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We study nonequilibrium polariton condensates in a harmonic potential trap. After finding the steady-state

density and supercurrent distributions of nonequilibrium condensates, we calculate the collective excitations of
the system. From collective excitation spectra, we can identify the bifurcation of the stable and unstable modes
in terms of the pumping spot size and power. There exist Nambu-Goldstone modes that reveal the pattern of the
spontaneous symmetry breaking of the system. Moreover, the unstable mechanism associated with the inward

supercurrent flow is characterized by the existence of a supersonic region within the condensate.
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I. INTRODUCTION

In the past years, there have been intensive searches for
a new Bose-FEinstein condensate in solids. Researchers found
such a candidate called the microcavity-polariton condensate
(MPC), which has been created from the interaction of
cavity photons and confined excitons in the strong-coupling
regime.!> Growing research activities in this MPC can be
attributed to the system being intrinsically out of equilibrium
determined by the dynamical balance between interactions,
trapping potentials, pumping and decay.® Rich phenomena
from nonequilibrium many-body physics are accessible in this
system. Many signatures of phase transition from inhomo-
geneous MPCs, such as spectral and spatial narrowing and
first-order coherence, were studied by Balili et al.* Moreover,
there exists superfluidity even though the MPC involves a
nonequilibrium dissipative character.>~” Due to the continuous
pumping and disorders of MPCs, the instability of rotationally
symmetric states and vortices appear spontaneously without
stirring or rotating MPCs.”® Nonequilibrium MPCs also show
rotational spontaneous symmetry breaking and are unstable
towards the formation of vortices or vortex array without
any rotational drive.®”!! Although the spontaneous symme-
try breaking followed by nonequilibrium MPCs has been
experimentally demonstrated, the properties of spontaneous
symmetry-breaking states still need to be understood and are
worthily studied.

Nonequilibrium MPCs have been theoretically investigated
by several groups, for instance, Keeling et al.>>'* studied the
slow dynamics of MPCs by eliminating the reservoir dynam-
ics, while Wouters and Carusotto'> coupled the dynamics
of polaritons from condensate to the reservoir with rate-
diffusion equation in homogeneous systems. Both Refs. 10
and 12 concluded the same excitation behavior of diffusive
Goldstone modes at low momentum, which is recognized as a
unique feature coming from the driven-dissipative systems.!?
However, Ref. 12 dealt with homogeneous MPCs, and the
specification of the Thomas-Fermi (TF) radius as the unstable
boundary in Ref. 9 is not always valid since the effects
of the density gradient and supercurrent of the steady state
cannot be neglected under the regime of higher pump powers.
The excitation spectra of inhomogeneous MPCs have been
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observed experimentally,'*!> and no theoretical model can

characterize these spectra accurately for finite-size MPCs.

In this paper, we apply the complex Gross-Pitaevskii
equation (cGPE) to model nonequilibrium MPCs in a harmonic
potential trap.”>'? In Sec. II, we calculate the steady states of
MPC:s. The density and supercurrent distributions are given for
various pumping conditions. Once we find the steady states of
MPCs. We then study the collective excitation spectra and
stability of MPCs in Sec. III. The collective excitation spectra
show the possible existence of Nambu-Goldstone modes that
can reveal the pattern of the spontaneous symmetry breaking
of MPCs. In Sec. IV, a phase boundary between the stability
and instability of the system is identified. From comparing this
phase boundary with the supersonic horizon, we interpret the
unstable mechanism of a MPC being due to the existence of an
inward and supersonic flow in the steady state. The conclusion
is given in Sec. V.

II. STEADY STATES OF POLARITON
CONDENSATES IN A TRAP

The cGPE is a mean-field model developed to deal with
the many-body problems incorporating the trapping potential,
interparticle interactions, pumping, and decay dynamics.”'”
The trapping potential is given by a harmonic potential
Vext = (hw/2)(r?/A?) with trapping frequency w and oscillator
length A = \/h/mw, where i and m are Planck’s constant and
polariton mass, respectively. By choosing the length, time,
and energy scales in units of A, 1/w, and hw, respectively,
and further rescaling the wave function v — +/hw/2U ¢ with
respect to the strength of the two-body interaction potential U,
we obtain the dimensionless cGPE (Ref. 9)
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where the third term on the right-hand side of the equation
represents the normalized two-body interaction, the dimen-
sionless linear net gain o = 2y /hw represents the pump
power with y describing the balance between the stimulated
scattering of polaritons into the condensate and the decay of
polaritons out of the cavity, and o = I'/U is a factor of the
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nonlinear effective loss with I' being the coefficient of gain
saturation.

We consider the pumping profile being inhomogeneous and
shown as a(r) = P[O() — ©(r — R)], where P is the pump
power, ®(r — R)is aunit step function, and R is the pump spot
size. With o being fixed (o = 0.3) throughout this paper, the
physical properties of the system are determined by pumping
parameters P and R. The steady state of a MPC is shown
by the wave function ¥ (r,t) = ¥o(r)e **!, where u is the
chemical potential of the system for given pumping parameters
P and R, and is determined by the conservation law of
polaritons

f(a—a|w|2)|w|2d2r =0, 2)

i.e., the balance between net gain and loss over all the space
being zero.

From the Madelung transformation, we take v(r) =
Vp(r)e'?™  where p(r) and ¢(r) are the density and phase
of a MPC, respectively. Given the supercurrent v(r) = V¢
and from Eq. (1), we can obtain the continuity and Bernoulli’s
equations:

Ve (pv) = (a(r) —op)p, 3)
1.2 Toe o oy
2(r +p)+2|VI ZﬁV Wp) = . “4)

If the pump power is uniformly distributed, the quantum
pressure, V2(\/p(r))//p(r), and the supercurrent have a
small effect on the density distribution. From Eq. (4), we
then find the TF solution of the system with the rotationally
symmetric density and supercurrent being p(r) = a® — r? and
v(r) = —Pr(a® — r%)/4a?, respectively, where the TF radius
a = /3P /20 is determined by the balance of net gain and
loss of Eq. (3). Due to the possible existence of a supersonic
horizon, we shall compare the supercurrent with the sound
velocity ¢ of a MPC and define a velocity-comparison factor
f =1-—(v/c)*, where the sound velocity ¢ = +/p(r)/2 is
obtained by varying the pressure of the barotropic equation
of state with respect to the mass density of the condensate
fluid.'® The supercurrent profiles exhibit certain subsonic or
supersonic regions shown by the factor f being greater or less
than zero, respectively. The velocity-comparison factor of the
TF solutionis f(r) = 1 — [(Pr)*(a®> — r*)/8a*]. Note that the
TF solution does not describe the system correctly. It just gives
us a crude physical picture of the MPCs.

To find the accurate steady state of the MPCs, we solve
Egs. (3) and (4) numerically by applying the shooting
method'®!7 with the fourth-order Runge-Kutta integration
under the constraint of Eq. (2). The rotationally symmetric
distributions of the steady-state densities p(r), supercurrents
v(r), and velocity-comparison factors f(r) of MPCs are shown
in Fig. 1 for R = 2 (green dotted lines), R = 4 (red-dash dotted
lines) and R = 8 (blue solid lines) under P = 4.4. Note that
the variation of the pump power is equivalent to the effect of
changing the pumping spot size. When we decrease/increase
the pump power, the MPC cloud shrinks or grows and the
pumping spot size becomes larger or smaller than the MPC
size due to shortage or abundance of net gain on the edge of the
MPC, respectively. In addition, due to repulsive interactions
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FIG. 1. (Color online) Stationary solutions of the condensate.
(a) Density distributions, (b) supercurrent distributions, and (c)
velocity comparison factors for the pumping power P =4.4 and
pumping spot sizes R =38 (blue solid lines), R =4 (red dash dotted
lines), and R =2 (green dotted lines), respectively.

of polaritons, the chemical potential of the condensate raises
and creates a blueshift on the total energy because more
polaritons have been injected into the system by raising the
pump power.'4

The size and density of the MPC increase with increasing
pumping radius R, as in Fig. 1(a), that is consistent with
the previous results.” Note that the supercurrent distribution
not shown in Ref. 9 but obtained by the series expansion,
which is valid only for near the center of the MPC, was
shown in the appendix of Ref. 10. So far to the best of our
knowledge, there is no full-range supercurrent distribution
being calculated. Here, we have determined the steady state
of MPC by not only the density distribution but also the
supercurrent distribution. The density profiles of MPCs are
quite different from the TF density profiles due to nonzero
supercurrents, resulting from the nonequilibrium pump and
decay characters of MPCs. The density distribution of the
system is affected by the supercurrent: the higher or lower
density at any position corresponding to a smaller or larger
supercurrent.” For R = 8, the density is suppressed near
r =2, where the magnitude of the supercurrent is
maximal.

Shown in Fig. 1(b), the supercurrent of the nonequilibrium
flow of MPC depends on the pumping spot size and power.
This flow is given by the continuity equation of Eq. (3), in
which the gain of the MPC is density dependent. If the density
is low, then the gain dominates; however, if the density is high,
then the density-dependent and dissipative term dominates,
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and the condensates in the high-density region flow toward
the low-density region. Consequently, the supercurrents must
exist in between the high- and low-density regions. The
supercurrent of a flow is lower or higher with respect to
the higher or lower density at any position. This correlation
between the density and supercurrent can be understood from
Eq. (4). When the pump power is not very high, we can
neglect the quantum pressure in Eq. (4). Supercurrents are
zero outside the MPC and at the center of the trap. There
exist a maximal supercurrent somewhere in the middle region
of the MPC, where the density has to be lowered in order to
preserve the chemical potential. Thus, the radial position of the
maximal supercurrent corresponds to the position of density
depletion. Indeed, as shown in Fig. 1(b) of the steady-state
solutions of MPCs, we find that there is a maximal supercurrent
happening at the density suppression that increases with
increasing R.

Because the supercurrent increases with increasing R, as
the pumping spot size is increased above some critical value
R, there is a supersonic region, where the supercurrent is
higher than the sound velocity and the velocity-comparison
factor f < 0. From Fig. 1(c) the velocity-comparison factor f
becomes negative in the region of » > 1.5 for the supercurrent
profile of the MPC with R = 8. If the supersonic phenomenon
happens within the MPC, we shall see that a small perturbed
MPC generates rotationally symmetric-breaking states, rotons,
and vortices, and the MPC becomes unstable. Moreover, in
such a system of MPCs in a potential trap, the steady-state flow,
which exceeds the speed of sound, can be achieved. Within
the corresponding event horizons, the sound waves (sonic
perturbations) that cannot escape from the event horizons
instead are dragged inwards. If the condensate supercurrent
is slow, the excitations propagate with the sound velocity,
whereas if the condensate supercurrent is faster than the sound
velocity, then the excitations cannot propagate against the
background stationary flow, and, in theory, the information
cannot be transported. It is the supersonic flow that contributes
to the instabilities rather than the inward superfluid flow
concluded in Refs. 9 and 10. For the MPC with R = 4 shown
in Fig. 1(b), the radial supercurrent is an inward flow, but it
is stable and will be shown later. We also observed the flow
direction of the supercurrent, depending on the pumping spot
size: the outward and inward flows correspond to the smaller
and larger pumping spot sizes, respectively. In a trap, a small
perturbation on the MPC can change its original flow along
the radial direction into the azimuthal direction spontaneously.
The system then becomes spontaneously rotational symmetry
breaking and contains many degenerate states labeled by
the quantum number ¢ of angular momentum. According
to Goldstone’s theorem, excitation modes of a spontaneous
symmetry-breaking system will have gapless modes, called
the Nambu-Goldstone modes.'® The Nambu-Goldstone modes
are the dominant excitation modes at small wave vector (or
in the long wavelength limit) of excitations of the system.!”
Therefore, it is fruitful that we can find the excitation mode
pattern of MPCs in order to understand the phenomena
of spontaneously rotational symmetry breaking occurring in
MPCs. In the following, we calculate the collective exci-
tation spectra of MPCs in a trap by using a perturbation
method.?’
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III. COLLECTIVE EXCITATION SPECTRA
AND STABILITY OF POLARITON
CONDENSATES IN A TRAP

We investigate the spontaneous symmetry-breaking prop-
erties of MPCs from the Nambu-Goldstone modes that occur
in the collective excitation spectrum and study the stability of
MPC:s. In order to study the dynamical properties of MPCs
with respect to pumping schemes (conditions of varying the
pumping spot size and power), we apply a small perturbation
SY(r,t) = e M u(r)e”™ ¥ — w*(r)e’*] on the steady state
Yo(r), where Q is the excitation frequency of the system.
Substituting the total wave function ¥ (r,?) = ¥o(r) + ¥ (r,z)
into Eq. (1) and linearizing it around the steady state (),
we obtain a pair of Bogoliubov’s equations®! for excitations.
Because of the rotational invariance of the condensate, u(r)
and w(r) of Bogoliubov’s equations can be written as: u(r) =
U(r)ei?Wet? and w(r) = W(r)e ?Wett? where £ and 0
are the quantum numbers of angular momentum and the
azimuthal angle, respectively. We then obtain the Bogoliubov
equations:

LIU] = 3(p —iop)W = (u + U, )
L'[W] = 3(p +iop)U = (u — )W, (6)
where

1 ., 1d( d .
L=——e"——(r—¢*

2 rdr\ dr

02 r? i .
+ ﬁ+5+p+§a—mp @)

and L' is the adjoint operator of L. From solving eigenfunc-
tions and eigenfrequencies of Egs. (5) and (6) under different
pumping schemes, we find the collective excitation states and
their excitation energies of the condensate as a function of £.
Because of the nonequilibrium character of MPCs, Egs. (5)
and (6) are non-Hermitian, and excitation frequencies €2 are
complex values,'>!* whose real part, Re(R2), and imaginary
part, Im(€2), display the excitation energy and decay (or
growth) rate of the condensate, respectively. The decay,
Im(2) < 0, or growth, Im(€2) > 0, behavior of collective
excitation modes indicates the steady state of the condensate
is stable or unstable, respectively. The dispersion curves of
low-lying excitation modes of the condensate are shown in
Fig. 2. These mode dispersions are quite different for various
pumping conditions. As shown in Figs. 2(a)-2(c), for R=2
with P =3 and R = 2 and 4 with P = 4.4, the excitation modes
of MPCs have Im(€2) < O for all £ when the pumping spot
R is smaller than the TF radius, having a =3.87 (4.69) for
pumping power P = 3 (4.4). The perturbed MPCs with R < a
are stable and damped. The stable excitation modes basically
exhibit a trend that the excitation states with the higher £ have
more nodes and higher energies than those with the lower
£. The lower £ modes possess an energy gap and linear or
long wavelength diffusive dispersions for spin modes shown
in spinor polariton condensates.'® For condensates with lower
P and smaller R, the excitation energies of modes with lower
£ are nonzero with a gap as shown in Fig. 2(a). These modes,
whose decay rates are small, show underdamped rotation. If P
is increased, the decay rates of these modes start to increase,
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FIG. 2. (Color online) Collective excitation spectra versus quantum numbers ¢ of angular momentum. Excitation modes of (a) R =2,
P=3,(b)R=2,P=44,(c) R=4, P=44, and (d) R=06, P =4.4, respectively. Red circles and blue triangles show real (left axis) and
imaginary (right axis) parts of excitation spectra. Connected lines are used to visualize the trend of excitation spectra.

and their excitation energies become gapless with Re[2] =0,
occurring in the excitation spectra as R becomes larger. In
Fig. 2(b), those modes with the linear dispersion relation are
gapless modes, which start showing a bifurcation of small
decay rate at £ =0 and exhibit critically damped rotation.
There are gapless excitation modes at £ =0 and 1 in Fig. 2(c).
They are diffusive and show overdamped rotation due to high
decay rates. The gapless mode at £ =1 is a Nambu-Goldstone
mode, whose steady-state wave function contains a node,
and in this case the rotational symmetry of the condensate
breaks down spontaneously. The system also tries to restore the
continuous rotational symmetry of the condensate according
to the Goldstone theorem. Due to the combined effect of
radial and rotational currents, the steady state with nodes can
spontaneously create spiral vortices observed in the previous
simulations.” We believe that the occurrence of spontaneous
vortices in MPCs is a manifestation of the spontaneously
rotational symmetry breaking of MPCs. However, the Landau
instability?>?* and Feynman theory of superfluidity?* break
down for the two-dimensional (2D) confined polariton system
because the £ = 1 vortex is still possible to be observed in the
stable regime, as shown in Fig. 2(c).”

If R is sufficiently larger than the TF radius, the excitation
modes with the higher angular momenta have the higher-
density distributions in the outskirt of the condensate, and these
modes become unstable dynamically due to a net gain occur-
ring in this region, where Im(€2) > 0. As shown in Fig. 2(d),
the value of Im(£2) changes from negative to positive at £ = 3.
The excitation spectra exhibit gapless modes not only at £ = 0
and 1 but also at a higher angular momentum of £ =7. We find
that the condensate contains nodes and its symmetry is sponta-
neously broken from these gapless Nambu-Goldstone modes.

The condensate with £ =1, whose Im(£2) < 0, generates a
stable vortex with a single-flux quantum. The condensate with
£ =", whose Im(£2) > 0, generates an unstable vortex with a
multiflux quantum, and this vortex will break into stable arrays
of vortices with a single-flux quantum due to the repulsive
effect between fluxes. The existence of Nambu-Goldstone
modes with higher ¢ in the condensate confirm and explain the
mechanism of instability forming spontaneous vortex lattices
seen by Keeling and Berloff, if R is larger than the TF radius.’

IV. PHASE DIAGRAM OF POLARITON
CONDENSATES IN A TRAP

In order to understand the mechanism of stable and unstable
excitation modes, the density and velocity distributions of
excitation modes for R=6 and P =44 in Fig. 2(d) are
compared. As shown in Fig. 3(a), we find that the flow
velocities of excitation mode at £ =2 are not considerable,
so the perturbation of this mode on the condensate will hardly
propagate, and the system is stable (Im(€2) < 0). By contrast,
the excitation mode at £ = 3 flows inward with large velocity.
The fluctuation of this mode on the condensate propagates
fast and is enhanced to create the instability of the steady
state (Im(€2) > 0), as shown in Figs. 3(b) and 3(c). For the
dynamically unstable modes, the angular excitations of # and
w originated in the edge are not only of the same flow direction
but also large enough to reinforce the growth of the excitations
and to propagate toward the center of the condensate, resulting
in the instability of the steady state. Therefore, we conclude
that the onset of instability is related to the simultaneous
inwards flows of excited quasiparticles with higher angular
momenta.
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FIG. 3. (Color online) The density and flow velocity of
excited quasiparticles u and w calculated from Fig. 2(d).
(a) Angular momentum £ = 2, (b) angular momentum ¢ = 3 for u, and
(c) angular momentum ¢ =2 for w.

To further discuss the instability of MPCs, we plot the phase
diagram of stability of steady states in Fig. 4 in terms of P and
R. It shows the phase boundary with relevant pumping schemes
at which the phase transition takes place (see empty circles in
Fig. 4). MPCs in a trap are stable or unstable as P goes higher
or lower and R is smaller or bigger. Note that the boundary
between the stable and unstable states basically follows a line
through the turning points of the constant chemical potential
curves.”® By analogy to the definition of the isothermal
compressibility, 8, = —%(S—Z)T, which measures the relative
volume (V) change of matter by the applied pressure (P)
at constant temperature (7)), we define an isopotential com-
pressibility as B, = _%(%)w which measures the relative
change of pump spot (R) by the applied pump strength P/ Py,
(proportional to the strength parameter «) at constant chemical
potential (u) in our system. Therefore, negative isopotential
compressibility defines the stability of the condensate, and
the condensate behaves with positive compressibility when
crossing from the stable to unstable region.
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FIG. 4. (Color online) Phase diagram of the condensate for
various pumping spot sizes and powers with a contour of chemical
potential. The dashed green line is the phase boundary from the TF
approximation, and the solid black line is the numerical boundary
of the stable and unstable modes. The red dash dotted line is the
boundary for the subsonic and supersonic transition.

A supersonic boundary is also plotted with the intersection
of the unstable boundary near the pump spot R ~ 5. For
smaller pump strength, it is shown that, prior to the instability
transition with increasing pumping spot size, the supercurrent
flow velocity is slower than the sound velocity for any
radial position, namely, all the regions are of subsonic flows.
Conversely, for larger pump strength, the instability transition
lags behind the supersonic transition that implies the initiation
of supersonic flow acts as a precursor to drive the stable mode
into the instability. Although the phase boundary of the TF
approximation shows the same trend at low pumping strength,
it does not match with the numerical boundary at high pumping
power because the supercurrent of the condensate will affect
the density distribution of the steady state significantly, and
the density gradient in the cGPE is actually not negligible as
in the TF approximation. The phase boundary determined by
the TF approximation is valid only when P and R are low and
small, respectively. As P and R become larger, it is invalid
to use the TF radius as the criterion of forming vortex lattices
simultaneously.’

V. CONCLUSION

In conclusion, we obtained, for the first time, the steady-
state density and supercurrent profiles of inhomogeneous
MPCs. Moreover, the excitation spectrum for each pumping
scheme is obtained for the confined 2D system. In a trap,
a small perturbation on the solutions with inward flows will
cause the spontaneous symmetry breaking and show the exis-
tence of Nambu-Goldstone modes within collective excitation
modes. Collective excitations also exhibit a bifurcation of
stable and dynamically unstable modes with respective to
the pumping spot size and power that is associated with a
sign change of fluid compressibility. The onset of instability
is found related to the excitation modes with inward flow
and higher angular momentum ¢, and the mechanism of
dynamical instability is due to a supersonic flow within the
condensate rather than the inward flow of the condensate itself.
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In particular, a singly quantized vortex (£ =1) can be stable
at high pumping strength, while the spontaneous vortex array
can be generated from the unstable Nambu-Goldstone modes
with higher angular momenta. Our observations in this paper
are crucial for studying the dynamics of polariton condensates
in the future. The same approach may pace a way to study
the stationary states and excitations of the nonequilibrium
systems, for example, the sonic black hole and chaotic systems.
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