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An Iterative Weighted Reliability Decoding Algorithm for
Two-Step Majority-Logic Decodable Cyclic Codes

Hsiu-Chi Chang, Chih-Lung Chen, and Hsie-Chia Chang

Abstract—An iterative weighted reliability two-step majority
logic decoding (IWRTS-MLGD) algorithm for two-step majority-
logic (TS-MLG)-decodable cyclic codes is presented. In contrast
to other message passing decoding algorithms that utilize real
number operations, our proposed decoding algorithm requires
only logical operations and integer additions. Therefore, large
computational complexities can be reduced. For moderate-length
TS-MLG-decodable cyclic codes, the proposed algorithm aided
with soft information and a scaling factor outperforms the hard-
decision TS-MLGD algorithm and hard-decision BCH codes with
similar length by 1.2- and 1.0-dB, respectively.

Index Terms—Finite geometry code, reliability-based message
passing algorithm, two-fold EG code, cyclic code.

I. INTRODUCTION

F INITE geometry (FG) codes received great attention in
the late 1960s and the early 1970s [1]–[3]. FG codes form

a class of cyclic codes with reasonable minimum distance
which can be decoded with simple majority logic (MLG).
There are two types of MLG-decodable cyclic codes: one-
step and multi-step. One-step MLG-decodable cyclic codes
are rediscovered in [4] as FG-LDPC codes whose Tanner
graphs are free of cycles of length 4. Long FG-LDPC codes
decoded by the sum-product algorithm (SPA) [5] and min-
sum algorithm (MSA) [6] can nearly achieve Shannon’s
theoretical limit. However, multi-step MLG-decodable cyclic
codes contain many short cycles of length 4. Thus, standard
SPA or MSA is not effective for decoding multi-step MLG-
decodable cyclic codes [7] and [8]. In [7] and [8], a two-
step soft decision decoding algorithm based on SPA and MSA
was introduced for decoding TS-MLG-decodable cyclic codes,
which is called the two-step iterative decoding algorithm (TS-
IDA). TS-IDA uses a five level message passing tree (MPT),
which is constructed based on the orthogonal structure of the
relation between frames and lines of the finite geometries.
Therefore, it can avoid the degrading effects of short cycles.
The simulation results in [8] show that TS-IDA outperforms
other hard decision decoding methods by 2dB. However, the
computational complexity is very large since a large portion
of the computation involves real number.

Recently, [9] has introduced an efficient iterative algo-
rithm called the soft reliability based iterative majority logic
decoding algorithm (SRBI-MLGD) for decoding one-step
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MLG-decodable LDPC codes constructed by finite geometries.
SRBI-MLGD is a binary message passing algorithm which
utilizes only logical operations and integer additions. Thus,
it greatly reduces the computational complexities compared
to SPA or MSA. In contrast to other binary decoding meth-
ods such as differential binary message passing algorithm
(DBMPA) [10], the SRBI-MLGD requires less computational
complexity and memory.

In this letter, we propose an iterative weighted reliability
two-step majority logic decoding (IWRTS-MLGD) algorithm
for decoding TS-MLG-decodable cyclic codes. The idea of the
algorithm is derived from SRBI-MLGD which greatly reduces
the computational complexity compared to the previous TS-
IDA [8]. We use a subclass of TS-MLG-decodable cyclic
FG codes called two-fold Euclidean geometry (EG) codes
to demonstrate the effectiveness of the proposed algorithm.
The letter is organized as follows: Section II introduces the
background of the two-fold EG codes, and the corresponding
two-step (TS)-MLGD algorithm. Section III provides the pro-
posed IWRTS-MLGD algorithm in detail. The computational
complexity analysis is also included. Section IV shows the
simulation results. Finally, section V presents the conclusion.

II. CONSTRUCTION OF TWO-FOLD EG CODES AND

TS-MLGD ALGORITHM

Consider a d-dimensional Euclidean geometry EG(d, q)
over the field GF(q). The field GF(qd) as an extension field
of the field GF(q) is a realization of EG(d, q). Let α be a
primitive element of GF(qd). Then the powers of α, α−∞ =

0, α0 = 1, α, ...αqd−2, represent the qd points of EG(d, q) and
α−∞ = 0 represents the origin of EG(d, q). Let EG∗(d, q) be
a subgeometry obtained from EG(d, q) by removing the origin
and all the lines passing through the origin. Let n = qd − 1.
There are n nonorigin points and J0 = n(qd−1 − 1)/(q − 1)
lines not passing through origin in EG∗(d, q). A line has q
points. If a point is on a line in EG∗(d, q), we say that the line
passes through the point(or orthogonal on the point). Every
point in EG∗(d, q) is intersected by J1 = n/(q − 1) − 1
lines. For the i-th line Li in EG∗(d, q), where 0 ≤ i < J0,
there are J2 = qd−1 − 2 lines parallel to it denoted as
Lt,i, where 0 ≤ t < J2. Let {Li, Lt,i} be a (1, 2)-frame
in EG∗(d, q). There are J2 (1, 2)-frames orthogonal on line
Li denoted as {Li, L0,i}, {Li, L1,i}, . . . , {Li, LJ2−1,i}. There
are a total of r = n(qd−1 − 1)(qd−1 − 2)/2(q − 1) (1, 2)-
frames in EG∗(d, q). We consider an r × n matrix H over
GF(qd) with each row as a binary incidence vector of the
(1, 2)-frames in EG∗(d, q). Then the null space of H gives
a cyclic code of length n, called as two-fold EG [11] code.

1089-7798/13$31.00 c© 2013 IEEE



CHANG et al.: AN ITERATIVE WEIGHTED RELIABILITY DECODING ALGORITHM FOR TWO-STEP MAJORITY-LOGIC DECODABLE CYCLIC CODES 1981

The generator polynomial g(X) of a two-fold EG code can
be found in [8].

Let u = (u0, u1, u2, · · · , un−1) be a codeword of two-
fold EG code. Suppose u is transmitted via BPSK with unit
energy over the binary AWGN with two-sided power spectral
density N0/2. Let y= (y0, y1, y2, · · · , yn−1) be the sequence
of samples at the output of the sampler in the receiver. Let
z= (z0, z1, z2, · · · , zn−1) be the hard decision sequence of y.
The hard decision received sequence will be a two-fold EG
codeword if HzT = 0 or if the polynomial representation z(X)
of z is divisible by the generator polynomial g(X). The parity-
check matrix H can be built by using the (1, 2)-frames with
J0 lines in EG∗(d, q). Consider the i-th line Li in EG∗(d, q),
where 0 ≤ i < J0. Let vLi be the incidence vector of line Li

denoted as vLi = {vi,0, vi,1, · · · , vi,n−1} whose components
are the n-tuples over GF(2) that correspond to the n non-
origin points of EG∗(d, q) with vi,j = 1 if αj is a point on
Li, otherwise vi,j = 0, where 0 ≤ j < n. Based on the J0
lines in EG∗(d, q), we form a J0×n matrix denoted as L, with
J0 incidence vectors of lines as rows and n points as columns.
Let vL0 ,vL1 ,· · · ,vLJ0−1 be the rows of L. For 0 ≤ i < J0 and
0 ≤ j < n, we define Ni = {j : 0 ≤ j < n, vi,j = 1} and
Mj = {i : 0 ≤ i < J0, vi,j = 1}. The indices in Ni denote the
location of 1-component in the i-th row of L. The indices in
Mj denote the location of 1-component in the j-th column of
L. Let S(Li) be the line-sum of Li, which can be calculated
by the inner product of z and the incidence vector vLi as
follows:

S(Li) =
∑
j∈Ni

zj . (1)

Consider a (1, 2)-frame F = {Li, Lt,i} in EG∗(d, q). The
frame-sum of F can be derived by XOR two line-sums: S(Li)
and S(Lt,i), denoted as S(F ) = S(Li)⊕S(Lt,i), where ⊕ is
the XOR operation. Because Lt,i is also a line in EG∗(d, q),
both S(Li) and S(Lt,i) can be calculated by (1), which equal
to either 0 or 1. There are a total of r frame-sums in the parity-
check matrix H. Each frame-sum is the inner product of z and
the binary incidence vector of (1, 2) frame F composed of two
lines Li and Lt,i in EG∗(d, q).

Consider updating a received bit zj in a two-fold EG code
[11], where 0 ≤ j < n. The received bit zj corresponds to a
point αj in EG∗(d, q). There are J1 lines in EG∗(d, q) passing
through αj denoted as Lj

u, where 0 ≤ u < J1. The line-sum
of Lj

u is denoted as S(Lj
u). These line-sums are orthogonal

on zj . For 0 ≤ t < J2, there are J2 lines in EG∗(d, q) parallel
to Lj

u, denoted as Lj
t,u. The line-sum of Lj

t,u is denoted as
S(Lj

t,u). The first step of decoding is to decode S(Lj
u) using

the J2 (1, 2)-frames of EG∗(d, q) that are orthogonal on Lj
u.

Let F j,u,t = {Lj
u, L

j
t,u} be a (1, 2)-frame in EG∗(d, q) that

is orthogonal on Lj
u. The frame-sum of F j,u,t is denoted

as S(F j,u,t) = S(Lj
u) ⊕ S(Lj

t,u). The line-sum S(Lj
t,u) of

S(F j,u,t) is the extrinsic information for decoding S(Lj
u). A

received bit in z that is not contained in Lj
u can appear in at

most one Lj
t,u. With the above concept, we can decode the

value of S(Lj
u) correctly with MLGD using the J2 S(F j,u,t)

that are orthogonal on S(Lj
u) provided there are no more than

�J2/2� errors in z. The second step of decoding is to decode zj
by J1 S(Lj

u) that are orthogonal on zj . Any received bit of z

other than zj can appear in at most one of these J1 lines. These
bits orthogonal on zj are the extrinsic information for zj . The
intrinsic information of zj comes from the hard-decision of
itself. Since J1 > J2, with MLGD based on these J1 lines,
the value of zj can be correctly decoded with no more than
�J2/2� errors in received bits [11]. The above decoding of a
two-fold EG code is called two-step (TS)-MLGD.

III. ITERATIVE WEIGHTED RELIABILITY DECODING

ALGORITHM FOR TWO-FOLD EG CODES

TS-MLGD is a one-pass decoding algorithm with only
hard-decision values from the received bits. TS-MLGD has
low computational complexity, yet its performance can be
greatly improved. In [8], TS-IDA algorithm improved the
performance of two-fold EG codes by employing the soft
information from the channel along with an iterative decoding
process. The computational complexity of TS-IDA is very
large because much of its computation involves real number.
In the following, we propose an iterative decoding algorithm
called iterative weighted reliability two-step-MLGD (IWRTS-
MLGD) algorithm which utilizes only logical operations and
integer additions. The unweighted algorithm is also included.

Let rj be the quantized value of the sample yj , where
0 ≤ j < n. The quantized value is an integer representation
of the 2b − 1 quantized intervals symmetric to the origin.
Each interval has a length � and is represented by b bits.
Therefore, rj is in the range of

[−(2(b−1) − 1),+2(b−1) − 1
]
.

The magnitude |rj | of rj gives the soft measure of the
reliability of the hard decision received bit zj . Next, we need
some notations to employ the iterative decoding process. Let
l be the iteration number. Let lmax be the maximum iterations
to be performed in the decoding process. For 0 ≤ l < lmax, let
z(l) = {z(l)0 , z

(l)
1 , · · · , z(l)n−1} be the received vector generated

in the l-th iteration decoding, where z
(l)
j is the j-th hard-

decision received bit at the l-th iteration. In each iteration,
we first update the line-sum of all the lines by

S(l)(Li) =
∑
j∈Ni

z
(l)
j . (2)

Let R(l)
j be the reliability measure of the j-th bit at the l-

th iteration. Moreover, let ψ(l)(Li) be the reliability measure
of Li at the l-th iteration, which is determined by the least
reliable bit in Li as

ψ(l)(Li) = min
j∈Ni

|R(l)
j |. (3)

We set R(0)
j equal to the reliability rj as an initial reliability

measure of a received bit zj . Note that S(l)(Li) and ψ(l)(Li)
can be shared during the decoding process for the received bits
of z(l) in an iteration. The received bit zj participates in F j,u,t

consisting of two parallel lines, Lj
u and Lj

t,u. The line-sum
of Lj

u and Lj
t,u at the l-th iteration are denoted as S(l)(Lj

u)

and S(l)(Lj
t,u), respectively. Both S(l)(Lj

u) and S(l)(Lj
t,u) can

be derived from (2). Besides, ψ(l)(Lj
t,u) can be derived from

(3). Suppose we update z(l)j in Lj
u, where 0 ≤ u < J1. The

extrinsic information of z(l)j comes from the following two
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steps. In the first step, the extrinsic information contributed
by the J2 parallel lines for the u-th line is calculated by

φ(l)u =

J2−1∑
t=0

ψ(l)(Lj
t,u)

{
2S(l)(Lj

t,u)− 1
}
. (4)

Let ϕ(l)
u be the hard-decision of φ(l)u , which can be expressed

by an indicator function ϕ
(l)
u = I(φ

(l)
u > 0). In the second

step, the extrinsic information is contributed by the received
bits of z(l) that participate in Lj

u except z(l)j which is given
by

σ
(l)
u,j = S(l)(Lj

u)⊕ zj(l). (5)

The total extrinsic information can be derived from the afore-
mentioned two steps by J1 σ

(l)
u,j XOR ϕ

(l)
u along with a scaling

factor α as

E
(l)
j = α

J1−1∑
u=0

{
2(σ

(l)
u,j ⊕ ϕ(l)

u )− 1
}
, (6)

where α can be optimized by simulation. The reliability
measure for the j-th received bit z(l+1)

j at the (l + 1)-th
iteration is calculated by

R
(l+1)
j = R

(l)
j + E

(l)
j . (7)

In addition, in updating the soft reliability value R
(l)
j for a

received bit zj , if the magnitude |R(l)
j + E

(l)
j | is larger than

the quantization range (2(b−1) − 1), the reliability value is
set to (2(b−1) − 1). Thus, the soft reliability value is always
clipped under the maximal value of the quantization. If an
unweighted decoding algorithm is desired, the scaling factor
should be set to 1. With the concept and notations defined
above, the proposed algorithm is formulated as Algorithm 1.

Algorithm 1 IWRTS-MLGD algorithm for two-fold EG codes
1: Initialization:

Set z(0) =z, l = 0, and the maximum number of iterations
to lmax. For 0 ≤ j < n, set R(0)

j = rj .
2: Let s(l)(X) be the syndrome derived by dividing the

received polynomial z(l)(X) by the generator polynomial
g(X) of the codes. If s(l)(X)=0, stop decoding and output
z(l) as the decoded codeword. If l=lmax and s(l)(X) �=0,
stop decoding and declare a decoding failure.

3: For 0 ≤ i < J0, compute all S(l)(Li) and ψ(l)(Li) by (2)
and (3).

4: Update E(l)
j by (4), ϕ(l)

u , (5), and (6).

5: Update the reliability measure of R(l+1)
j by (7).

6: l ← l + 1. Make the following hard-decision:
1) if R(l)

j ≤ 0, then zj
(l) = 0, and 2) if R(l)

j > 0, then
zj

(l) = 1. Form a new received vector z(l). Go to Step 2.

We analyze the computational complexity as follows. For
step 3, there are J0 = n(q(d−1) − 1)/(q − 1) lines in
EG∗(d, q). The line-sum of a line needs (q− 1) logical XOR
operations. Thus, it needs n(q(d−1) − 1) XOR operations
to compute all the line-sums in EG∗(d, q). In addition, it
needs q − 1 comparisons to determine the minimum value
for the reliability of a line. Therefore, a total of n(q(d−1)− 1)

TABLE I
COMPUTATION COMPLEXITY REQUIRED PER ITERATION OF SPA,
DBMPA, TS-IDA, AND PROPOSED IWRTS-MLGD ALGORITHM.

Decoding algorithm
Computation Cost per Iteration

BO IA RA RM Log

SPA [5] 6n2 n

DBMPA [10] 4n2 + n 4n2 + 2n

TS-IDA [8] 3n3/2 n2 + n 7n3/2

IWRTS-MLGD 3n3/2 n2 + n

BO:Binary Operation; IA:Integer Addition; RA:Real Addition;

RM:Real Multiplication; Log:Logarithm;

comparisons is needed. In step 4, S(l)(Lj
u) and S(l)(Lj

t,u)
are derived by assigning their corresponding line-sums in
S(l)(Li). Meanwhile, ψ(l)(Lj

t,u) is derived by assigning its
corresponding reliability of line in ψ(l)(Li). In (4), it needs
J2 − 1 integer additions and J2 logical operations for φ(l)u .
In addition, a logical operation is needed to determine the
hard-decision of ϕ(l)

u . (5) needs a logical operation and (6)
needs J1− 1 integer additions with J1− 1 logical operations.
The scaling factor α is set to be an integer for simplicity.
If the scaling factor is an even number, the scaling can be
accomplished with a simple shift operation. Otherwise, the
scaling operation needs to add the original value to the shifted
value, this will require another J1n integer additions. Step 5
requires n integer additions to update the reliability of the
n received bits. Finally, step 6 needs n logical operation to
test the sign of an integer. To perform one iteration, we need
n(J1+J2+3)+J0(q−1) ≈ 3qd−1(qd − 1) logical operations,
J0(q − 1) + n{J1J2 − (J1 + J2) + 2} ≈ qd(qd − 1) integer
additions. Since the code length is n = qd − 1, by taking
d = 2 for two-fold EG codes constructed by two dimensional
Euclidean geometry, the number of logical operations is of
O(n3/2), while the number of integer additions is of O(n2).

In Table I we compare the numbers of operations per
iteration required by SPA [5], DBMPA [10], TS-IDA [8],
and the proposed IWRTS-MLGD. The numbers of operations
for SPA and DBMPA are obtained from Table I in [9]. The
number of operations for TS-IDA is derived from the analysis
in [8]. In [9], δ is the number of 1-entries in the parity-
check matrix H. There are n(qd−1 − 1)(qd−1 − 2)/2(q − 1)
rows in H with each row containing 2q 1’s. Therefore,
δ = 2q × n(qd−1 − 1)(qd−1 − 2)/2(q − 1) ≈ n2. With
some translations, we demonstrate the complexity comparison
in terms of n. Table I shows that the computation of the
proposed IWRTS-MLGD with binary operations and integer
additions employs the least operations compared to SPA and
TS-IDA with real number operations. In addition, the proposed
algorithm reduces computational complexity by at least 75
percent compared to DBMPA, which is also a binary message
passing algorithm.

IV. SIMULATION RESULTS

In the following two examples, we use 8-bit uniform
quantization with 255 levels and an interval length� = 0.015
for (255, 191) code, and 10-bit uniform quantization with 1024
levels and an interval length� = 0.0075 for (1023, 813) code.
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Fig. 1. Error performance of the two-fold EG code (255, 191) in Ex. 1 with
various decoding algorithms over the AWGN channel.

Fig. 2. Error performance of the two-fold EG code (1023, 813) in Ex. 2
with various decoding algorithms over the AWGN channel.

Both codes have scaling factor α = 3. The interval length and
the scaling factor are obtained by simulation. The proposed
unweighted decoding algorithm is denoted as IRTS-MLGD.

Example 1: Regarding GF (28) as the geometry for the
two-dimensional EG(2, 24), the two-fold EG code (255, 191)
can be constructed. Fig. 1 shows the bit error performance
of the proposed algorithms and TS-IDA with 5 iterations,
DBMPA with 30 iterations, SPA with 50 iterations and TS-
MLGD. The performance of a (255, 191) BCH code with min-
imum distance 17 decoded by the hard-decision Berlekamp-
Massey(BM) algorithm [11] is also included. At BER of 10−6,
the proposed IWRTS-MLGD degrades 0.5dB from TS-IDA,
but outperforms IRTS-MLGD, SPA, DBMPA, BCH code, and
TS-MLGD by 0.4-, 0.8-, 1.2-, 1.3- and 1.4-dB, respectively.

Example 2: Regarding GF (210) as the geometry for the
two-dimensional EG(2, 25), the two-fold EG code (1023, 813)

can be constructed. Fig. 2 depicts the bit error performance of
the proposed algorithms, TS-IDA with 5 iterations, DBMPA
with 30 iterations, SPA with 50 iterations and TS-MLGD.
The performance of a (1023, 818) BCH code with minimum
distance 43 decoded by the hard-decision BM algorithm is also

included. At BER of 10−7, IWRTS-MLGD degrades 0.5dB
from TS-IDA, but outperforms IRTS-MLGD, SPA, DBMPA,
BCH code and TS-MLGD by 0.2-, 0.6-, 0.8-, 1- and 1.2-dB,
respectively.

V. CONCLUSION AND REMARKS

In this letter, we develop an iterative weighted reliability
decoding algorithm for TS-MLG-decodable cyclic codes that
utilizes the orthogonal structure of the parity-check matrices.
Although the algorithm is developed for a special subclass of
TS-MLG-decodable cyclic codes, called two-fold EG codes, it
can be applied to any TS-MLG-decodable cyclic code. Unlike
TS-IDA using real number operations, our proposed algorithm
utilizes only logical operations and integer additions, thus
reducing computational complexity. From simulation results,
though the two-fold EG codes decoded with the proposed
IWRTS-MLGD algorithm are 0.5dB away from TS-IDA, the
proposed algorithm outperforms standard SPA and binary mes-
sage passing DBMPA at least 0.6dB. Besides, it achieves 1dB
gain over similar length BCH codes decoded with the hard-
decision BM algorithm, and 1.2dB gain over hard-decision
TS-MLGD.
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