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Modal Analysis of All-Walls Longitudinally
Corrugated Rectangular Waveguides Using
Asymptotic Corrugations Boundary Conditions

Malcolm Ng Mou Kehn, Senior Member, IEEE

Abstract—The asymptotic corrugations boundary conditions
(ACBCs) are used together with classical theory of vector poten-
tials and an innovative combination of matrix systems to analyze
rectangular waveguides having all four walls being longitudi-
nally (axially) corrugated. One matrix system is composed of the
ACBCs of two opposite walls, while the other comprises those of
the other pair of corrugated walls. A transcendental characteristic
equation is derived, from which the modal dispersion diagram
can be obtained, for all three modal wave-tyoes: fast space, slow
surface, and evanescent waves. From the formulation, analytical
modal field functions in closed form are also acquired. Results
of dispersion graphs and modal field distributions generated by
this method are compared favorably with those obtained by a
commercial full-wave solver.

Index Terms—Asymptotic corrugations boundary condition
(ACBC), corrugated waveguides, dispersion diagram.

I. INTRODUCTION

T HE corrugated waveguide has been a useful device for
microwave and antenna applications. Transversely corru-

gated waveguides or horns, known also as hybrid-mode horns
or soft horns, are commonly engaged as the primary feeds for
reflectors [1]–[3] due to their low cross polarization and low
sidelobes. However, longitudinally corrugated ones find appli-
cations as cluster feeds of reflector antennas due to their high
aperture efficiencies [4]. Quasi-TEM modes with near uniform
aperture field distribution supported by such axially grated hard-
walled waveguides have also been proposed as effective ele-
ments in multifunction interlaced arrays [5] and vital compo-
nents in quasi-optical grid amplifiers [6]. Other applications of
hard corrugated waveguides include mode converters [7], [8],
polarization transformers [9], as well as resonant cavities [10].
As far as what could be found in the literature, prior works

on corrugated waveguides may be grouped into the following
categories: 1) circular waveguides that are either a) transversely
[10]–[18] or b) longitudinally [9] corrugated and 2) rectangular
waveguides having either a) just two opposite walls that are
i) transversely [19] or ii) longitudinally [20] corrugated or
b) only one out of the four walls that is transversely corrugated
[21], [22]. Despite all of the extensive literature, none has
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attempted to analyze the rectangular waveguide with all four
walls being longitudinally corrugated, with the possible excep-
tion of the valiant efforts by Pierre et al. [23]. The corrugated
circular waveguide has a simpler geometry to treat because
there is only one other independent coordinate variable (specifi-
cally, the azimuth phi) in addition to the axial that is tangential
to the entire (smooth circular) interface separating the central
portion from the concentric corrugated region. On the contrary,
the rectangular waveguide with all its walls corrugated has
four separate smooth (flat) interfaces involving both transverse
coordinate variables ( and ). As a result, it is not possible to
construct a solvable system of equations and thus obtain modal
solutions merely by classical analysis methods just in their
conventional forms. As the literature survey has indeed shown,
considerably more investigations of the circular rather than
the rectangular geometry have been reported, with stronger
attention on transverse rather than longitudinal corrugations
being also apparent.
A recent work has presented in detail the use of the asymp-

totic corrugations boundary conditions (ACBCs) for obtaining
the modal surface-wave field solutions and dispersive propaga-
tion properties of open planar corrugated surfaces [24]. This
paper proposes a novel way to solve the all-four-walls axially
corrugated rectangular waveguide by amalgamating the tradi-
tional vector potential modal analysis with the ACBC, but not
without the innovation of considering two linear systems of
equations: one pertaining to the ACBCs of the left and right
corrugated walls, while the other associated with those of the
upper and lower corrugated walls, and then combining them.
An analytical closed-form transcendental characteristic equa-
tion is then acquired. Modal field functions are also obtained
as closed-form mathematical expressions for all modal wave-
types: fast propagating modal space waves, slow modal surface
waves, and evanescent modes. Results of dispersion diagrams
and modal field distributions computed according to the pro-
posed theory will be compared with those generated by the com-
mercial full-wave solver CST Microwave Studio.

II. THEORY AND FORMULATION

Consider the longitudinally corrugated rectangular wave-
guide of Fig. 1. The width and height along and of the
central region with medium parameters are
and , respectively. The depth of the corrugations on both
side waveguide walls is , whereas that of the upper and lower
walls is . The common period (unit cell size) along of the
corrugations on the upper and lower walls is , whereas that
along on the left and right walls is . For simplicity of
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Fig. 1. Longitudinally corrugated rectangular waveguide.

the formulation, although not necessary, the gratings on all
four walls share a common groove width to period
ratio, , where may be or . The associated metallic
ridge thickness is then . The generally different
permittivities and permeabilities of the four media filling the
grooves of the various corrugated walls are

and , in which
the subscripts denote the gratings on the left, right, upper, and
lower walls.

A. Modal Fields by Vector Potentials

1) Within Grooves of Corrugations: The fields within the
corrugation grooves are derived by classical vector potential
analyses [25] for modes that are TE and TM to the direction
perpendicular to each respective corrugated surface, and the
enforcement of appropriate boundary conditions requiring the
vanishing of tangential electric field components on the metallic
walls of the grooves. Doing so, the and components of
the and fields of the TE and TM modal fields within the
various grooves are stated as follow; these upcoming expres-
sions are also more directly derived in [20]–[24].

a) Left Groove:
and Right Groove: (TE
and TM to ):

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

or (1gi)

or (1gii)

(1h)

integer (1i)

(1j)

whereby the scripts “ ”may denote either “left” or “right.” In
(1gi) and (1gii), the and within the superscripted curly
braces pertain to the and signs of the in , re-

spectively. The , in which is or is or , and
is “ ” or “ ” represents an amplitude coefficient, with its
subscript merely indicative of the coordinate argument of the

sine or cosine (represented by ) functional variation of the orig-
inal vector potentials. The of in (1gi) and (1gii) may be
or . The for or is the usual wavenumber com-
ponent along that associated direction, whereas the superscript

of signifies the universality of the propagation con-
stant along the axial direction that is shared by all regions of
the waveguide due to phase continuity. The integer sym-
bolizes the modal index representing the number of half-cycle
field variations along within the groove, being the direction
perpendicular to the gratings. Lastly, of course, the TE and TM
scripts label the two modal groups. The symbols and of
(1g) and (1h) are introduced to abbreviate the notation. Note
that in all these above field expressions, a multiplicative term

has been assumed and suppressed.
b) Upper Groove: and

Lower Groove: (TE and
TM to ): The field components in the upper and lower groove
regions may be obtained by performing the following changes
to (1a)–(1j).
i) Change all “ ” scripts to “ and .”
ii) To the right-hand sides of (1a)–(1j), except (1f) and (1i),
which contain neither , nor , interchange all and ,
i.e., all become and vice-versa.
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iii) To all field symbols of (1a)–(1f), except (1b) and (1e)
for the -components, likewise interchange all and
subscripts.

iv) Negate the expressions transformed from (1a) and (1b).
v) For (1gi) and (1gii), change the “ ,” “ ,” and

to “ ,” “ ,” and , respectively.
vi) Change all subscripts in (1i) to .
In these transformed expressions, the scripts “ and ”

may denote either “ ” or “ .” All new symbols, scripts,
and notations that arise bear the same corresponding descrip-
tions as those in (1a)–(1j). As before, a multiplicative term

has been assumed and suppressed in all field
terms.
2) Modal and Fields Within Central Region:

(TE and TM to Only): By vector
potential analysis as well, the various components of the
and fields of the modal fields in the central region of the
waveguide may be written. This time, however, modes that are
TE and TM to just one of the two transverse directions ( and
) are considered, being chosen arbitrarily to be the horizontal
coordinate in the present formulation. The same efficacy of

the analysis is maintained if is used instead.
a) Mode:

(2ai)

(2aii)

(2aiii)

(2bi)

(2bii)

(2biii)

or or (2c)

(2d)

As was before for the groove fields, here, in which is
or is or is “ ” or “ ” symbolizes an amplitude
coefficient attached to the sine or cosine functional variation
with or [as conveyed by (2c)] of the originating TE or TM
vector potential function for the central region. Likewise,

represents the wavenumber along or in the central region for
the TE or TM mode. Of course, all scripts “ ” indicate that
their associated quantities pertain to the central region.

b) Mode: The fields for the mode may be
obtained by incorporating the following changes to the latter
(2ai)–(2biii).
i) Change all TE to TM and all to .
ii) Interchange all and field symbols, i.e., becomes

and vice-versa.
iii) Negate the expressions transformed from (2aii) and

(2aiii), i.e., multiply their right-hand sides by 1.
Notice that the relations in (2c) and (2d) are already in forms

that are applicable to both and modes.

B. ACBCs

Defining first the unit vector parallel and orthogonal to the
corrugations as and , respectively, the former being ,
while the latter being either or (unit vectors along or
) in the present context, the ACBCs enforced at the corrugated
surface are stated as follows:

(3a)

(3b)

(3c)

(3d)

where

(4a)

(4b)

in which symbolizing “groove” may take on
or . is the Kronecker delta such

that when (either or ), it is unity, but
zero otherwise, and likewise when (either
or ), is unity, but zero otherwise. Now, coming
to the crucial step; since the grooves are typically narrow,
i.e., , it may be assumed that and ,
leading to the existence of only the dominant (TEM)
mode and absence of all TM modes. As such, the in (3a)

and (3c) is simply replaced by
when for the left and right grooves, and by

when for the
upper and lower grooves. Hence, the only nonzero component
of the field within the groove is the one tangential to
the corrugated surface and perpendicular to the grooves



3824 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 61, NO. 11, NOVEMBER 2013

and metal ridges. Similarly, the in (3d) is reduced

to when
for the left and right grooves, and gets simplified

to when
for the upper and lower grooves. This means that

only the axial component of the field along the metallic
ridges within the groove and the one perpendicular to the
corrugated surface are existent, i.e., nonzero.
For all four corrugated surfaces, it is easily seen that (3a)

is already satisfied upon setting the modal index to zero.
Thus, only three active ACBC equations remain: (3b)–(3d).
1) Right and Left Groove Interfaces With Central Region:

: Equations(3b)–(3d) require

(5a)

(5b)

(5c)

in which , where the upper and lower items in
the curly braces correspond to the upper and lower signs of ,
pertaining to the left and right interfaces at and ,
respectively.
Writing out (5a)–(5c) explicitly,

(6a)

(6b)

(6c)

with

(7)

as modified from (2c) earlier, and whereby all in which
is or is or have been replaced by , the

universal phase constant (wavenumber component) along or
shared by both TE and TM modes of the central region, i.e.,

(8a)

from which (2d) consequently becomes

(8b)

Also, in (6a)–(6c), a new factor has emerged ( may be
or ), being the correction factor applied only to the ACBC

entailing the -field components, defined as [24]

or (9)

A new summation term is incorporated to the left-hand sides
(LHSs) of (6b) and (6c) (the explanation of which is to come)
in which is a unit pulse function of (being or )
having a width (period along ) and centered at , i.e.,

otherwise.
(10)

Thus, is just this pulse function, but translated
by along the axis, where is an integer. New coeffi-

cients and are also incorporated. Hence, the sum-
mations on the LHS of (6b) and (6c) describe how the fields
within the grooves of the left and right corrugated walls vary
with in a discretized stepwise manner with each term of the
summation being a piecewise constant within the th groove,
i.e., . This staircase variation
is forced to follow the same trigonometric functional form as
the variation with in the central region with the same phase
constant , thus bearing the same harmonic for phase con-
tinuity. Those above-mentioned newly introduced coefficients
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thus merely tag the discretized cosine and sine harmonic varia-
tions. This is termed as discretized phase continuity. Thus, this
summation conveys the homogenization effect that has taken
place when the entire corrugated region is perceived as just
a single effective medium that is approximately homogeneous
when “seen” macroscopically. The number of unit cells (seg-
ments) along the waveguide height is represented by (such
that ). It is reminded that in
which the upper and lower items in the curly braces correspond
to all sign pairs: and that appear in the same equation. Due
to these sign pairs in every one of (6a)–(6c), there are thus a
total of six distinct equations.
2) Upper and Lower Groove Interfaces With Central Region

: Equations (3b)–(3d), respectively, require

(11a)

(11b)

(11c)

in which , where as before, the upper and
lower items in the curly braces correspond to the upper and
lower signs of , pertaining to the upper and lower interfaces at

and , respectively.
Writing out (11a)–(11c) explicitly,

(12a)

(12b)

(12c)

in which (7)–(10) and all the explanations that fol-
lowed (6a)–(6c) reapply here. It is again reiterated that

in which the upper and lower items in the
curly braces correspond to all sign pairs: and that appear
in the same equation. As was for (6a)–(6c), due to these sign
pairs, a total of six individual equations are manifested by
(12a)–(12c). Hence, there is a combined total of 12 equations
conveyed by (6a)–(6c) and (12a)–(12c).
Every cosine and sine functional term (either in or ) in

these 12 equations is then decomposed into its two exponential
components (each with opposite sign of its exponent from the
other). The coefficients sharing the same form of exponential
component are then grouped together. Subsequently, each of the
resulting 12 equations is split into two, one for each exponen-
tial kernel term (plus or minus sign of the exponent), yielding
a grand total of 24 distinct equations. The summation terms on
the LHS of (6b), (6c), (12b), and (12c) originally represented
discretized sinusoidal (cosine and sine) variations of the fields
inside the homogenized corrugated region with [for (6b) and
(6c)] and [for (12b) and (12c)]. Upon the aforesaid procedure
of splitting each equation into its two exponential components,
they become likewise staircase approximations (in each of the
16 equations that involve those summations), but this time, of
exponential (instead of sinusoidal) variations of the fields. As
the periods and tend to zero, those stepwise models of ex-
ponential functions then transform into continuous ones, which
can then be canceled out with the exponential functional terms
on the other (right-hand) side of each equation that are associ-
ated with the field variations within the central region, which
have all along been of the continuous form, thereby simplifying
the expressions. Consequently, for each pair of split equations
(total of 12 pairs), the sum and difference of the two equations
are taken, yielding back two equations.

C. Construction of Matrix Systems

Recapitulating from Section II-B, splitting each of the 12
equations conveyed by (6a)–(6c) and (12a)–(12c) into two
yielded a grand total of 24 equations; 12 from the former three
equations, 12 from the latter. Taking first the 12 equations of
(6a)–(6c) pertaining to the ACBC equations for the left and
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right interfaces ( and ) involving likewise 12 ampli-
tude coefficients, a 12 12 homogeneous matrix equation can
be constructed as follows:

(13a)

in which the superscript denotes and , and where
the 12 coefficients of the column vector are

The matrix elements of are explicitly given in
Appendix A.
Considering next the remaining 12 equations of (12a)–(12c)

associated with the ACBC equations for the upper and lower
interfaces ( and ) also entailing 12 amplitude coeffi-
cients, a second homogeneous 12 12 matrix equation may be
obtained as

(13b)

in which the superscript denotes and , and
where the first eight elements in the column vector
are simply the same as those of earlier, i.e.,

for (14)

and with the remaining four elements being

Likewise, the explicit matrix elements of are given in
Appendix A.

D. Analytical Closed-Form Characteristic Dispersion
Equation and Modal Resonance Search

By performingGauss elimination on thematrices of (13a) and
(13b), the row echelon form for both matrix equations may be
obtained, fromwhich the determinants of both matrices
and are then acquired simply as the products of the
diagonal elements. These two determinants, and

, are explicitly stated in Appendix C by (App-C1)
and (App-C2). As such, closed-form analytical determinants of
the matrices are obtained. By back substitution of the Gauss
eliminated forms of both matrices, the modal coefficients are
also acquired. Due to space constraints, their explicit forms are
not provided, but they can be readily worked out from the given
matrix elements of Appendix A.
In order for nontrivial solutions of the two matrix equations

in (13a) and (13b), their determinants must vanish. When this
occurs (i.e., ) for the same set
of parameters common to both matrix systems comprising the
radian frequency and the pair of transverse wavenumbers for
the central region , a single resonance condition
under those parameters is obtained.
These subsequently dictate the resonant axial propagation con-
stant via (8b),

(15)

which, in turn, determines the corresponding resonant
wavenumber component within the groove region that is
perpendicular to the corrugated surface, i.e., from (1j),

(16a)

(16b)

The absolutes of both matrix determinants are then added to-
gether and equated to zero, thereby constituting the ultimate
characteristic dispersion equation

(17)

which, for a certain , a numerical search for its asso-
ciated resonant transverse wavenumbers
is conducted, which may be detected as sharp dips in the
wire-frame mesh plots of against the search ranges of

, as will be demonstrated later in Section III.

E. Analytical Closed-Form Modal Field Functions in
Various Regions

Upon detecting modal resonances, the analytical closed-form
mathematical expressions of the eigen-modal vector field com-
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ponents for the various regions may be written as follows, all
of which pertain to the resonance condition characterized by

.
1) Side (Left and Right) Corrugated Regions (Homogenized):

The components of the fields within the side regions are stated
as follows (all other components not listed are zero):

all with

As before, , whose upper and lower scripts
correspond to those within other curly braces in the same equa-
tion, and all scripts symbolize that their associated quantities
pertain to the resonance condition.
2) Upper and Lower Corrugated Regions (Homogenized):

Likewise, all other field components of the upper and lower re-
gions that are not listed as follows are zero:

where, as before, , whose upper and lower
scripts correspond to those within other curly braces in the
same equation. Notice that no explicit form of has been
provided yet since it was only textually described earlier in
Section II-A.1b [item v)] as a modification of (1gi) and (1gii).
3) Central Region: For the following field expressions of the

central region, it is first declared that all superscripts (be it

or ) have been dropped from the coefficients for
to in virtue of (14),

with

and where the dot operator of the first three equations represents
scalar multiplication between any two corresponding elements
of two identically sized matrices, resulting in a matrix of that
same size.

F. Various Wave-Type Regimes

Three types of modal waves can be analyzed with the present
analysis; propagating fast space waves, propagating slow sur-
face waves, and evanescent waves. Each of these are located in
a separate regime in the dispersion diagram, as will be presented
in Section II-F.1 for an arbitrary longitudinally corrugated rect-
angular waveguide.
1) Fast Space Waves: For this case, all

and are real, which from (15) means
.

2) Slow Surface Waves: For this case, the positive real
modal propagation constant exceeds the wavenumber
of the central region, , at the corre-
sponding resonant frequency. Either both or just one of the
two transverse modal wavenumbers, and ,



3828 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 61, NO. 11, NOVEMBER 2013

Fig. 2. (a) Wire-frame mesh plots of characteristic function of (17) versus and for frequencies: (i) 2.55 GHz, (ii) 4.94 GHz, (iii) 7.51 GHz, and
(iv) 9.9 GHz for mm, mm,

mm, and . (b) Contour plots of characteristic function of (17) versus and , for frequencies 2.55, 4.94, 7.51,
and 9.9 GHz for mm, mm,

mm, and .

may be imaginary, representative of decaying fields along the
and/or direction perpendicular to the corrugated walls.

When both transverse resonant wavenumbers are imaginary,
; whereas, we

may also have, say, , but with
remaining real.
3) Evanescent Waves: For this case, both and

are real, but is purely negative

imaginary, meaning that

III. NUMERICAL RESULTS

The randomly chosen parameters of an arbitrary axially
corrugated rectangular waveguide to be showcased are first
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stated as follows: mm, mm, and
, where and are the free-space

permittivity and permeability,
, with

the number of unit cells (or periods) on any one corrugated
wall being corresponding to a common period of

mm, and a universal
groove width to period ratio of for
and , associated with a likewise common groove width of

mm. The groove parameters correspond to a
TEM hard frequency of about 10 GHz. Later on in Section III-C,
computed results for another arbitrary set of parameters shall
be presented.

A. Wireframe Mesh Plots of Characteristic Function

Fig. 2(a) shows the surface mesh plots of the
characteristic function of (17) versus the
transverse radial wavenumber of the central region,

, and the associated azimuth

spectral angle, , for four randomly
picked frequencies: 2.55, 4.94, 7.51, and 9.9 GHz. The
corresponding contour thermal plots are given in Fig. 2(b).
Sharp dips indicative of eigen-modal reso-

nances occurring at coordinates pertaining to

and

are evident in these
plots. It is observed that these resonances occur symmetrically
about the horizontal center line in Fig. 2(b). If
perceived in the spectral coordinate system,
this means that the resonant coordinates
are located symmetrically about the diagonal line,
as expected of this waveguide example with a square cross
section.
To appreciate how these dips came about, the contour

thermal plots of and
versus and for those same four arbitrary frequencies
of Fig. 2 are presented as four pairs of plots in Fig. 3, each
pertaining to a frequency, in which the upper plot of every
pair is for , whereas the lower one is for

. Contour paths corresponding to zero
levels are clearly visible in each plot. For each frequency, i.e., a
certain pair in Fig. 3, the coordinate locations pertaining to the
intersections between the two sets of zero-level paths (one for

, the other for ) indeed
tally up with the resonance points (sharp dips) of the contour
plot associated with that frequency in Fig. 2(b). The zero-level
contours of Fig. 3 clearly reveal that for every frequency, the
“valleys” of both plots are mirror images of each other when
one plot is placed on top of the other, as done in Fig. 3.

B. Dispersion Diagrams and Modal Field Distribution

The dispersion diagram for the corrugated waveguide pa-
rameters laid out at the start of this section generated according
to the proposed methodology of Section II is presented in Fig. 4
as traces of dots, alongside which are traces of crosses repre-
senting the corresponding results simulated by the commercial
full-wave solver CST Microwave Studio. Fig. 4(a) displays
the propagating fast space and slow surface wave regimes,

Fig. 3. Contour plots of (upper graph for each frequency) and
(lower graph for each frequency) versus and for frequen-

cies: (a) 2.55, (b) 4.94, (c) 7.51, and (d) 9.9 GHz. Same parameters as those of
Fig. 2.

whereas Fig. 4(b) features the propagating fast space and
evanescent wave regimes, the latter conveying the imaginary
part of , i.e., , being the negative
of the positive-valued attenuation constant. As observed, for
all regimes, the modal dispersion traces of the present tech-
nique hold up well to those dictated by CST. Modal -field
distributions across the waveguide cross section at various
frequencies indicated by arrows are also provided as inset plots
in both Fig. 4(a) and (b), generated by both the present ACBC
method and CST. The dominant modal fields are shown in
Fig. 4(a), whereas those of the second-order mode are given in
Fig. 4(b). The agreement of the modal field patterns between
both approaches is also evident. At this juncture, it would also
be worthwhile asserting that the ACBCs are accurate interface
conditions capable of producing characteristic equations that
embrace all modes.
For a clearer comparison between the modal field distribu-

tions obtained by the present analytical method and CST, graphs
of the -field versus either the width along or height along
for planar cuts through or , respectively, are

given in Fig. 4(c). Field plots for the fundamental mode and the
second most dominant one are provided. Good agreement be-
tween both approaches is clearly observed.

C. Another Arbitrary Example Set of Parameters

As a further illustration, the parameters of a second likewise
random showcase of the axially corrugated rectangular wave-
guide are stated as follows. mm, mm,

with
mm, and for and
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Fig. 4. (a) Dispersion by present ACBC approach (dot markers) and CST (cross markers) for propagating fast space wave and slow surface wave regimes. Same
parameters as those of Fig. 2. -field plots shown are for the dominantmode (with the highest propagation constant at any one frequency) at various frequencies
indicated by arrows. (b) Dispersion by present ACBC approach (dot markers) and CST (cross markers) for propagating fast space wave and evanescent wave
regimes. Same parameters as those of Fig. 2. -field plots shown are for the second mode at various frequencies indicated by arrows. (c) Comparison between
present ACBC method and CST of regular -field plots for fixed plane-cuts through (left-side plots) and (right-side plots) for: (i) dominant mode
and (ii) second mode.

pertaining to mm. The groove parameters cor-
respond this time to a TEM frequency of 4.94 GHz. As before,
the dispersion modal curves for this set of parameters generated
by the present formulation and by CST are shown in Fig. 5, this

time with all three wave-type regimes (fast space, slow surface,
and evanescent modal waves) being merged in a single graph.
Once more, the fine agreement between both approaches is ob-
served.
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D. Approach to Conventional Homogeneous Waveguide as
Groove Material Same as Central Medium and
Corrugation Depth Tends to Zero

When the groove materials of all four grated walls are set the
same as the medium occupying the central region of the corru-
gated waveguide, i.e.,
with all equal permeabilities, and as all corrugation depths tend
to zero, i.e., and , the modal dispersion characteris-
tics are expected to approach those of the resultant conventional
homogeneously filled rectangular waveguide.With a width of
and height of , the modal propagation constant of the th
mode for the latter waveguide uniformly occupied by a medium
of parameters is given by

(18)

For (and as are all groove permittivities) and
mm (a small corrugation depth), the dispersion curves

for the corrugated waveguide with mm,
mm,

and are given by Fig. 6 along with
those of the corresponding empty waveguide with

and . Indeed, the modal traces of
both structures virtually overlap as predicted.
As will be demonstrated in Section III-E, as long as the cor-

rugation depth is small compared to the dimensions ( and ) of
the central portion, the permittivity of the grooves does not actu-
ally have to be equal to that of the central region in order for the
approach of the dispersion characteristics toward those of the
conventional waveguide; the groove permittivity can actually
assume any value by then (when the depth is small compared to
the central region).

E. Computational Efficiency

The processing time of the present ACBC method coded up
in MATLAB and that of the CST eigensolver, both run on an
Intel Core i7-3820 CPU at 3.60-GHz clock speed and accompa-
nied with 64.0 GB of RAM, were recorded for the same set of
parameters as Figs. 2–4. For the ACBC approach, a total com-
putational duration of 4207.96 s amounting to about 1 h, 10 min,
and 8 s to obtain numerical data at 80 frequencies was observed,
whereas the CST software took 4 h, 25 min, and 49 s in total on
the same desktop computer for the same number of frequency
points, slower by over 3 h! Even when the number of frequen-
cies was reduced to just 30, the CST solver ran for 1 h, 35 min,
and 1 s, still slower by about 25 min than the ACBC approach
handling more than double the number of frequency points.
Therefore, not only is the present approach able to provide

analytical field expressions as closed mathematical functions of
the parameters, something that CST is incapable of, it is also
immensely more computationally efficient.

F. Parametric Studies

The groove permittivity, , col-
lectively represented by for brevity, and the corrugation

Fig. 5. Dispersion by present ACBC approach (dot markers) and CST (cross
markers) for propagating fast space wave, slow surface wave, and evanescent
wave regimes for mm, mm,

mm, and .

Fig. 6. Approach of dispersion toward conventional empty rectangular wave-
guide as groove material becomes vacuum and corrugation depth tends to zero.
Circle markers: present ACBC approach, cross markers: theory by (18), for

mm, mm,
mm,

and .

depth constitute the two parameters to be investigated.
The parametric space for comprises , and

, while spans over the values of 4.15, 8.15, and
12.15 mm, with the rest of the parameters remaining the same as
those of Sections III-A and III-B (specifically, mm,

mm, and ).
The variation of the dominant modal dispersion behavior with

the corrugation depth for the propagating fast space wave
and evanescent wave regimes is conveyed by Fig. 7(a)–(c), each
of them pertaining to a certain fixed value of (the other
parameter), namely, and , respectively.
As observed, for each of all cases, both the cutoff and TEM
frequency (at which ) fall with increasing depth, and the
modal trace translates leftward.
Swapping the fixed and varied parameters, Fig. 8(a)–(c)

demonstrates how the dispersion varies with the groove per-
mittivity , each graph being associated with a controlled
value of the other parameter, , namely, 4.15, 8.15, and
12.15 mm, respectively. For each of the depth cases, both the
cutoff and TEM frequencies fall with increasing , and the
modal trace translates leftward, all these being clearly visible
only in Fig. 8(c), corresponding to the largest depth. The re-
duction of the cutoff frequency and leftward translation of the
trace, however, show up only minutely in Fig. 8(b), pertaining
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Fig. 7. Variation of dominant modal dispersion with corrugation depth
, for propagating fast space wave and evanescent wave regimes;
mm,

mm, and for
equal to: (a) , (b) , and (c) .

to a lower corrugation depth, being more apparent only from its
inset plot zooming into frequencies near the cutoff frequency.
By the point where the depth gets very small relative to the
size of the central portion (via and ) in Fig. 8(a), both
those phenomena become virtually unnoticeable, albeit still
visible upon closer inspection of the likewise inset zoomed-in
plot. Hence, this leads to an important deduction: that the
variations of the dispersion with the groove permittivity get
more pronounced with increasing volumetric ratio of the cor-
rugated region to the central portion. If this ratio is small, then
it no longer matters what value takes on as the effects
of the large central portion dominate over those of the thinly
grated walls (regardless of their groove-filling medium); the
dispersion then approaches that of the conventional rectangular
waveguide with cross-sectional size homogeneously
filled by a medium of parameters , just as though
there are no corrugated walls, as demonstrated in Section III-D.
As further information, the variations of the dominant modal
cutoff frequency with the corrugation depth and groove
permittivity are conveyed by Fig. 9.

Fig. 8. Variation of dominant modal dispersion with groove permit-
tivity for propagating
fast space wave and evanescent wave regimes mm,

mm,
for corrugation depth equals to: (a) 4.15,

(b) 8.15, and (c) 12.15 mm.

Fig. 9. Variation of dominant modal cutoff frequency with corrugation depth
(left) and groove permittivity (right)

; mm,
mm, and .

G. Dielectric Losses of Groove Material

When dielectric losses of a medium are considered, its per-
mittivity becomes complex with a positive real part and a
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Fig. 10. Graph of and against frequency for various con-
ductivities , and or fixed real part of the
complex groove relative permittivity.

negative imaginary part , generally expressed as

(19a)

whereby is the well-known loss tangent. An equivalent
conductivity may alternatively be defined to represent all
losses, being related to and the angular frequency
according to

(19b)

Consequently, for a rectangular waveguide loaded with lossy
dielectric media, both its transverse wavenumber components
( and ) and the axial propagation constant become com-
plex, the latter taking on the form of in which and
are the positive-valued phase and attenuation constants, re-

spectively.
Assuming in the present context, thus considering

modes with no variation along the direction, the propagation
constant of the corrugated waveguide is governed by

(20a)

(20b)

of which both and are positive real, thereby assuring that
the complex falls in the fourth quadrant (both and
positive), as required.
Substituting (20a) and (20b) into all preceding equations in

Section II and with , the same
as of (17) may be obtained, but this time as a function of
and in addition to the angular frequency. In the same way
as before, for a certain , a numerical search may be
carried out, but now for the resonant coordinates,
detected as sharp dips in the wire-frame mesh plots of
against the search ranges of . The associated reso-
nant may then be acquired using (20a)
and (20b).
For a fixed value of 4.24 for the real part, , of the

complex groove relative permittivity, three conductivity values
are studied: S/m, S/m, and S/m. Associated with
these values, the graphs of and are plotted
against the frequency in Fig. 10 using (19a) and (19b).
Each pertaining to a particular mode and covering a certain

band, Fig. 11(a)–(c) displays the graphs of the resonant

Fig. 11. Rise in attenuation constant with increasing conductivity through all
frequencies; mm, mm,

mm, and .

versus frequency for those three conductivities (the same pa-
rameters as in Sections III-A and III-B reapply). Evidently, the
attenuation aggravates with increasing for all frequencies, as
required.

IV. CONCLUSION

This study has elegantly treated the axially corrugated rect-
angular waveguide analytically by vector potential modal anal-
ysis in tandem with the ACBC, thereby providing analytical
modal field functions as well as the characteristic equation in
closed-form expressions for all modal wave-types, i.e.: 1) fast
propagating modal space-waves; 2) slow modal surface-waves;
and 3) evanescent modes. Nowhere can all these be found else-
where in the literature. By traditional analysis methods in their
conventional forms, it is not possible to construct a solvable
system of equations for the rectangular waveguide with all its
four walls longitudinally corrugated. Revolutionary maneuvers
are instead called upon to break out of this deadlock by consid-
ering two separatematrix systems of equations, each constructed
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by theACBCs for two opposite gratedwalls, and then combining
them. Results of dispersion andmodal field distributions yielded
by this new method agree well with those generated by the com-
mercial full-wave solver CST Microwave Studio. The modal
analysis approach is also substantially more computationally ef-
ficient than the CST software. The availability of these mathe-
matical forms for the modal fields empowers future researchers
with the possibility of performing mode-matching analysis of
such longitudinally corrugated waveguides when they are con-
nected to other microwave devices.

APPENDIX A
EXPLICIT MATRIX ELEMENTS

In the following, all other matrix elements not listed are zero:
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APPENDIX B
CONSTITUENTS OF GAUSS ELIMINATION

The constituents of the Gauss elimination performed on (13a)
for use in Appendix C to obtain the matrix determinants are
given as follows:

for

for

for

for

for

for

for

for

for

for

for

for

for

for

Similarly, the constituents of the Gauss elimination con-
ducted on (13b) are stated as follows:

for and

for and

for and

for and

for and

for and

for and

for and

for

for

for

for and

for and

for

for

for

for and

for and

APPENDIX C
MATRIX DETERMINANTS

It was mentioned in Section III.C that the matrix determinants
may be obtained as the products of the diagonal elements in the
row-echelon forms of the matrices. Doing so for both (13a) and
(13b), the determinants of and are obtained as

(App-C1)

(App-C2)

in which the various terms have been provided in Appendices A
and B.
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