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Article

High-Performance Seizure Detection System
Using a Wavelet-Approximate Entropy-fSVM
Cascade With Clinical Validation

Chia-Ping Shen1, Chih-Chuan Chen2, Sheau -Ling Hsieh3,
Wei-Hsin Chen1, Jia-Ming Chen3, Chih-Min Chen1, Feipei Lai1,4,
and Ming-Jang Chiu1,2,5,6

Abstract
The classification of electroencephalography (EEG) signals is one of the most important methods for seizure detection. However,
verification of an atypical epileptic seizure often can only be done through long-term EEG monitoring for 24 hours or longer.
Hence, automatic EEG signal analysis for clinical screening is necessary for the diagnosis of epilepsy. We propose an EEG analysis
system of seizure detection, based on a cascade of wavelet-approximate entropy for feature selection, Fisher scores for adaptive
feature selection, and support vector machine for feature classification. Performance of the system was tested on open source
data, and the overall accuracy reached 99.97%. We further tested the performance of the system on clinical EEG obtained from a
clinical EEG laboratory and bedside EEG recordings. The results showed an overall accuracy of 98.73% for routine EEG, and
94.32% for bedside EEG, which verified the high performance and usefulness of such a cascade system for seizure detection. Also,
the prediction model, trained by routine EEG, can be successfully generalized to bedside EEG of independent patients.
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Introduction

EEG records cerebral electrical activity and detects events of

epileptic seizures. Epilepsy is among the most common serious

neurological disorders of the brain.1 The mean prevalence rates

in the United States and Europe are 0.52% and 0.68%, respec-

tively,2 and even higher in developing countries.3 Routine

EEG, which shows temporal and spatial information of the

brain’s electrical voltages, is often used to monitor activities

of the brain.4 In addition to epileptic seizures, EEG analysis

system should be able to detect interictal activities. Previous

studies showed that EEG has high sensitivity and specificity for

the diagnosis of epilepsy.5 For example, the 3-Hz spike-and-

wave in EEG is unique to petit mal, which is a particular form

of absence seizure of childhood. Therefore, spike detection of

EEG is important for health professionals.

Various approaches providing automatic seizure detection

have been proposed. Weng and Khorasani used amplitude,

duration, and coefficients of variation and frequency as inputs

for a neural network.6 Güler and Übeyli proposed a method for

seizure detection based on wavelet coefficients, eigenvectors,

and support vector machine (SVM).7–9 The system proposed

by Srinivasan et al adopted approximate entropy (ApEn) as the

feature classification for seizure detection.10 Recently, Adeli

et al performed a principal component analysis on enhanced

cosine radial basis function neural network (RBFNN) to detect

seizures,11 and Tzallas et al demonstrated the suitability of

time–frequency analysis to classify EEG segments for epileptic
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seizures.12 Furthermore, some experts used specific interictal

spike patterns as features of neuronal circuits in the hippocam-

pus in terms of cell and network.13 Although promising results

have been reported in these studies, the accuracy of recognition

is still low, and the performance of such systems needs to be

improved. Furthermore, most of these studies tested perfor-

mance on open source data but lacked validation with

clinical data. To improve accuracy of seizure detection, we pro-

pose to construct a comprehensive EEG analysis system, which

integrates several of the aforementioned technologies.

Methods

The system architecture is depicted in Figure 1. After EEG is

preprocessed, the feature extraction module decomposes the

input signal into 5 subbands by wavelet analysis, and then, the

evaluated wavelet transform (WT) coefficients are arranged

into feature vectors, approximately corresponding to g, b, a,

y, and d bands of conventional analog EEG analysis. For each

band, 5 statistical parameters, including maximum, minimum,

mean, standard deviation (SD), and entropy, are calculated.

Then, features are further screened by the feature selection

module, which sorts and decides the most important feature

among the aforementioned parameters. Finally, the classifica-

tion module determines hyperplanes among all classes based

on selected feature sets.

We compared the results of several existing methods for

classification, including SVM, k-nearest neighbor (KNN), and

RBFNN, to determine which has the best performance in such

a cascaded EEG analysis system. We tested performance not

only on open source data, but also on clinical data.

Acquisition and Preprocessing of EEG

There are 5 sets of EEG in the open source data that can be

downloaded from the Web site.14 Open source data were

randomly chosen either as a training or testing data set.

Each data group (A-E) contains 100 single-channel EEG

segments of 23.6-seconds. Each EEG segment contains

4096 data points (sampling rate 173.6 Hz). Sets A and B

were taken from the scalp EEG of 5 healthy volunteers with

eyes open (A) and eyes closed (B). Other data were

obtained from the intracranial EEG of 5 patients for presur-

gical diagnosis. Data set C was from the hippocampal

formation of the hemisphere, while set D was from intracra-

nial recordings from the opposite epileptogenic zones; both

sets C and D contained activity during seizure-free intervals.

Set E contained only seizure activity from all the recording

sites. EEG was acquired at a sampling rate of 173.61 Hz

and a 12-bit analog-to-digital conversion.15

We collected clinical data from patients receiving routine

EEG examinations or bedside EEG monitoring in the Depart-

ment of Neurology, National Taiwan University Hospital

(NTUH). In total, we included routine EEG data from 22

participants (11 women and 11 men), whose ages ranged from

23 to 86 years. There are 3 classes, namely interictal discharges,

seizure activity, and normal activity in the routine clinical

EEG data. In the patient group (4 women and 6 men), diagnosed

with temporal lobe epilepsy with abnormal focal or regional

EEG signals, the mean age was 67.2 years (SD ¼ 16.6). In the

control group (7 women and 5 men), referred from the outpatient

clinic and with normal EEG, the mean age was 43.6 years

(SD ¼ 17.5). These patients usually complained of headache

or dizziness, and did not have the diagnosis of epilepsy or

seizure disorder. Routine EEG was obtained from the 22

outpatients for about 15 minutes in a clinical EEG laboratory.

In order to explore the potential of the method to work in a

real-time environment, we further included 2 inpatients who

received bedside EEG recordings. The first patient was a

22-year-old man, who had active seizures on awakening in

the morning, hereafter designated ‘‘ictal case.’’ The second

was a 22-year-old woman, who had very frequent interictal

Figure 1. Shows the system architecture, in which the feature extraction module is composed of wavelet transformation and approximate
entropy, the feature selection module is composed of Fisher score, and the classification module is composed of any one of support vector
machine, k-nearest neighbors, or artificial neural network.
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epileptiform discharges in her previous recordings, hereafter

designated as ‘‘interictal case.’’ These 2 inpatients received

long-term bedside EEG for 64 and 60 hours, respectively.

Research was approved by the ethical committee of the NTUH.

EEG was collected from 21-channel scalp Ag–AgCl electro-

des according to the 10-20 International System16, and was

digitalized at a sampling rate of 200 Hz and a dynamic range

of 12 bits. First, the EEG signal was preprocessed by a low-

pass filter with a cutoff frequency of 60 Hz, to reduce compu-

tational complexity and to retain important EEG information.

Second, the recorded EEG was classified into normal EEG,

interictal epileptiform discharges, and ictal activities, then seg-

mented into 2-second epochs. Interictal epileptiform discharges

met the following conventional criteria17: (1) be paroxysmal;

(2) include an abrupt change in polarity occurring over several

seconds; (3) the duration of each transient should be less than

200 ms (spikes < 70 ms and sharp waves between 70 and

200 ms); (4) the discharge must have a physiology field. EEG

abnormalities in patients with seizure disorders may be cate-

gorized as either specific or nonspecific. Specific patterns

include spikes, sharp waves, spike-wave complexes, temporal

intermittent rhythmic delta activity, and periodic lateralized

epileptiform discharges, which are all potentially epilepto-

genic, and provide diagnostically useful information,17 while

the nonspecific changes, such as generalized or focal slow-

wave activity, do not.18 EEG was sampled from the most pro-

minent channel, frequently involving T3(4), T5(6), F7(8),

F3(4), or Fp1(2) sites. The most prominent channel was; either

the channel with a phase reversal indicating the source of the

epileptogenic focus in a bipolar montage or the channel with

the highest amplitude in a monopolar montage. EEG of control

patients was sampled from a randomly chosen single channel of

the aforementioned electrode sites.

The electrographic onset of a seizure is characterized by a

sudden change in frequency and the appearance of a new

rhythm. Focal onset of the electrographic seizure may evolve

through several phases: (1) focal desynchronization or attenua-

tion of EEG activity (�10mV); (2) focal, rhythmic, low voltage,

fast activity (higher than 13 Hz) discharges; and (3) progressive

increase in amplitude with slowing that spreads to a regional

anatomic distribution. Focal ictal discharges may be recorded

as paroxysmal repetitive spikes, spike-waves (3 or more dis-

charges in sequence), or rhythmic fast or y activity.19,20 Since

EEG experts may have different opinions on EEG classifica-

tion, the EEG classifications of interictal and ictal activities

were examined by 2 EEG experts (CCC and MJC, coauthors

of this report). We performed an interrater reliability test

between the 2 experts’ ratings. We found that the agreement

rate was 82% for interictal epileptiform discharges, and 94%

for ictal activities (seizure). We used only those signals with

the consensus of both experts for processing.

Feature Extraction

Wavelet Transform. Among all the available signal decomposi-

tion tools, the WT, which simultaneously extracts the time and

frequency characteristics of a signal, is most suitable for

extracting the spike-and-wave features.21 A WT reduces the

original signals into a few parameters, while maintaining major

characteristics for differentiating the type of EEG records. In

addition, the inherent properties of WT, which were proven

as an efficient tool for biomedical signal processing,22 include

good time and frequency location and across-subband

similarity.

A key advantage of WT over Fourier transforms, is its

higher temporal resolution, containing both the frequency and

the location information (location in time). Hence, the

discrete WT with Daubechies D4, tap 5/3, and tap 9/7 filter

pairs23, was applied to decompose the signal into high- and

low-frequency components using 4 steps. The filtered channel

results were stored either in low-pass channels (A1, A2, A3,

and A4) or in high-pass channels (D1, D2, D3, and D4). The

EEG signal decomposition calculated by Daubechies is shown

in Figure 2. These results revealed that the values of the D4

and A4 parts were the most important components for our pur-

pose. Mean, SD, maximum, minimum, and entropy values

were extracted from the filtered results of each decomposed

band. Therefore, there were in total 75 features extracted for

1 EEG segment.

Approximate Entropy

ApEn24 is one of the nonlinear dynamic parameters that mea-

sure complexity of the time series. ApEn is a time domain fea-

ture that is capable of classifying complex systems. It was

widely used in estimating the regularity of biomedical signals,

such as the heart rate variability and the pulsatility of endocrine

hormone release. ApEn is also applied to extract different kinds

of dynamic EEG rhythms.25 The calculation of ApEn in equa-

tions 1 to 3 with a signal S (finite length N) was performed by

following step 1 through step 6. The parameter m was the

length of the sampling window, which was the dimension of the

vector to be shifted, and r was the value of the threshold repre-

senting the noise filter level chosen in the range of 0.1 to 0.9.

An ApEn sequence reflected the change in uncertainty with

time. Large values implied irregularity of a data sequence,

whereas small values implied regularity.

1. S ¼ [x(1), x(2), . . . , x(N)] is the vector of data sequence.

2. x*(i) is a subsequence of S such that x*(i)¼ [x(i), x(i þ 1),

. . . , x(i þ m � 1)] for 1 � i � N � m þ 1, where m is the

length of the scaling window.

3. Let r¼ k� SD for k¼ 0.1 to 0.9, where SD is the standard

deviation of S.

4. For each 1 � x�ðiÞ; x�ðjÞ � N � mþ 1, i 6¼ j, d[ ] is the

operator of Euclidean distance.

Cm
i ðrÞ ¼

PN�mþ1
j¼1 d½x�ðiÞ; x�ðjÞ�

N � mþ 1
; ð1Þ

where d½x�ðiÞ;x�ðjÞ� ¼ 1;x�ðiÞ�x�ðjÞ�r
0; otherwise

n
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5. The quantity FmðrÞ is calculated as

FmðrÞ ¼ 1

N � mþ 1

XN�mþ1

i¼1

ln Cm
i ðrÞ ð2Þ

6. Finally, the ApEn is defined as follows:

ApEn ¼ FmðrÞ � Fmþ1ðrÞ ð3Þ

Feature Selection

Fisher score (equation 4) was used to evaluate the importance,

I(a, b, k), of a specific feature k, 1 � k � m, for a hyperplane,

Oa,b, corresponding to classes a and b, where ma,b denoted the

mean value, and sa,b was the SD of the feature k for all training

samples.26 This equation aimed to evaluate the differentiation

capability between the 2 classes and the stability in the same

class for a given feature, k.

Iða; b; kÞ ¼
ðma;k � mb;kÞ2

s2
a;k þ s2

b;k

ð4Þ

For each hyperplane, the importance of each feature was first

calculated then sorted in descending order. The types of selected

features were usually varied for different decision hyperplanes.

After sorting, the best features were selected and saved.25

Classification

Support Vector Machines. SVMs map the input feature vectors

into a high-dimensional space to realize the linearity of the

classifier.27 By feeding the algorithm with a data training set,

SVM can determine an optimal hyperplane that minimizes the

risks.28 Due to the inherent properties of SVM, it can only

determine the hyperplane between 2 different classes; any

testing samples must be processed for all combinations

between 2 arbitrary classes. Based on this training scheme, the

classification problem of 2 different classes is considered.

Given a training set of instance-label pairs (xi, yi), 1 � i � l,

where xi and yi denote the input and output domains, respec-

tively, and l denotes the total number of training samples. Thus,

w is the weight of training samples, and b is the bias of training

samples. In equation 7, C is a parameter of a penalty term

chosen by users to design errors, and xi is a slack variable. In

addition, the value of C can decide how many errors classifiers

can tolerate. Larger C can tolerate more errors to avoid the

situation of over fitting, but at low accuracy.

min
w;b;x

1
2

wT wþ C
Pl

i¼1

xi

subject to yi wT xi þ bð Þ � 1� xi

xi � 0

ð5Þ

All training samples are mapped to a higher dimensional

space, f, by the kernel function first. Because the input data

were cascaded by the Fisher score in equation 4, the SVM was

called fSVM.29

k-Nearest Neighbors

KNN is a case-based learning method, which maintains all the

training data for decision applications.30 To imply KNN deci-

sion strategy, a metric should be defined for measuring the

Figure 2. The decomposition results by the Daubechies filter.
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distance between test data and training samples. One of the

most popular choices is Euclidean distance. Then, given a test

object, the k-closest neighbors are found by comparing the dis-

tance metric. Among the k-closest data points, the most com-

mon class label is then assigned to the test object. An

appropriate value should be selected for K, because the success

of classification is very much dependent on this value.31 There

are several methods to choose the K value; one simple idea is

to run the algorithm many times with different K values (K ¼
1-10), and choose the one with the best performance.

Artificial Neural Network

The artificial neural network (ANN) is considered a good clas-

sifier due to its internal features, such as the adaptive learning

ability, robust intelligence, and capability of generalization. It

is useful when enough data are available. Hence, ANN plays

an important role in the classification of pattern recognition.

The RBFNN32,33 is employed in this article for the detection

of epileptic seizures. In our approach, the diverse features are

computed by RBFNN using MATLAB software package. The

spread of RBFNN is an important variable for classification.

The number of spread is supposed to be in the range of 1 to

500. The best parameters of spread were applied in the

experiment.

Performance Evaluation

The performances of classifications are evaluated for 3 para-

meters, namely, sensitivity, specificity, and accuracy. Each

segment of EEG was considered as a sample.

System Implement

The EEG analysis system was implemented on a service-

oriented architecture (SOA), using Web service techniques.34

The design inherits SOA flexibilities, and would provide addi-

tional cooperation for further integration and deployment.35

The Web-based system architecture contains 3 major portions,

including the client site, the server site, and the database. All

components in the system use the XML format for exchanging

messages, and the communication mechanism is based on a

simple object access protocol over http handled internally by

the .NET environment.36 The 4 components of the server func-

tionalities include preprocessing, feature extraction, feature

selection, and classification.

Results

EEG signals can be considered as a superposition of different

frequency bands representing different characteristics. WT pro-

vides a useful spectral analysis to decompose several levels

within the frequency ranges. An EEG signal was subjected to

a 4-level decomposition, which contains the significance of the

physiological bands. After processing, the components of the 4

levels were D1, D2, D3, D4, and A4. Based on the WT feature

analysis technique, it was not difficult to identify the difference

between the normal, interictal, and ictal states (denoted as A, D,

and E in the open source data, 3 classes). However, these fea-

tures were not sufficient to differentiate the complete data set

(denoted as A, B, C, D, and E in the open source data, 5

classes).

To consider the measurement of uncertainty, ApEn

describes the complexity distribution of the signals. Thus,

ApEn combined with WT offered better results than using

WT only. The classification accuracy of WT-5 classes, WT-3

classes, WT þ ApEn-5 classes, and WT þ ApEn-3 classes was

70.17%, 87.52%, 99.97%, and 100%, respectively (all applied

fSVM for feature selection). The result showed that WT and

ApEn were a good combination for feature extraction. The sta-

tistical parameters of 3 kinds of classifiers used for feature

selection are reported in Table 1. The overall accuracy of

fSVM, KNN, and RBFNN was 99.97%, 99.10%, and

99.82%, respectively (Table 1). The comparison showed that

all 3 methods achieve high accuracy of classification, because

of the cascaded processing with WT, ApEn, and any 1 of the 3

feature selection methods.

Performance of the fSVM classifier in terms of accuracy can

be determined by the penalty C (Figure 3).

This plot shows that training model will overfit the data if C

becomes large. The experimental results indicated that the most

important parameter for all hyperplanes was the entropy of D4

(9/7 wavelet), D3 (9/7 wavelet), and D2 (5/3 wavelet). Entropy

played an important role in this classification. The other issue

for pattern recognition was the length of segmentation, which

could be used to predict different window lengths for EEG sig-

nals (Table 2). Results showed stable accuracy by a diverse

number of signal samples. In other words, it was successful

Table 1. Results of the Feature Classification on Open Source Data
Using Different Methods.

Sensitivity (%) Specificity (%) Accuracy (%)

SVM
Set A 100 100 99.97

Set B 100 100
Set C 99.87 100

Set D 100 99.96

Set E 100 100
KNN

Set A 99.50 99.84 99.10
Set B 99.25 99.93

Set C 99.87 99.59
Set D 98.37 99.65

Set E 98.50 99.84
RBFNN

Set A 100 100 99.82
Set B 99.87 100

Set C 99.75 99.90
Set D 99.50 99.93

Set E 100 99.93

Abbreviations: KNN, k-nearest neighbor; RBFNN, radial basis function neural
network; SVM, support vector machine.

Shen et al 251

 at NATIONAL CHIAO TUNG UNIV LIB on April 24, 2014eeg.sagepub.comDownloaded from 

http://eeg.sagepub.com/


to extract features using different segmentation lengths of the

input data.

To verify the performance of our EEG analysis system,

we further tested the system on clinical data with a total

number of 712 EEG signals. The 712 EEG signals (1424

seconds) were obtained from a total of 330-minute EEG

recordings (around 15 minutes for each participant), by seg-

menting artifact-free EEG into 2-second epochs. Thus, the

training sets were 356, and the testing sets were 356, which

were arbitrarily chosen from the total EEG signals. Regard-

ing the problem of the ApEn parameters (m, r), the overall

accuracy varied from 94.94% to 97.19%, indicating that the

best condition for seizure detection was m ¼ 3 and r ¼ 0.8

SD (Figure 4). In general, it can be concluded that the over-

all accuracy remained stable when ApEn was obtained from

m ¼ 2 to 5. In the example of Figure 5, the distribution was

obviously separated by the SD of tap 9/7 (D4), and the max-

imum values of tap 5/3 (D1), for the normal EEGs and

interictal EEGs.

However, this study used only a subset of all features to sep-

arate 2 important classes; the average feature number used was

only 34.33, whereas the original feature number was 75. These

features are composed of ApEn (30%) and the SD (27%), mean

(23%), maximum (10%), and minimum (10%) of WT coeffi-

cients. The effort of computation was thus significantly

decreased by feature selection. In short, ApEn, SD, and mean

are better than maximum and minimum. However, maximum

and minimum features may also have substantial contribution

in classification (Figure 5).

In order to test the stability and practice of the system, we

also tested the bedside EEG recordings from the 2 inpatients.

Results are summarized below. The EEG of the patient with

active seizures, the ‘‘ictal case,’’ was about 64 hours long, with

100% sensitivity for seizure detection (13-minute seizure activ-

ities out of the total 64-hour recording), and high specificity

(97.1%) by SVM. The EEG of the patient with active interictal

epileptiform discharges, from the ‘‘interictal case’’, was about

60 hours long, with 81.2% sensitivity for spike detection (accu-

mulated 26 minutes of the total 60 hours recording), and speci-

ficity was 91.3% by SVM. The performance on the ‘‘interictal

case’’ was similar but worse than on the ‘‘ictal case’’ by SVM

classifier. The overall performance of SVM classifier in terms

of accuracy on the bedside EEG was 94.32%. The prediction

time was very short, taking only 0.23 seconds to predict a 2-

second EEG segment. This suggests a high potential of the sys-

tem to work in real time for its high speed.

The results of the bedside EEG are very similar to the results

of our short-duration routine clinical EEG. Performance of sei-

zure detection on bedside EEG is comparable to that of the

short-duration EEG. This is because seizure events have a dis-

tinct temporal character and are much easier for the system to

Table 2. Accuracy for Different Length of Segmentation With SVM
for Open Source Data.

Length 256 512 1024 2048 4096

Accuracy (%) 99.97 99.75 99.8 99.8 100

Abbreviation: SVM, support vector machine.

Figure 3. Classification accuracy for different penalty parameter C.

Figure 4. The overall accuracy for different m and r (x-axis is r).

Figure 5. Distribution for normal and interictal EEG with 2 exemplar
2-second EEG segments and their representative positions in the
classification hyperplane. EEG indicates electroencephalography.
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identify. but performance on bedside EEG is much lower for

interictal epileptiform discharges, due to increased interference

from motion artifacts, and environmental electromagnetic

noise in such a bedside condition.

Discussion

To improve on the diagnosis of epilepsy, in addition to clinical

information, epileptologists and neurologists depend on labora-

tory tools, including EEG, magnetic resonance imaging, single-

photon emission computed tomography, positron emission

tomography, and magnetoencephalography. Among these

methods, EEG is the most inexpensive and the most accessi-

ble.37 Some advantages of EEG are low cost, good examination

speed, high time resolution, and noninvasiveness.38–41

We used WT and ApEn for feature extraction. WT provides

a useful spectral analysis to decompose several levels within

the frequency domain, and at the same time preserved the time

domain features. An EEG signal was subjected to a 4-level

decomposition, which contains the significance of the physio-

logical bands. In addition, ApEn is one of the nonlinear

dynamic parameters that measure complexity of the time

series. WT and ApEn play an important role in features extrac-

tion from both frequency and time domains.

Table 3 presents a comparison of the performance between

our study and others on the open source data, which shows that

our system has the best performance (more than 99%).

Our system performs best, compared to previous studies

(Table 4). Sensitivity and specificity of fSVM is better than

both KNN (k ¼ 3) and RBFNN (spread ¼ 201). The perfor-

mance of all 3 methods was optimized by tuning their

individual best parameters, in which K is from 1 to 10, and

spread is between 1 and 500.

Receiver–operating characteristics (ROC) analysis showed

that it is much easier to differentiate between normal and

epileptic seizure activities, than to differentiate between inter-

ictal (epileptiform discharges) and ictal (seizure) activities

(Figure 6). One typically difficult case is demonstrated in

Figure 7D, which shows a condition where the experts

considered the seizure had already begun, but the instrument

still classified the segment as interictal activity. This is proba-

bly because the program takes a stepwise 2-second epoch for

classification. The difficult case is an example of misclassifica-

tion of ictal EEG into interictal EEG when the epileptiform

discharges are evolving.

From the above discussion, we propose that high perfor-

mance of our system is basically a consequence of the cascade

of WT and ApEn. Performance using clinical data is a little bit

lower than the open source data, because all the clinical data

were obtained from surface recordings with all possible extra-

cranial artifacts. Nevertheless, our approach provides a stable

performance for clinical seizure detection, especially with the

fSVM feature selection (Table 4).

Area under the curve analysis showed that the area under the

ROC curve of SVM is larger than KNN and ANN in Figure 6.

In the case of normal versus seizure (RBFNN: 0.906, KNN:

0.972, and SVM: 0.987), or in the case of interictal versus sei-

zure (RBFNN: 0.885, KNN: 0.855, and SVM: 0.914), the per-

formance of SVM is better than KNN and ANN. In addition, as

shown in Tables 3 (open source data) and 4 (clinical data),

accuracy of the SVM is also better than KNN and ANN.

However, our study is not without limitations. The first is

that the open source data are from a limited number of healthy

participants (n ¼ 5, surface recordings) and patients with epi-

lepsy (n ¼ 5, presurgical intracranial recordings). Therefore,

ceiling effects of the classification are inherent in the open

source data set, since intracranial EEGs are free of noise and

artifacts from extracranial sources. Despite these apparent lim-

itations, these open source data have been used by a number of

studies to test their EEG analysis algorithms. This limitation

could be solved by further validation using clinical data. How-

ever, comparison of performance on clinical data is limited,

due to nonavailability of the clinical data used by other groups.

In the future, this could be solved by referring to the clinical

data we are now using. Currently, we are analyzing and classi-

fying only on single-channel EEG data. Ideally, the automatic

seizure detection system could analyze and classify multichan-

nel (eg, 16 to 32-channels) EEG data from prolonged extracra-

nial recordings, which are full of artifacts due to muscle, body

movement, eye movement, electrocardiogram, and nonepilep-

tic paroxysmal EEG transients. The problem was partially met

by testing our system on long-duration bedside EEG. Finally, in

Table 3. Comparison of the Performance of Different Studies on the
Open Source Data.

Method Accuracy (%)

Güler and Übeyli7 Wavelet þ neurofuzzy 98.68a

Übeyli and Güler9 Eigenvector þ expert model 98.60a

Tzallas et al12 Time frequency þ ANN 89.00b

Our study Wavelet þ ApEn þ SVM 99.97c

Our study Wavelet þ ApEn þ RBFNN 99.10d

Our study Wavelet þ ApEn þ KNN 99.72

Abbreviations: ANN, artificial neural network; ApEn, approximate entropy;
KNN, k-nearest neighbor; RBFNN, radial basis function neural network; SVM,
support vector machine.
a P < .05.
b P < .001.
c ANOVA was used to compare the performance of different methods by our
group or by other groups.
d P < .01.

Table 4. Comparison of the Performance of Different Studies on the
Clinical Data.

Sensitivity (%) Specificity (%)

Chaovalitwongse et al31 81.29 72.86
Aarabi et al39 74 70.1

Acir et al41 89.1 85.9
Our study (fSVM) 98.37 100

Our study (RBFNN) 88.61 100

Our study (KNN) 95.12 100

Abbreviations: fSVM, Fisher support vector machine; KNN, k-nearest
neighbor; RBFNN, radial basis function neural network.
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Figure 6. Receiver–operating characteristics curves showing performance of the methods for feature selection. A, Between normal and ictal/
interictal activities; (B) between ictal and interictal activities.

Figure 7. Exemplary electroencephalography of the clinical data. A, normal, (B) interictal, (C) seizure, and (D) evolution from interictal to ictal;
in the red rectangle, signal was classified as seizure by experts but as interictal by machine. All displayed in a time frame of 10 seconds.
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development of an automatic seizure detection system, we

must always remember that the current golden standard for

EEG classification is still human visual interpretation, and dif-

ferent EEG readers may have different opinions about a given

EEG feature. To tackle this problem, we used only those seg-

ments of EEG signal with consensus of the 2 experts, both

interictal epileptiform discharges and seizure activities, that

contributed to the high sensitivity and specificity of the

classification.

Conclusion

We reported a robust and adaptive system based on the hybrid

automatic identification system for seizure detection. Currently,

interpretation of EEG largely depends on visual analog analysis

by neurologists or epileptologists. However, this may be

impractical or difficult in some situations, such as analysis of

a very long segment data of dozens of hours. An automatic

detection system for distinguishing normal, interictal, and ictal

activities is of great help in clinical practice. Using the cas-

caded architecture of WT, ApEn, and feature selection, we can

get stable performance, that the accuracy of classification can

achieve nearly 100% in the standard open source data, and

more than 94% both in routine clinical EEG and in long-

duration bedside EEG from the real world. Additional strength

of this study, is that the bedside EEG (long term) was predicted

by the model trained with routine EEG (short duration). It

means that the model trained with routine short-duration EEG

can be generalized to analyze EEGs of independent patients,

with good performance.
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