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Abstract—An effective emission model of phosphor film is
proposed by using bidirectional scattering distribution function
system (BSDF), and the model is verified by white light-emitting
diodes (LEDs) with conformal and remote phosphor structure.
The emission model is built to clarify the optical characteristics
by analyzing the angular-dependent distribution of emission
and excitation behaviors in phosphor film. The white LEDs with
conformal and remote phosphor structure are also fabricated for
experimental comparison. The uniformity of angular correlated
color temperature (CCT) in white LEDs can be determined by
the angular distribution of blue and yellow light, which is in turns
decided by the refractive index variation between chip a©nd
phosphor layers. Finally, the experimental results are found to
have good agreement with the simulation results performing by
the Monte Carlo method.

Index Terms—GaN, light-emitting diodes (LEDs), optical simu-
lation, phosphor.

I. INTRODUCTION

R ECENTLY, white light-emitting diodes (LEDs) have
been regarded as the next-generation light source due

to the small size, environmental friendly process as well as
high luminous efficiency [1]–[3]. In general, combining the
blue LED chip with the yellow luminary such as Y Al O
phosphor is the most promising method to generate the white
light [4], [5]. For the significant progress in phosphor-converted
white LEDs had been strongly motivated by the advances in
III-Nitride LEDs [6]–[14] serving as pump excitation sources.
The availability of high performance nitride LEDs enables
the practical implementation of phosphor-based LEDs. The
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advances in III-Nitride LEDs had been attributed to the new
approaches for reducing the charge separation issues in active
region [6]–[8], methods for suppression of efficiency-droop [9],
[10], and growth methods to suppress the dislocation density in
materials [10]–[14]. Furthermore, for the fields of phosphors,
there are also some novel materials developed to use in the
solid-state lighting such as oxyfluoride [15], nitride [16], boride
[17] and phosphide [18] hosts. As the results, in order to meet
the practical need in the solid state lighting, high luminous
efficiency and uniformity of angular-dependent correlated color
temperature (CCT) become two major challenges to overcome
in white LEDs [19].
For the high luminous efficiency, remote phosphor packages

which separate the phosphor layer away from the chip could
effectively reduce the backscattering and exhibit higher conver-
sion efficiency, and many examples were demonstrated before
such as the scattered photon extraction package and the ring-re-
mote structure [20]–[23]. However, the disadvantages of remote
phosphor structure such as concave surface and non-uniform an-
gular CCT still exist. Therefore, the patterned structure of re-
mote phosphor structure was proposed to improve the unifor-
mity of CCT [24]. Conversely, for the highly uniform color dis-
tribution, conformal phosphor structure is found to be a more
suitable way to improve the distribution of angular CCT [25],
[26]. In this structure, the scattering and reflection characteris-
tics of the phosphor particles are considered as the key param-
eters because it was shown that nearly 60% re-emitted light are
reflected backward [27]. Therefore, large amount of light is re-
flected back and forth and eventually lost inside the package,
resulting in the lower light output in the conformal phosphor
structure.
The backscattering and reflection of light caused by phosphor

could be minimized by optimizing the size of the phosphor par-
ticles [28]. Furthermore, Yamada et al. defined the transmitted
and reflected flux of the blue and yellow light to build the phos-
phor film model [29] and Zhu et al. used the fiber-guided source
to illuminate the characteristic of the phosphor slide [30]. More-
over, some research has simulated the relationship between par-
ticle size of phosphor and efficiency in different packages [31].
In general, the emission distribution of phosphor particle is usu-
ally regarded to be ideally isotropic to simplify the calculation
in phosphor model. However, the scattering distribution in the
phosphor layer usually disagrees with this assumption. There-
fore, the bidirectional scattering distribution function system
(BSDF) system is employed to measure the scattering phenom-
enon and provide the better understanding, which could be de-
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fined as the ratio of the scattering light radiance to the incident
light irradiance, and defined as [32], [33]

where the terms are the incident and scattering
direction angles with respect to the surface normal. It is used to
describe the distribution of scattering light in the space with the
angular and wavelength variable.
In this study, the emission model of phosphor film is inves-

tigated using BSDF system. Besides, the emission distribution
of phosphor film and the analysis of emission distribution in
remote and conformal phosphor are demonstrated. Then, the
corresponding white LEDs with remote and conformal phos-
phor structure are both experimentally and numerically inves-
tigated. Finally, the refractive index at the air/phosphor layers
interface is verified as a key factor leading to the intensity dis-
tribution of blue and yellow light in remote and conformal phos-
phor structures.

II. EXPERIMENT

The pulsed spray coating (PSC) method is adopted in the
experiment to form a thin, uniform phosphor layer on the sur-
face of the sample [34], [35]. First, the polyethylene terephtha-
late (PET) with transmittance of 90% is used as the substrate.
Phosphor powder, silicone binder, and an alkyl-based solvent
are blended together to form phosphor suspension slurry and
sprayed onto the surface of PET. The thickness and weight-per-
centage of phosphor slurry was about 100 m and 50 wt. %,
respectively. The emission distribution of the PET with phos-
phor sample is measured by BSDF system. The PET films were
applied for BSDF measurement due to the low cost, easy-to-cut
sizes, and high transparency across the visible band. The glass
material, which can provide a higher stability in thermal treat-
ment and wider transparency, can also be considered for the
measurement [36]. Once the BSDF measurement is finished,
the final package is made of phosphor-doped silicone without
any PET films to match the standard process. Furthermore, the
diagrams of conformal and remote phosphor LEDs are shown
in Fig. 1. For the both structures, the blue LED chips have peak
emission wavelength at about 450 nm and are placed in the com-
mercial plastic lead-frame package. For conformal structure,
the phosphor slurry is sprayed in the lead-frame, then filling
the silicone glue and baked at 150 C for two hours. In re-
mote phosphor structure, the silicone encapsulant is filled in the
lead-frame and the PSC method is employed to perform phos-
phor coating on the top of the samples. These samples are driven
at the 120 mA to measure the color temperature. The luminous
efficiency of the conformal and remote phosphor structure was
about 100 lm/W and 105 lm/W, respectively. When the lumi-
nous efficiencies of devices are put together for comparison,
the remote phosphor structure is about 5% higher than the con-
formal phosphor structure at the same CCT.

III. SIMULATION

In the simulation, OpticsWorks software was used and based
onMonte Carlomethod incorporatedwithMie scattering, which
is common in the LED simulation [37], [38]. Fig. 3 shows the

Fig. 1. Schematic diagrams of (a) conformal and (b) remote phosphor structure.

TABLE I
PARAMETERS OF STIMULATED LED CHIP

simulated structure of remote and conformal phosphor structure.
The particle size distribution and the extinction coefficients of
the phosphor and were considered as the important condition in
the software. The particle sizes of phosphor are set as average
diameter of 12 m and a standard deviation of 0.5. The blue
emission of LED chip and yellow emission of phosphor are set
as 460 nm and 560 nm.
The simulated LED structures were composed of 4- m-thick

n-type GaN layer,multiple-quantum wells (MQWs) with
2.5-nm-thick wells and 200-nm-thick p-type GaN layer. The
blue LED chips dimension is and the re-
fractive indexes of n-GaN, p-GaN, and MQW are 2.42, 2.45,
2.54, respectively, as shown in Table I [39]. The reflectance
of the surface in the leadframe was 90% [40]. The emission
spectra of blue LED chip and the phosphor are centered at 455
and 560 nm, which are the same as the experiment. Moreover,
for the phosphor model, the phosphor layer was simulated and
calculated the scattering effect of photons through medium with
particles. Furthermore, the distribution of emission obtained by
experiments could input in the software to verify the results.

IV. RESULT AND DISCUSSION

In this study, BSDF system is employed to measure the dis-
tribution with different incident angle. First, the emission distri-
butions of the blue chip and blue chip with and without silicone
glue are measured and input into the simulation, as shown in
Fig. 2(a). As a matter of fact, the angular intensity of the blue
light from the LED chip can be directly measured, but the inten-
sity of blue light emitting into the phosphor layer still could not
be measured directly. Therefore, the intensity of blue light in
the phosphor layer is simulated according to the previous infor-
mation in Fig. 2(b). Meanwhile, the angular distribution of the
blue light emitting into phosphor layer is narrow and this could
be attributed to the different refractive index between interfaces.
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Fig. 2. Blue light intensity distribution of emitting into (a) glue (b) phosphor
layer.

Fig. 3. Simulated structure of (a) remote (b) conformal phosphor structure.

Fig. 4. Distribution of emission at different incident from 15 to 60 .

After identifying the distribution of blue light versus different
interfaces including air, silicone glue and phosphor layer, the
emission distribution of phosphor film is measured by using the
collimated light source whose emission wavelength is about 450
nm. The emission distribution patterns from the phosphor film
at different incident angles from 0 to 60 with interval of 15
are shown in Fig. 4.

Fig. 5. Distribution of emission at all direction with the mixed of blue and
yellow light.

The phosphor film could be rotated to measure the emission
distribution at different incident angles and the angle between
incident light and phosphor film is about 90- degree. For the
normal incident light, the emission distribution demonstrates
that the intensity at large angle is higher than that at small angle.
Furthermore, with the larger incident angle, emission distribu-
tion is unsymmetrical due to the incident angle at the different
angle.
We can further combine the data in Fig. 4 to obtain the graph

in Fig. 5, which can be interpreted as possible outcome of a real
chip. The excitation from different angles can simulate the all
direction excitation of phosphors in a blue chip. Therefore, it is
found that there is nearly 50% of light emit backward, which is
similar to the results in [9]. This result could explain the emis-
sion behavior of the phosphor layer which is excited by a blue
LED. Moreover, to verify this model, conformal and remote
phosphor structure is demonstrated both numerically and exper-
imentally as following in Fig. 6. The simulation results show
good agreement with experiment both in the yellow and blue
light.
Our statement on CCT can be also examined in previous

publication that remote phosphor has the higher intensity than
conformal phosphor structure, but the CCT distribution of con-
formal phosphor is much better than remote phosphor [39], [40].
As can be seen in Fig. 7, for conformal phosphor structure, the
intensity of blue light is higher than remote phosphor structure at
the large angle. However, the intensity of yellow light shows al-
most the same phenomenon in both remote and conformal phos-
phor structure. When putting their structure difference into con-
sideration, we could see that the different distribution of mate-
rial leading to different refractive index could be the key. There-
fore, it might be reasonable to cast some calculation to verify it.

Moreover, the calculation of the refractive index (RI) in the
different phosphor concentration, the RI of the phosphor layer
with silicone is given by [43], [44]

where and are concentration of the materials. Here, the
RI of silicone glue is 1.4 and the phosphor is 1.8. To verify the
assumption in conformal and remote phosphor structures, the
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Fig. 6. Yellow and blue light intensity of (a) remote (b) conformal phosphor
structure in simulation and experiment.

Fig. 7. (a) Normalized blue light intensity and (b) normalized yellow light in-
tensity of remote and conformal phosphor.

different concentrations of phosphor layer for 20% and 85% in
remote phosphor are fabricated.
The RI of the different phosphor concentration at 20% and

85% is about 1.74 and 1.48, respectively. It is obvious that the
normalized intensity of blue light for the concentration of 20%
is larger than 85% in the large divergent angle, as shown in
Fig. 8(a). However, the yellow light still remain the same at the

Fig. 8. Normalized intensity of different concentration: (a) blue light and (b)
yellow.

both concentration in Fig. 8(b). According to Snell’s law, the
blue light, emitted into the air from the package, would cause
a different divergence angle when passing through the different
refractive index. Therefore, the smaller divergence angle could
be attributed to the large discrepancy of the refractive index in
the interface and the refractive index is the main reason to dom-
inate the blue light intensity at large angle.

V. CONCLUSION

In conclusion, the emission model of phosphor film with
BSDF system is investigated and verified both in conformal
and remote phosphor structure. Accordingly, the simulation
results agree well to experimental results in conformal and
remote phosphor structure. Furthermore, the blue and yellow
light are treated separately to discuss the optical characteristic
in simulation and experiment. Finally, we think the refractive
index between air and phosphor layers is the main reason for
the different distribution of the intensity in the blue and yellow
light, which could influence the uniformity of angular CCT in
white LEDs. Such phosphor model could provide the informa-
tion to understand the influence of phosphor, and is important
in discussing about the optical characteristic in white LEDs.
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