the MSPD method.

Another place where we utilize the orientation information is during
the progressive clustering procedure, where the density of a prototype
is computed using

ρi =
1
Li

∑

‖y(k)
j

−p
(k)
i j

‖≤δw

[
nj

np (j)

]
uij cos θ

(k)
ij (6)

instead of (2). The factor cos θ
(k)
ij helps to prevent the case when a key

point happens to be located within δw of a prototype edge while θij

is large, thereby incorrectly causing all the data points associated with
the key point to completely contribute to the density of the prototype.

IV. REPRESENTING DATA WITH LINE SEGMENTS

So far, our algorithm imposes no constraint on how the line segments
are obtained. However, to be able to compare the proposed algorithm
with point-based PCT, we need to start from the same (point) data for
both. This requires the additional step of extracting line segments from
point data. The two sections below briefly describe the two methods
used for this step in our experiments. Neither of them requires a pre-
specified number of line segments. Please note that these methods are
independent of the actual shell clustering, and users can choose among
many available algorithms for line-segment extraction.

A. Line-Segment Representation of Generic Point Data

For our synthetic datasets, we obtain the line-segment representa-
tion using robust competitive agglomeration (RCA) [17]. Its objective
function is given by

JRCA =
C∑

i=1

N∑

j=1

u2
ij γi (d2

ij) − α

C∑

i=1

[
N∑

j=1

wij uij

]2

. (7)

The γi (d2
ij) factor is a cluster-dependent loss function that discrim-

inates against points far away from the ith cluster, and wij , which
is the derivative of γi , gives the “typicality” of xj in the ith cluster.
The second term in the cost function favors larger clusters and has
the effect of shrinking the smaller clusters, thereby gradually reduc-
ing the total number of clusters. As a result, RCA is started with an

overspecified number of clusters. The parameter α controls the pace of
agglomeration.

In this section, each cluster is a line segment, which is different
from the other sections where a cluster is an instance of the shape
being detected. The prototype parameters of the ith cluster consist of
the robust mean μi and the robust fuzzy-covariance matrix M i [17]

μi =

[∑N

j=1 u2
ij wij xj

]

[∑N

j=1 u2
ij wij

] (8)

M i =

[∑N

j=1 u2
ij wij (xj − μi)(xj − μi)T

]

[∑N

j=1 u2
ij wij

] . (9)

Let ai 1 and ai 2 (ai 1 ≤ ai 2) be the eigenvalues of M i , and let ei 1 and
ei 2 be their respective eigenvectors. The corresponding line segment
is centered at μi and along the direction given by ei 2 . To compute the
length and width of the line segment, we utilize the fact that the ratio
between the half-width and the standard deviation of a 1-D uniform
distribution is

√
3. By assuming uniform point distribution in the line

segment, its length (i.e., full width) can be estimated as 2
√

3 times the
standard deviation along the major (minor) axis

√
ai2 (

√
ai1).

As of the distance measure dij , we use the shortest Euclidean dis-
tance between a point and a line segment

d2
ij =

⎧
⎨

⎩

[(xj − μi) • ei1]2 , if |(xj − μi) • ei2 | ≤
√

3ai2

[(xj − μi) • ei1]2 + [|(xj − μi) • ei2 | −
√

3ai2]2 ,
otherwise.

(10)

We do not use the distance measure of adaptive fuzzy clustering (AFC)
[18], which is also used in [17], due to its tendency of “bridging the
gaps” between actually separate line segments.

For noisy datasets, even a robust clustering algorithm, like RCA,
may still produce line segments that consist of mostly noise points. As
the noise line segments generally have lower linear densities compared
with the real ones, we empirically select one fourth of the weighted
mean linear density of all the line segments as a threshold and discard
those line segments whose linear densities are below this threshold.

To prevent different actual line segments from being merged to-
gether, we specifically use a small α in (3) for weaker agglomeration.
The side effect is that some actual line segments may be divided into
multiple pieces. As a result, we add an additional step of compatible
cluster merging (CCM) [9] to merge these pieces back together.

B. Line-Segment Representation of Image Data

When trying to approximate the edge points in an image with line
segments, it is a common practice to assume that the edge points
are connected and the edges have a maximum width. Based on these
assumptions, we employ the following procedure to obtain a set of line
segments from the edge points.

1) We first extract the connected components from the edge points.
We use eight-connectivity as it is less likely to oversegment thin
lines that are about 1-pixel wide. Those components containing
fewer points than a threshold (which is currently 10) are deleted
to reduce the effect of spurious edge points.

2) Each connected component is approximated with a line segment
according to (8) and (9). If its full width (2

√
3a1) is above a

given threshold (which is currently 2 pixels), the component is
split using two-cluster FCM with the distance measure (10). The
two resulting clusters are first defuzzified and then further divided
into eight-connected components. This process is repeated until

578 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 3, JUNE 2011

TABLE I
SUMMARY OF DATASETS

the line segment approximating each connected component has
a width within the threshold.

3) Finally, we use CCM to merge oversegmented line segments.

V. EXPERIMENTAL RESULTS

Table I summarizes the datasets used in our experiments. There are
six synthetic datasets and three image datasets; the image data are also
used in [12]. For each synthetic dataset, we also have a noisy version
with 800 additional uniformly distributed noise points. The number
800 is selected to exceed the number of nonnoise (in-lier) points in
most cases.

Fig. 3 contains the example clustering results of the synthetic
datasets. The three main columns, from left to right, contain results
using types I, II, and III prototype transforms, respectively. For each
dataset, the left plot shows the original data points with the data seg-
ments, and the right plot shows the final prototypes overlaid on the data
segments. The results indicate that the algorithm is capable of detecting
the desired shapes from the data segments.

When comparing the results for noiseless and noisy data, we can
see that most of the noise points are not covered by any data seg-
ment. This, in turn, leads to similar clustering results with or without
noise. These are examples of the advantage stated earlier regarding im-
proved noise/outlier immunity of line-segment-based representations.
This observation is quantitatively verified later in this section.

Fig. 4 contains example clustering results for the image datasets.
The left column is the original image (160 × 120) overlaid with the
final prototypes; the other two columns have the same meanings as the
corresponding columns in Fig. 3. The steps of edge-point extraction
include smoothing, gradient computation, thresholding, and thinning,
although for brevity, we do not explain the details here. Our algorithm
can be applied to gray-scale or color images in the same way, with the
only difference being how the edge points are determined. As there are
many possibilities for this purpose, each user can select any method
that works for the particular application.

We evaluate the accuracy of the clustering results by comparing
the final prototypes with the ground truth. For synthetic datasets, the
ground truth consists of the actual locations of all the shell clusters
(which are called the “target clusters” below) used to generate the data.
The ground truth of the image datasets are marked manually. We use
the “grade of detection” gd for a target cluster for evaluation purposes,
which is defined in [12] as

gd (PT) =

⎧
⎨

⎩

1, d ≤ δw

(3 − d/δw)/2, δw < d ≤ 3δw

0, otherwise.

(11)

Here, PT is the target cluster prototype, and d is its maximum devia-
tion from the closest prototype generated by the clustering algorithm.

Such a “soft” definition of detection provides a gradual degradation of
accuracy for data with some scatter.

The performance comparison is based on two measures: the terminal
gd (which is denoted as g∗

d ; the larger, the better), and the amount of
computation (which is denoted as kc ; the smaller, the better) required
to reach a given gd , thus taking into account both accuracy and effi-
ciency. Following [12], we define kc as the number of dij computations
(including matching-point determination) per data point as this is the
most computationally expensive step of the whole algorithm.

Table II lists the performance comparison, including g∗
d and kc at

gd = 0.5 (noiseless data) or 0.25 (noisy data). We use kc at gd =
0.25 for noisy data to allow the comparison between the results using
point-based and line-segment-based data representations, as gd never
reaches 0.5 when using the point-based method. The reported values
are all averaged over all the target clusters and 20 test runs. For the
noiseless datasets, the line-segment-based method consistently pro-
duces g∗

d values that are comparable with or slightly better than the
point-based method. The differences are much more significant for
the noisy datasets, which are consistent with our expectation that line-
segment-based representations are more immune to noise/outliers. The
comparison of kc values also clearly indicates much better efficiency
for the line-segment-based representation. Please note that many fac-
tors, including characteristics of the shapes themselves and the number
of instances, can affect the performance, and we naturally will ex-
pect more complicated datasets (those with more instances or more
complicated shapes) to require more computation to process.

Now that our algorithm uses line segments to represent both the
template and data, it can be applied to problems that involve the match-
ing or registration between two sets of line segments, which has been
a research topic in computer vision for a long time. Here, we com-
pare our algorithm with a well-known technique for this purpose: the
local-search-based method in [15]. We choose this technique because
it bears some similarity to our approach in that both use random starts
that search locally for the solution by iteratively minimizing a cost
function in a steepest-descent-like manner. The difference is that our
local search is in the space of transform parameters, and the local search
in [15] is in the space of possible correspondences between the two
sets of line segments. We use only type I transforms for our method
here due to the limitations of the method in [15].

The progressive clustering procedure in Section IV is modified to
facilitate this experiment. Specifically, we maintain only a single pro-
totype at any time, and the progressive clustering procedure continues
until we have obtained a prespecified number of detections. We use
the total number of iterations in the progressive clustering procedure,
which is denoted nit here, as the unit for the comparison of the amount
of computation. This is because each iteration has the same form of
asymptotic complexity of O(Nd Nm) in both methods, with Nd and
Nm being the number of data segments and model segments (proto-
type edges), respectively. For our method, this involves the distance
computation between all the pairings of data segments and prototype
edges. For the method in [15], this involves the computation of “fit
error” for each set of correspondences in the Hamming-distance-one
neighborhood of the current set of correspondences.

The experimental results, which are averaged over 20 runs, are
listed in Table III. Only the three datasets in Table II intended for
type I transforms are included. Our method consistently performs bet-
ter (higher gd and smaller nit) than the method in [15]. It is also
worth noting that the added noise hardly affect nit for our method
but significantly increase nit for the method in [15]. The large differ-
ence in g∗

d for the “ring of beads” dataset, where the actual shapes are
more localized, seems to indicate that our method is preferred in such
scenarios.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 3, JUNE 2011 579

Fig. 3. Example clustering results of synthetic datasets. (a) Noiseless datasets. (b) Noisy datasets. For each dataset, the left plot is the original point data
overlapped with the data segments, and the right plot displays both the data segments (gray thick line segments) and the final prototypes.

TABLE II
PERFORMANCE COMPARISON BETWEEN CLUSTERING RESULTS USING

POINT-BASED AND LINE-SEGMENT-BASED DATA REPRESENTATION

TABLE III
PERFORMANCE COMPARISON BETWEEN OUR ALGORITHM AND THE

LOCAL-SEARCH METHOD IN [15]

Fig. 4. Example of clustering results of image datasets. For each dataset, the
columns, from left to right, are the original image overlaid with the final pro-
totypes, edge points overlapped with the data segments, and the data segments
(gray thick line segments) overlapped with the final prototypes, respectively.

VI. CONCLUSION

In summary, we have implemented the algorithms to apply shell
clustering to datasets represented as line segments. Such representa-
tions are more compact and scalable than point datasets because they

580 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 19, NO. 3, JUNE 2011

already provide a level of information condensation by grouping points
into line segments. The algorithms, which are given in this paper, are
based on our previous work on template-based shell clustering. We have
presented clustering results for both synthetic and real-world image
datasets with shell clusters of several different template-based shapes
to demonstrate the effectiveness of this new approach. The quantitative
performance comparison provides clear evidence of improvements, in
both efficiency and accuracy, by representing the point data with line
segments. In addition, we achieve much better noise immunity with
line-segment-based data representation by employing a robust method
such as RCA to extract the line segments, thereby effectively exclud-
ing most noise points from the shell-clustering procedure. Favorable
comparison with the method in [15] also supports our algorithm as a
general-purpose technique to match line segments.

Note that, while the algorithm to generate a line-segment representa-
tion from a set of points is not by itself the focus of this paper, the quality
of such a representation does affect the performance of our algorithm.
Therefore, it is important to select an algorithm and its parameters ap-
propriately for the particular application. We have used an RCA-based
method for generic point datasets because it does not require the se-
lection of many parameters and is not very sensitive to initialization.
Other methods might work better in different scenarios. For exam-
ple, gradient-direction information and/or the color/brightness/texture
of nearby pixels may help to produce a more accurate line-segment
representation from the edge points in an image.

We have also identified a number of research topics that we are inter-
ested to pursue. A possibility is the extension to datasets of more than
two dimensions. For example, the role of line segments in 2-D is re-
placed by planar patches in 3-D. An interesting direction is to integrate
CCM and template-based shapes using planar patches, which is an ex-
tension of the work done in [9] and [17] for quadratic surfaces. We are
also interested in applying our algorithm to such applications as line-
segment-based image registration, including performance comparisons
with other existing algorithms for this purpose. In addition, it should be
interesting to investigate the replacement of PCM with several related,
but more recent, algorithms, such as [19]–[21], as our “base” cluster-
ing algorithm, as it remains unknown how these algorithms perform in
shell clustering.

REFERENCES

[1] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

[2] R. Krishnapurum and J. M. Keller, “A possibilistic approach to clustering,”
IEEE. Trans. Fuzzy Syst., vol. 1, no. 2, pp. 98–110, May 1993.

[3] R. N. Dave, “Fuzzy shell-clustering and application to circle detection in
digital images,” Int. J. Gen. Syst., vol. 16, pp. 343–355, 1990.

[4] Y. H. Man and I. Gath, “Detection and separation of ring-shaped clusters
using fuzzy clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16,
no. 8, pp. 855–861, Aug. 1994.

[5] R. Krishnapurum, O. Nasraoui, and H. Frigui, “The fuzzy c spherical
shells algorithm: A new approach,” IEEE Trans. Neural Netw., vol. 3,
no. 5, pp. 663–671, Sep. 1992.

[6] R. N. Dave and K. Bhaswan, “Adaptive fuzzy C-shells clustering and
detection of ellipses,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 643–
662, Sep. 1992.

[7] H. Frigui and R. Krishnapurum, “A comparison of fuzzy shell clustering
methods for the detection of ellipses,” IEEE Trans. Fuzzy Syst., vol. 4,
no. 2, pp. 193–199, May 1996.

[8] R. Krishnapurum, H. Frigui, and O. Nasraoui, “Fuzzy and possibilistic
shell clustering algorithms and their application to boundary detection
and surface approximation—Part I,” IEEE. Trans. Fuzzy Syst., vol. 3,
no. 1, pp. 29–43, Feb. 1995.

[9] R. Krishnapurum, H. Frigui, and O. Nasraoui, “Fuzzy and possibilistic
shell clustering algorithms and their application to boundary detection
and surface approximation—Part II,” IEEE. Trans. Fuzzy Syst., vol. 3,
no. 1, pp. 44–60, Feb. 1995.

[10] F. Hoeppner, “Fuzzy shell clustering algorithms in image processing:
Fuzzy c-rectangular and 2-rectangular shells,” IEEE Trans. Fuzzy Syst.,
vol. 5, no. 4, pp. 599–613, Nov. 1997.

[11] X.-B. Gao, W.-X. Xie, J.-Z. Liu, and J. Li, “Template based fuzzy c-shells
clustering algorithm and its fast implementation,” in Proc. IEEE Int. Conf.
Signal Process., 1996, pp. 1269–1272.

[12] T. Wang, “Possibilistic shell clustering of template-based shapes,” IEEE
Trans. Fuzzy Syst., vol. 17, no. 4, pp. 777–793, Aug. 2009.

[13] M. Barni and R. Gualtieri, “A new possibilistic clustering algorithm for
line detection in real world imagery,” Pattern Recognit., vol. 32, pp. 1897–
1909, 1999.

[14] X. Ren, “Learning and matching line aspects for articulated objects,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1–8.

[15] J. R. Beveridge and E. M. Riseman, “How easy is matching 2d line models
using local search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 6,
pp. 564–579, Jun. 1997.

[16] L.-K. Sharka, A. A. Kurekinb, and B. J. Matuszewski, “Development and
evaluation of fast branch-and-bound algorithm for feature matching based
on line segments,” Pattern Recognit., vol. 40, pp. 1432–1450, 2007.

[17] H. Frigui and R. Krishnapuram, “A robust competitive clustering algo-
rithm with applications in computer vision,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 21, no. 5, pp. 450–465, May 1999.

[18] R. N. Dave, “Use of the adaptive fuzzy clustering algorithm to detect lines
in digital images,” in Proc. SPIE, 1989, vol. 1192, pp. 600–611.

[19] M. S. Yang and K. L. Wu, “Unsupervised possibilistic clustering,” Pattern
Recognit., vol. 39, pp. 5–21, 2006.

[20] N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, “A possibilistic fuzzy
c-means,” IEEE Trans. Fuzzy Syst., vol. 13, no. 4, pp. 517–530, Aug.
2005.

[21] J.-S. Zhang and Y.-W. Leung, “Improved possibilistic c-means clustering
algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 2, pp. 209–217, Apr.
2004.

A Cluster-Validity Index Combining an Overlap
Measure and a Separation Measure Based on

Fuzzy-Aggregation Operators

Hoel Le Capitaine and Carl Frélicot

Abstract—Since a clustering algorithm can produce as many partitions
as desired, one needs to assess their quality in order to select the partition
that most represents the structure in the data, if there is any. This is the
rationale for the cluster-validity (CV) problem and indices. This paper
presents a CV index that helps to find the optimal number of clusters of
data from partitions generated by a fuzzy-clustering algorithm, such as
the fuzzy c-means (FCM) or its derivatives. Given a fuzzy partition, this
new index uses a measure of multiple cluster overlap and a separation
measure for each data point, both based on an aggregation operation of
membership degrees. Experimental results on artificial and benchmark
datasets are given to demonstrate the performance of the proposed index,
as compared with traditional and recent indices.

Index Terms—Aggregation operators (AOs), cluster validity (CV), fuzzy-
cluster analysis, triangular norms (t-norms).

Manuscript received February 2, 2010; revised June 28, 2010 and October
11, 2010; accepted December 31, 2010. Date of publication January 17, 2011;
date of current version June 6, 2011.

The authors are with the Mathematics, Image, and Applications Lab-
oratory, University of La Rochelle, 17000 La Rochelle, France (e-mail:
hoel.le_capitaine@univ-lr.fr; carl.frelicot@univ-lr.fr).

Digital Object Identifier 10.1109/TFUZZ.2011.2106216

1063-6706/$26.00 © 2011 IEEE

